[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3762156B2 - Pipe inspection device - Google Patents

Pipe inspection device Download PDF

Info

Publication number
JP3762156B2
JP3762156B2 JP24333299A JP24333299A JP3762156B2 JP 3762156 B2 JP3762156 B2 JP 3762156B2 JP 24333299 A JP24333299 A JP 24333299A JP 24333299 A JP24333299 A JP 24333299A JP 3762156 B2 JP3762156 B2 JP 3762156B2
Authority
JP
Japan
Prior art keywords
tube
inspection
moving means
heat exchanger
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24333299A
Other languages
Japanese (ja)
Other versions
JP2001066257A (en
Inventor
行雄 野間崎
太 源内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP24333299A priority Critical patent/JP3762156B2/en
Publication of JP2001066257A publication Critical patent/JP2001066257A/en
Application granted granted Critical
Publication of JP3762156B2 publication Critical patent/JP3762156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ボイラ又はごみ焼却設備などに配置される熱交換器の伝熱管等の検査装置に係り、特に横置き、且つ千鳥配列された熱交換器管の外面の減肉状況を検査するのに好適な管検査装置に関する。
【0002】
【従来の技術】
ボイラの熱交換器管は長時間使用することによって、腐食や摩耗が生じ、管外面が減肉することがあるので定期的に検査が行われている。
【0003】
従来、このような減肉状況を非破壊的手段で検査するものとして、例えば、水平に多数配列されたボイラ鋼管群の最上段の管上に敷設したレールに沿って動く検査装置本体と、該検査装置本体に具備された光学的検査手段とからなり、該光学的検査手段を上下方向及び水平方向に移動させながら検査する装置(特開平9−203611号公報)や鋼管群のうち検査対象である隣り合う2列の管を上下方向に整列した後、フレキシブルアームに取り付けた光学的検査手段を有し、該光学的検査手段を上下方向に移動させながら検査する装置(特開平9−257714号公報)等が知られている。
【0004】
【発明が解決しようとする課題】
ところで横置きの熱交換器管は、狭隘なボイラ内に配置されているばかりか、熱伝達効率を高くするため上下方向に千鳥配列されていたり、その上、長時間使用する過程で湾曲したりすることがある。
【0005】
従って、従来の管上に敷設したレールに沿って動く検査装置本体に具備された光学的検査手段を上下方向及び水平方向に移動させながら検査する装置では,狭隘なボイラ内でのレールの敷設に多大な時間を要する。また光学的検査手段の上下移動にパンタグラフを用いる方法は、上下方向に千鳥配列された熱交換器管群の奥深くまで光学的検査手段を挿入することが難しく、下段管の検査が十分にできない。その上光学的検査手段を水平方向に移動するのにトラバースを用いる方法は、光学的検査手段が熱交換器管の湾曲に十分追従できず、検査精度の低下が考えられる。
【0006】
一方、鋼管群のうち検査対象である隣り合う2列の管を上下方向に整列した後、フレキシブルアームに取り付けた光学的検査手段を上下方向に移動させながら検査する装置では、フレキシブルアームの自重でフレキシブルアームを下降しているので、上下方向に千鳥配列された鋼管群の奥深くまでフレキシブルアームを挿入することが難しく、下段管の検査が十分にできないと言う問題があった。
【0007】
本発明の課題は、上下方向に千鳥配列された熱交換器管であっても、また、たとえ、その熱交換器管が湾曲していても、レールの敷設などの検査付帯作業を行うことなしに下段管まで減肉程度が十分検査できる管検査装置を提供することにある。
【0008】
【課題を解決するための手段】
上記本発明の課題は、横置きに多段配列された熱交換器管群の中の最上段管を軌道にして移動する第一の移動手段と、一端が前記第一の移動手段に回動自在に連結され、かつ他端が被検査管に沿って移動するマニプレータと、該マニプレータ上を移動し、熱交換器管の中の被検査管に接輪した状態で走行可能な車輪を備えた第二の移動手段と、第二の移動手段に搭載され、管を非破壊的に検査する非破壊検査手段とを備えた管検査装置により解決される。
【0009】
また、本発明の管検査装置は、第一の移動手段と第二の移動手段の位置情報をもとに、非破壊検査手段で検査している位置を出力表示する表示手段及び/又は前記非破壊検査手段で検査している位置情報を記憶する記憶手段を有する構成にすると、検査結果を容易に認識することができる。
【0010】
また、本発明の管検査装置の第二の移動手段に搭載され、管を非破壊的に検査する非破壊検査手段は、管を直接検査する光センサ、超音波センサ又は放射線(X線、γ線、中性子線など)センサなどのセンサまたは管の反射光をミラー等を介して間接的に検査する光センサなどの各種センサを用いることができる。特に、間接的に検査するセンサを用いると、管が狭隘な場所に配置されている時には有利に使用できる。
【0011】
また、上記第一の移動手段には熱交換器管群の中の最上段管に沿って移動する一以上の駆動輪を設け、各駆動輪をそれぞれ独立懸架させると、最上段管が湾曲していても駆動輪の駆動力を最上段管に確実に伝達することができ、第一の移動手段は滑らかな移動が可能である。
【0012】
本発明は、ボイラ又はごみ焼却設備内に配置される伝熱管に限らず、空調装置などの熱交換器にも適用される。
【0013】
【作用】
上記構成によれば、非破壊的検査手段は第二の移動手段及びマニプレータを介し、最上段管をレールにして移動する第一の移動手段によって移動するようになっているので最上段の管上にレールを敷設する必要がない。
【0014】
マニプレータは第一の移動手段に回動自在に連結されているので、第二の移動手段に搭載した非破壊的検査手段を上下方向に千鳥配列された熱交換器管群の奥深くまで挿入できる。従って、下段管まで十分検査できないという問題が解決できる。
【0015】
非破壊的検査手段を搭載した第二の移動手段は被検査管に沿って移動するようになっているので、被検査管が湾曲していても非破壊的検査手段は被検査管に追従できるので検査精度が低下することがない。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態に係る管検査装置を図面と共に説明する。
図1は本検査装置の全体構成を説明する正面図、図2は第一の移動手段を詳細説明する図1のA−A線矢視図、図3は最上段管に沿って移動する駆動輪の独立懸架法を説明する図1のB−B線矢視図、図4は第一の移動手段に連結されたマニプレータの駆動部の側面図、図5は第二の移動手段の縦断面を見た図、図6は図5のC−C線矢視図、図7は図1の部分拡大図を示す。
【0017】
熱交換器管群1は、伝熱壁で四方を取り囲まれた火炉からの高温ガス流路内に配置されており、図1はそれらを管断面方向から見た図であり、図2は、管長手方向を示している。
【0018】
図1及び図2に示すように、上下方向に千鳥配列された熱交換器管群1の最上段管1aに沿って移動する第一の移動手段2はモータ3aの駆動力をプーリ3bにより4個の駆動輪4の1つに伝えて移動し、管軸方向の移動距離を計測するセンサ5a及び上下方向の移動距離を計測するセンサ5bが設けられ、そして図4に示すようにマニプレータ6の一端を軸7を介し回動自在に連結するスタンド8を備えている。マニプレータ6は第一の移動手段2上のスタンド8に配置されたモータ3cをその一端に備え、第一の移動手段2に設けた開口2aを貫通して被検査管1a方向に伸びている。ここで、図3に示すように4個の駆動輪4は最上段管1aが湾曲していても、全ての駆動輪4が最上段管1aと確実に接触し、空転しないように駆動輪4の回転軸4aをバネ18で押圧したスライド方式の独立懸架構造になっている。
【0019】
また、前記マニプレータ6の他端を支えている第二の移動手段9は被検査管1b上を摺動する従輪10と光学カメラ11を備え、モータ3cの駆動によりネジ17とスライダ12を介し、マニプレータ6の上を上下移動し、熱交換器管群1の奥深くまで移動できるようになっている。また、図5及び図6に示すように、第二の移動手段9は被検査管1bが湾曲していても、それに追従できるようにスライダ12で自在にスライドするような構造になっている。図5の断面図に示すように従輪10はスライダ12と一体構造の支持部材12aに両端を支持された回転軸10aを有する。光学カメラ11a,11bはマニプレータ6の底部に配置されている。
【0020】
そして、遠隔操作器13から指示された信号は制御装置14で制御された後、ケーブル15aを伝わってモータ3a、3cに伝達され、各移動手段2、9が駆動制御されるようになっている。
【0021】
一方、光学カメラ11で捉えた映像はケーブル15bを伝わり、また、センサ5aで計測された管軸方向の移動距離信号及びセンサ5bで計測された上下方向の移動距離信号はケーブル15cを伝わってモニタ16に表示記録されるようになっている。
【0022】
上記構成において、熱交換器管群1の各伝熱管は、限られた空間内に充填されており、本発明の管検査装置を用いて、その外表面を検査する場合には、次のような手順で行う。
【0023】
まず、本発明の管検査装置を熱交換器管群1内に挿入するに当たっては、管検査装置の第二の移動手段9をマニプレータ6の最上部に位置させた状態で、マニプレータ6が火炉壁に干渉しないところまで移動させて、該装置を回転中心とさせるように振り子運転させて千鳥配列されている管の間に挿入する。
【0024】
ついで、第一の移動手段2を最上段管1aにセットする。そして、検査員が手でマニプレータ6の上端を支え、モータ3cを遠隔操作器13によって微動させ、第二の移動手段9を目的とする被検査管1bの位置まで移動させて、従輪10を被検査管1bに接輪させる。このとき、第二の移動手段9の上下方向の移動距離はセンサ5bで計測され、モニタ16に表示記録される。
【0025】
この状態で遠隔操作器13から制御装置14にモータ3aを制御する信号を送り、第一の移動手段2を最上段管1aの管軸方向に移動させる。そして、その移動距離はセンサ5aで計測し、モニタ16に表示記録される。ここで、第一の移動手段2は4個の駆動輪4によって独立懸架されているので、最上段管1aが湾曲していてもモータ3aの駆動力を最上段管1aに確実に伝達しているので滑らかな移動が可能である。
【0026】
そして、第一の移動手段2に回動自在に連結されたマニプレータ6の一端に支えられた第二の移動手段9を被検査管1bに摺って移動させ、搭載した光学カメラ11で観察された被検査管1bの外観状況がモニタ16に表示記録されることによって、管表面の減肉状況が検査されるものである。なお、火炉内のコーナ部に配置されている熱交換器管を検査する場合には長さの短いマニプレータ6に取り替え、検査を実施する。
【0027】
また、第二の移動手段9に複数のカメラを搭載し広範囲を観察することも可能で、例えば図6に示すように光学カメラ11aの他に光学カメラ11bを搭載すれば熱交換器管1cの裏側が検査できる。図1の部分拡大図である図7に示すように、光学カメラ11aと11bで斑点で示した領域がそれぞれ観察でき、マニブレータ6を点線で示した位置に移動すれば格子状模様で示した領域が観察できるので順次セットを移動すれば管の全周が観察可能である。
【0028】
以上は上下方向に千鳥配列された熱交換器管群1の検査例について説明したが、上下方向に垂直配列された熱交換器管群1であっても、前記千鳥配列された熱交換器管群1と同様な方法で検査ができる。
【0029】
また、第二の移動手段9をワイヤあるいはベルトなどで送る方法であっても何ら問題になるものではない。
【0030】
さらに光学カメラ11a、11bで被検査管1bを直接観察するのでなく、図8に示すように、被検査管1bの映像を鏡19で屈折させ、間接的に光学カメラ11a、11bで観察することも可能であり、このことによって、狭隘部であっても光学的検査手段と被検査管との距離を離すことができる。
【0031】
上記実施の形態では、第二の移動手段9に光学カメラ11a,11bを搭載し、熱交換器管の外観を非破壊的に検査する方法について説明したが、本発明のその他の実施の形態として図9の第二の移動手段9の縦断面図に示すように第二の移動手段9に超音波センサ20を搭載して熱交換器管の肉厚を計測することも可能である。
【0032】
詳説すると図10、図11に示すように超音波による肉厚測定法は一般に既知であるが、被検査管1bの外面に超音波センサ20を当て、この超音波センサ20から超音波21を被検査管1bに向け発信する。発信された超音波21は一部が被検査管1bの表面で反射され、反射波Sが超音波計測器22で検出される。そして、被検査管1bの表面で反射されなかった残りの超音波は被検査管1bの材料中に伝播され内面で反射され、この反射波Bが超音波計測器22で検出される。検出された反射波Sと反射波Bの時間差△tが被検査管1bの肉厚に対応し、肉厚dは次式で算出される。d=△t・c/2 ここでcは被検査管1bの材料中を伝播する既知の音速である。
【0033】
こうして、千鳥配列の熱交換器管群1の下段管まで検査できるようになり、またレールなどの敷設が省け経費の削減ができ、さらに、管の湾曲に検査装置が追従するので検査精度の向上を図ることができる。
【0034】
【発明の効果】
本発明は、被検査管上に接輪した状態で走行可能な車輪を備えた第二の移動手段を有する管検査装置であるので、従来観察することができなかった千鳥配列の熱交換器管群の下段側に配置された管まで検査できるようになった。また管の検査装置は最上段管を軌道にして移動するため、レールなどの敷設が省け経費の削減ができる。その上、管の湾曲に検査装置が追従するので検査精度の向上を図ることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態の管検査装置の全体構成図である。
【図2】 第一の移動手段を詳細説明する図1のA−A線矢視図である。
【図3】 駆動輪の独立懸架法を説明する図1のB−B線矢視図である。
【図4】 図1のマニプレータ駆動部の側面図である。
【図5】 図1の第二の移動手段の縦断面を見た図である。
【図6】 図5のC−C線矢視図である。
【図7】 図1の部分拡大図である。
【図8】 光学カメラと被検査管の距離を離す方法を説明する図である。
【図9】 本発明のその他の実施の形態を示すもので超音波による肉厚測定法を説明する概要図である。
【図10】 被検査管における超音波の伝播経路を説明する図である。
【図11】 縦軸に反射波、横軸に時間を示した反射波の検出結果を示す図である。
【符号の説明】
1 熱交換器管群 1a 最上段管
1b、1c 被検査管 2 第一の移動手段
3a,3c モータ 3b プーリ
4 駆動輪 5a,5b センサ
6 マニプレータ 7 軸
8 スタンド 9 第二の移動手段
10 従輪 10a 従輪回転軸
11a、b、c 光学カメラ 12 スライダ
13 遠隔操作器 14 制御装置
15a,15b,15c ケーブル 16 モニタ
17 ネジ 18 バネ
19 鏡 20 超音波センサ
21 超音波 22 超音波計測器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inspection device such as a heat exchanger tube of a heat exchanger arranged in a boiler or a garbage incineration facility, and in particular, inspects a thinning state of the outer surface of a heat exchanger tube arranged horizontally and staggered. The present invention relates to a tube inspection apparatus suitable for the above.
[0002]
[Prior art]
Boiler heat exchanger tubes are regularly inspected because they can be corroded and worn by long-term use, leading to thinning of the outer surface of the tubes.
[0003]
Conventionally, as a method for inspecting such a thinning state by non-destructive means, for example, an inspection apparatus main body that moves along a rail laid on the uppermost pipe of a group of horizontally arranged boiler steel pipes, It consists of an optical inspection means provided in the inspection apparatus main body, and is an inspection object among an apparatus (Japanese Patent Laid-Open No. 9-203611) or a steel pipe group that inspects while moving the optical inspection means in the vertical direction and the horizontal direction. An apparatus having optical inspection means attached to a flexible arm after aligning two adjacent rows of tubes in the vertical direction, and inspecting the optical inspection means while moving in the vertical direction (Japanese Patent Laid-Open No. 9-257714) Publication) etc. are known.
[0004]
[Problems to be solved by the invention]
By the way, the horizontal heat exchanger tubes are not only arranged in a narrow boiler, but also arranged in a staggered manner in the vertical direction to increase the heat transfer efficiency, and also bend in the process of using for a long time. There are things to do.
[0005]
Therefore, in the conventional apparatus for inspecting while moving the optical inspection means provided in the inspection apparatus main body moving along the rail laid on the pipe in the vertical direction and the horizontal direction, the rail is installed in a narrow boiler. It takes a lot of time. Further, in the method using the pantograph for the vertical movement of the optical inspection means, it is difficult to insert the optical inspection means deep into the heat exchanger tube group arranged in a staggered manner in the vertical direction, and the lower pipe cannot be inspected sufficiently. In addition, the method of using a traverse to move the optical inspection means in the horizontal direction cannot sufficiently follow the curvature of the heat exchanger tube, and the inspection accuracy can be lowered.
[0006]
On the other hand, in an apparatus for inspecting while moving the optical inspection means attached to the flexible arm in the vertical direction after aligning two adjacent rows of pipes to be inspected in the steel pipe group in the vertical direction, the weight of the flexible arm is used. Since the flexible arm is lowered, there is a problem that it is difficult to insert the flexible arm deeply into the group of steel pipes arranged in a staggered manner in the vertical direction, and the inspection of the lower pipe cannot be performed sufficiently.
[0007]
The problem of the present invention is that even if the heat exchanger tubes are arranged in a staggered manner in the vertical direction, and even if the heat exchanger tubes are curved, there is no need to perform inspection-related work such as laying rails. It is another object of the present invention to provide a pipe inspection apparatus capable of sufficiently inspecting the thickness reduction to the lower pipe.
[0008]
[Means for Solving the Problems]
The object of the present invention is to provide a first moving means for moving the uppermost tube in the heat exchanger tube group arranged horizontally in a multi-stage arrangement, and one end of which is freely rotatable to the first moving device. is connected to, and the other end moves the manipulator to move along the inspection tube, the upper the manipulator, with a drivable wheel while Sewwa on the inspection tube within the heat exchanger tubes The problem is solved by a pipe inspection device that includes a second moving means and a non-destructive inspection means that non-destructively inspects the pipe mounted on the second moving means.
[0009]
Further, the pipe inspection apparatus of the present invention includes a display means for outputting and displaying the position inspected by the nondestructive inspection means based on the position information of the first moving means and the second moving means and / or the non-displaying means. If the storage unit stores the position information inspected by the destructive inspection unit, the inspection result can be easily recognized.
[0010]
In addition, the non-destructive inspection means that is mounted on the second moving means of the tube inspection apparatus of the present invention and inspects the tube nondestructively is an optical sensor, ultrasonic sensor, or radiation (X-ray, γ Various sensors such as a sensor such as a beam, a neutron beam, etc., or an optical sensor that indirectly inspects reflected light of a tube through a mirror or the like can be used. In particular, when a sensor for inspecting indirectly is used, it can be advantageously used when the tube is arranged in a narrow place.
[0011]
Further, the first moving means is provided with one or more drive wheels that move along the uppermost tube in the heat exchanger tube group, and when each drive wheel is suspended independently, the uppermost tube is bent. Even so, the driving force of the driving wheels can be reliably transmitted to the uppermost tube, and the first moving means can move smoothly.
[0012]
The present invention is not limited to heat transfer tubes arranged in a boiler or waste incineration facility, but is also applied to a heat exchanger such as an air conditioner.
[0013]
[Action]
According to the above configuration, the non-destructive inspection means is moved by the first moving means that moves with the uppermost tube as a rail via the second moving device and the manipulator. There is no need to lay rails.
[0014]
Since the manipulator is rotatably connected to the first moving means, the non-destructive inspection means mounted on the second moving means can be inserted deeply into the heat exchanger tube group arranged in a staggered manner in the vertical direction. Therefore, it is possible to solve the problem that the lower pipe cannot be sufficiently inspected.
[0015]
Since the second moving means equipped with the non-destructive inspection means is adapted to move along the inspection tube, the non-destructive inspection means can follow the inspection tube even if the inspection tube is curved. As a result, the inspection accuracy does not decrease.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a pipe inspection apparatus according to an embodiment of the present invention will be described with reference to the drawings.
1 is a front view for explaining the overall configuration of the inspection apparatus, FIG. 2 is a view taken along the line AA of FIG. 1 for explaining the first moving means in detail, and FIG. 3 is a drive moving along the uppermost tube. FIG. 4 is a side view of the driving unit of the manipulator connected to the first moving means, and FIG. 5 is a longitudinal section of the second moving means. 6 is a view taken along the line CC of FIG. 5, and FIG. 7 is a partially enlarged view of FIG.
[0017]
The heat exchanger tube group 1 is arranged in a high-temperature gas flow path from a furnace surrounded on all sides by a heat transfer wall, and FIG. 1 is a view of them as seen from the tube cross-sectional direction, and FIG. The longitudinal direction of the tube is shown.
[0018]
As shown in FIG. 1 and FIG. 2, the first moving means 2 that moves along the uppermost tube 1a of the heat exchanger tube group 1 arranged in a staggered manner in the up-down direction causes the driving force of the motor 3a to be 4 by a pulley 3b. A sensor 5a for measuring the moving distance in the tube axis direction and a sensor 5b for measuring the moving distance in the vertical direction are provided, which are transmitted to one of the drive wheels 4 and moved, and as shown in FIG. A stand 8 is provided which is rotatably connected at one end via a shaft 7. The manipulator 6 is provided with a motor 3c disposed at a stand 8 on the first moving means 2 at one end thereof, and extends through the opening 2a provided in the first moving means 2 in the direction of the test tube 1a. Here, as shown in FIG. 3, even if the uppermost tube 1a is curved, the four driving wheels 4 are surely in contact with the uppermost tube 1a and do not run idle. This is a slide-type independent suspension structure in which the rotating shaft 4 a is pressed by a spring 18.
[0019]
The second moving means 9 supporting the other end of the manipulator 6 includes a slave wheel 10 that slides on the tube 1b to be inspected and an optical camera 11, and is driven by a motor 3c via a screw 17 and a slider 12, It can be moved up and down on the manipulator 6 to move deep into the heat exchanger tube group 1. Further, as shown in FIGS. 5 and 6, the second moving means 9 is structured to slide freely with the slider 12 so that it can follow even if the tube 1b to be inspected is curved. As shown in the sectional view of FIG. 5, the follower wheel 10 has a rotating shaft 10 a that is supported at both ends by a support member 12 a that is integral with the slider 12. The optical cameras 11 a and 11 b are arranged at the bottom of the manipulator 6.
[0020]
Then, the signal instructed from the remote controller 13 is controlled by the control device 14, and then transmitted to the motors 3a and 3c through the cable 15a, so that the moving means 2 and 9 are driven and controlled. .
[0021]
On the other hand, the image captured by the optical camera 11 is transmitted through the cable 15b, and the movement distance signal in the tube axis direction measured by the sensor 5a and the movement distance signal in the vertical direction measured by the sensor 5b are transmitted through the cable 15c and monitored. 16 is displayed and recorded.
[0022]
In the above configuration, each heat transfer tube of the heat exchanger tube group 1 is filled in a limited space, and when the outer surface is inspected using the tube inspection device of the present invention, the following is performed. Follow a simple procedure.
[0023]
First, when inserting the pipe inspection apparatus of the present invention into the heat exchanger tube group 1, the manipulator 6 is placed in the furnace wall with the second moving means 9 of the pipe inspection apparatus positioned at the top of the manipulator 6. It is moved to a position where it does not interfere with, and the pendulum is operated so as to make the apparatus a center of rotation, and inserted between the tubes arranged in a staggered manner.
[0024]
Next, the first moving means 2 is set on the uppermost tube 1a. Then, the inspector supports the upper end of the manipulator 6 by hand, the motor 3c is finely moved by the remote controller 13, and the second moving means 9 is moved to the target position of the inspected tube 1b, so that the slave wheel 10 is covered. Contact the inspection tube 1b. At this time, the vertical movement distance of the second moving means 9 is measured by the sensor 5 b and displayed and recorded on the monitor 16.
[0025]
In this state, a signal for controlling the motor 3a is sent from the remote controller 13 to the control device 14, and the first moving means 2 is moved in the tube axis direction of the uppermost tube 1a. The moving distance is measured by the sensor 5a and displayed and recorded on the monitor 16. Here, since the first moving means 2 is suspended independently by the four drive wheels 4, even if the uppermost tube 1a is curved, the driving force of the motor 3a is reliably transmitted to the uppermost tube 1a. Smooth movement is possible.
[0026]
Then, the second moving means 9 supported by one end of the manipulator 6 rotatably connected to the first moving means 2 is slid and moved to the tube 1b to be observed, and is observed by the mounted optical camera 11. In addition, the appearance of the tube 1b to be inspected is displayed and recorded on the monitor 16, whereby the thinning state of the tube surface is inspected. In addition, when inspecting the heat exchanger pipe | tube arrange | positioned in the corner part in a furnace, it replaces with the short manipulator 6 and inspects.
[0027]
It is also possible to mount a plurality of cameras on the second moving means 9 and observe a wide range. For example, if an optical camera 11b is mounted in addition to the optical camera 11a as shown in FIG. 6, the heat exchanger tube 1c The back side can be inspected. As shown in FIG. 7 which is a partially enlarged view of FIG. 1, the areas indicated by the spots can be observed by the optical cameras 11a and 11b, respectively, and the area indicated by the grid pattern can be obtained by moving the manipulator 6 to the position indicated by the dotted line. Therefore, if the set is moved sequentially, the entire circumference of the tube can be observed.
[0028]
Although the above has described the inspection example of the heat exchanger tube group 1 arranged in a staggered manner in the vertical direction, the heat exchanger tube arranged in a staggered manner can be used even in the heat exchanger tube group 1 arranged vertically in the vertical direction. Inspection can be performed in the same manner as Group 1.
[0029]
Further, there is no problem even if the second moving means 9 is sent by a wire or a belt.
[0030]
Further, instead of directly observing the inspected tube 1b with the optical cameras 11a and 11b, as shown in FIG. 8, the image of the inspected tube 1b is refracted by the mirror 19 and indirectly observed with the optical cameras 11a and 11b. As a result, the distance between the optical inspection means and the tube to be inspected can be increased even in a narrow portion.
[0031]
In the above embodiment, the method of mounting the optical cameras 11a and 11b on the second moving means 9 and inspecting the appearance of the heat exchanger tube nondestructively has been described. However, as another embodiment of the present invention, As shown in the longitudinal sectional view of the second moving means 9 in FIG. 9, it is possible to mount the ultrasonic sensor 20 on the second moving means 9 and measure the thickness of the heat exchanger tube.
[0032]
In detail, as shown in FIGS. 10 and 11, the ultrasonic thickness measurement method is generally known. However, the ultrasonic sensor 20 is applied to the outer surface of the tube 1b to be inspected, and the ultrasonic wave 21 is applied from the ultrasonic sensor 20 to the outer surface. A message is sent to the inspection tube 1b. A part of the transmitted ultrasonic wave 21 is reflected by the surface of the inspection tube 1 b, and the reflected wave S is detected by the ultrasonic measuring instrument 22. The remaining ultrasonic waves that are not reflected on the surface of the tube to be inspected 1 b are propagated into the material of the tube to be inspected 1 b and reflected by the inner surface, and this reflected wave B is detected by the ultrasonic measuring instrument 22. The time difference Δt between the detected reflected wave S and the reflected wave B corresponds to the thickness of the tube 1b to be inspected, and the thickness d is calculated by the following equation. d = Δt · c / 2 where c is a known speed of sound propagating through the material of the tube 1b to be inspected.
[0033]
In this way, it is possible to inspect up to the lower tube of the heat exchanger tube group 1 in a staggered arrangement, and the installation of rails can be omitted to reduce the cost. Furthermore, the inspection device follows the bending of the tube, so the inspection accuracy is improved. Can be achieved.
[0034]
【The invention's effect】
The present invention, because a tube inspection system having a second moving means having a drivable wheel while Sewwa onto a test tube, heat exchanger tubes staggered that could not be conventionally observed It is now possible to inspect even the tubes placed on the lower side of the group. Also, since the pipe inspection device moves using the uppermost pipe as a track, it is possible to reduce the cost by eliminating the installation of rails. In addition, since the inspection device follows the curve of the tube, the inspection accuracy can be improved.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a pipe inspection apparatus according to an embodiment of the present invention.
FIG. 2 is a view taken along the line AA of FIG. 1 for explaining the first moving means in detail.
FIG. 3 is a view taken along the line B-B in FIG. 1 for explaining the independent suspension method for drive wheels.
4 is a side view of the manipulator driving unit in FIG. 1; FIG.
FIG. 5 is a view of a vertical cross section of the second moving means in FIG. 1;
6 is a view taken along the line CC of FIG.
FIG. 7 is a partially enlarged view of FIG. 1;
FIG. 8 is a diagram for explaining a method of increasing the distance between the optical camera and the tube to be inspected.
FIG. 9 is a schematic diagram illustrating another embodiment of the present invention and illustrating a method for measuring a thickness by ultrasonic waves.
FIG. 10 is a diagram for explaining a propagation path of ultrasonic waves in a tube to be inspected.
FIG. 11 is a diagram illustrating a detection result of a reflected wave with a vertical axis representing a reflected wave and a horizontal axis representing time.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat exchanger pipe group 1a Uppermost stage pipe 1b, 1c Test pipe 2 First moving means 3a, 3c Motor 3b Pulley 4 Drive wheel 5a, 5b Sensor 6 Manipulator 7 Shaft 8 Stand 9 Second moving means 10 Subordinate wheel 10a Follower shaft 11a, b, c Optical camera 12 Slider 13 Remote controller 14 Controller 15a, 15b, 15c Cable 16 Monitor 17 Screw 18 Spring 19 Mirror 20 Ultrasonic sensor 21 Ultrasonic 22 Ultrasonic measuring instrument

Claims (4)

横置きに多段配列された熱交換器管群の中の最上段管を軌道にして移動する第一の移動手段と、一端が前記第一の移動手段に回動自在に連結され、かつ他端が被検査管に沿って移動するマニプレータと、該マニプレータ上を移動し、熱交換器管の中の被検査管に接輪した状態で走行可能な車輪を備えた第二の移動手段と、第二の移動手段に搭載され、管を非破壊的に検査する非破壊検査手段とを備えたことを特徴とする管検査装置。First moving means for moving with the uppermost tube in the heat exchanger tube group arranged horizontally in a multi-stage arrangement, one end pivotably connected to the first moving means, and the other end There a manipulator which moves along the inspection tube, moves on the manipulator, a second moving means having a wheel which can travel while Sewwa on the inspection tube within the heat exchanger tubes, A tube inspection apparatus, comprising: a non-destructive inspection unit that is mounted on the second moving unit and inspects the tube nondestructively. 第一の移動手段と第二の移動手段の位置情報をもとに、非破壊検査手段で検査している位置情報を出力表示する表示手段及び/又は前記非破壊検査手段で検査している位置情報を記憶する記憶手段を有することを特徴とする請求項1記載の管検査装置。  Based on the position information of the first moving means and the second moving means, the display means for outputting and displaying the position information inspected by the nondestructive inspection means and / or the position inspected by the nondestructive inspection means 2. The tube inspection apparatus according to claim 1, further comprising storage means for storing information. 第二の移動手段に搭載され、管を非破壊的に検査する非破壊検査手段は、管を直接検査するセンサ、または管の反射光を介して間接的に検査するセンサであることを特徴とする請求項1又は2記載の管検査装置。  The non-destructive inspection means that is mounted on the second moving means and inspects the pipe nondestructively is a sensor that directly inspects the pipe or a sensor that inspects indirectly through the reflected light of the pipe. The pipe inspection apparatus according to claim 1 or 2. 第一の移動手段には熱交換器管群の中の最上段管に沿って移動する一以上の駆動輪が設けられており、各駆動輪はそれぞれ独立懸架されていることを特徴とする請求項1ないし3のいずれかに記載の管検査装置。  The first moving means is provided with one or more drive wheels that move along the uppermost tube in the heat exchanger tube group, and each drive wheel is suspended independently. Item 4. The tube inspection device according to any one of Items 1 to 3.
JP24333299A 1999-08-30 1999-08-30 Pipe inspection device Expired - Fee Related JP3762156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24333299A JP3762156B2 (en) 1999-08-30 1999-08-30 Pipe inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24333299A JP3762156B2 (en) 1999-08-30 1999-08-30 Pipe inspection device

Publications (2)

Publication Number Publication Date
JP2001066257A JP2001066257A (en) 2001-03-16
JP3762156B2 true JP3762156B2 (en) 2006-04-05

Family

ID=17102258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24333299A Expired - Fee Related JP3762156B2 (en) 1999-08-30 1999-08-30 Pipe inspection device

Country Status (1)

Country Link
JP (1) JP3762156B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973532B2 (en) * 2014-11-12 2016-08-23 中国電力株式会社 Outside diameter measuring device
JP5980885B2 (en) * 2014-11-12 2016-08-31 中国電力株式会社 Outside diameter measuring device
JP5973531B2 (en) * 2014-11-12 2016-08-23 中国電力株式会社 Measuring device, measuring method
JP2016114453A (en) * 2014-12-15 2016-06-23 中国電力株式会社 External diameter measuring device
CN114440819B (en) * 2022-04-07 2022-07-22 中国重型机械研究院股份公司 Pipeline unevenness detection device for liquid expansion forming

Also Published As

Publication number Publication date
JP2001066257A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP4961051B2 (en) Non-destructive inspection scanning device and non-destructive inspection device
JP4832550B2 (en) Ultrasonic flaw detector
JP3630617B2 (en) Thickness measuring device and thickness measuring method
JP2009052958A (en) Building outer wall inspection device and system
JP3762156B2 (en) Pipe inspection device
JP3696715B2 (en) Running rail inspection method and apparatus
JP5840910B2 (en) Ultrasonic flaw detection method
KR101255837B1 (en) Automatic ultrasonic testing apparatus
JP2799667B2 (en) Chimney tube inspection system
JP4357265B2 (en) Ultrasonic flaw detector and ultrasonic flaw detector method
JP3567583B2 (en) Underwater mobile robot positioning method
JP4178580B2 (en) In-furnace inspection device for vertical continuous annealing furnace
JPH10197219A (en) Pipe shape measuring instrument
JPH04128650A (en) Automatic scanning method for detecting rail flaw and device thereof
JP2000292142A (en) Tank bottom plate diagnosing equipment
JP2881658B2 (en) Ultrasonic testing equipment for pipe structures
RU197520U1 (en) Robotic flaw detector for non-destructive testing of pipelines
JP2018205091A (en) Ultrasonic flaw detection device and inspection method using ultrasonic wave
JP2511181B2 (en) Wall thickness measuring device
JP2003066012A (en) Method and device for inspecting defect by surface wave
JP2000329890A (en) Nondestructive inspection device
CN113176266B (en) Automatic nondestructive testing device
JPH0514166Y2 (en)
JP3281878B2 (en) Ultrasonic flaw detection method and apparatus
JP4080377B2 (en) Nondestructive inspection method and nondestructive inspection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees