JP2881658B2 - Ultrasonic testing equipment for pipe structures - Google Patents
Ultrasonic testing equipment for pipe structuresInfo
- Publication number
- JP2881658B2 JP2881658B2 JP2224011A JP22401190A JP2881658B2 JP 2881658 B2 JP2881658 B2 JP 2881658B2 JP 2224011 A JP2224011 A JP 2224011A JP 22401190 A JP22401190 A JP 22401190A JP 2881658 B2 JP2881658 B2 JP 2881658B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- probe
- flaw detection
- moving mechanism
- axis moving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000523 sample Substances 0.000 claims description 130
- 238000001514 detection method Methods 0.000 claims description 121
- 230000007246 mechanism Effects 0.000 claims description 42
- 230000005540 biological transmission Effects 0.000 claims description 29
- 230000000644 propagated effect Effects 0.000 claims description 9
- 230000001902 propagating effect Effects 0.000 claims description 3
- 230000010355 oscillation Effects 0.000 claims description 2
- 238000007689 inspection Methods 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000011810 insulating material Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000003825 pressing Methods 0.000 description 4
- 239000000428 dust Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000006249 magnetic particle Substances 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/269—Various geometry objects
- G01N2291/2695—Bottles, containers
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は管構造物の超音波探傷装置に係り、特にボイ
ラ炉壁の炉壁支持金具の溶接部を炉内側より超音波で探
傷するのに好適な超音波探傷装置に関する。Description: BACKGROUND OF THE INVENTION The present invention relates to an ultrasonic flaw detector for a pipe structure, and more particularly to a method for ultrasonically flaw detecting a welded portion of a furnace wall support bracket of a boiler furnace wall from inside the furnace. Ultrasonic testing apparatus suitable for
ボイラの炉壁は、一般には第18図に示されるように炉
壁管1に帯鋼2を溶接して構成されている。この炉壁管
1の炉外側には、炉壁を支持するために必要な炉壁支持
金具3が炉壁管1と溶接部6によって溶接されている。
そして、この炉外は全体を保温材5によって覆われ、こ
の保温材5も外壁4によって保護されている。The furnace wall of a boiler is generally constructed by welding a steel strip 2 to a furnace wall tube 1 as shown in FIG. On the outside of the furnace wall tube 1, a furnace wall support 3 required for supporting the furnace wall is welded to the furnace wall tube 1 and a welding portion 6.
The outside of the furnace is entirely covered with a heat insulating material 5, and the heat insulating material 5 is also protected by the outer wall 4.
ボイラを長時間使用すると、その溶接部6に亀裂が発
生することがあり、この亀裂が発生するとボイラの継続
使用に支障を来す。このため、従来は外壁4と保温材5
を取り外し、溶接部6のスケール除去を行った後に、磁
粉探傷あるいは浸透探傷が実施されている。If the boiler is used for a long time, a crack may be generated in the welded portion 6, and if the crack is generated, the continuous use of the boiler is hindered. Therefore, conventionally, the outer wall 4 and the heat insulator 5
, And after the scale of the welded portion 6 is removed, magnetic particle testing or penetration testing is performed.
また、炉壁管1の内部に超音波を伝播させる水10を充
填し、炉壁管1の炉内側外表面から超音波送受信用探触
子9により超音波を入射し、この超音波を炉内側の管壁
から炉壁管1内部の水10の中を伝播させ、さらに炉壁管
1の炉外側の管壁に伝わらせて溶接部6を超音波探傷す
る方法も提案されている(特開昭63-6459号公報)。Further, the inside of the furnace wall tube 1 is filled with water 10 for propagating ultrasonic waves, and ultrasonic waves are incident on the inside surface of the furnace wall tube 1 by the ultrasonic transmission / reception probe 9, and the ultrasonic waves are converted into the furnace. A method has also been proposed in which water is propagated through the inner wall of the furnace wall tube 1 through the water 10 inside the furnace wall tube 1 and further transmitted to the outer tube wall of the furnace wall tube 1 so that the welded portion 6 is subjected to ultrasonic flaw detection. No. 63-6459).
上記した従来の磁粉探傷および浸透探傷による炉壁支
持金具3の溶接部6の探傷は、一般に外壁4と保温材5
を取り外した後に行うためと、探傷範囲が広大なため、
外壁4と保温材5の取り外し、そして探傷後の復旧には
多大な工数を必要としている。また、従来の超音波探傷
法で炉壁管内に充填する水10は、炉壁管内面を腐食させ
ないように脱酸素処理や化学処理等の水質管理を厳格に
実施する必要がある。これらの水質管理は探傷中は常時
必要であり、しかも水10の充填量が大量であるため多大
な工数を必要とする。In general, the above-described flaw detection of the welded portion 6 of the furnace wall support fitting 3 by the magnetic particle flaw detection and the penetrant flaw detection is performed by using the outer wall 4 and the heat insulating material 5.
To remove after removing, and because the flaw detection range is vast,
The removal of the outer wall 4 and the heat insulating material 5 and the recovery after the flaw detection require a great deal of man-hours. In addition, the water 10 to be filled into the furnace wall tube by the conventional ultrasonic flaw detection method needs to be strictly controlled in water quality such as deoxidation treatment and chemical treatment so as not to corrode the inner surface of the furnace wall tube. These water quality controls are always necessary during the flaw detection, and furthermore, a large amount of water 10 is charged, requiring a large number of man-hours.
さらに、炉壁支持金具3の溶接部6の探傷は法律で定
められたボイラ設備の定期点検時期を利用して行なわれ
ている。この場合、定期点検期間中には炉壁管1の経年
変化状況を調査する目的で炉壁管1の切り取り作業や炉
壁管内部の清掃作業等も行われる。このため、炉壁管内
部に水10を充填しなければできない従来の超音波探傷法
は、これらの作業と平行して行うことが不可能であり、
溶接部6の探傷のためにボイラ定期検査期間を延長せざ
るを得ず、設備の稼働率の低下が問題となっている。Further, flaw detection of the welded portion 6 of the furnace wall support fitting 3 is performed by using a periodic inspection period of the boiler equipment specified by law. In this case, during the periodical inspection period, a cutting operation of the furnace wall tube 1 and a cleaning operation of the inside of the furnace wall tube 1 are also performed for the purpose of investigating the aging state of the furnace wall tube 1. For this reason, the conventional ultrasonic flaw detection method that cannot be performed unless the inside of the furnace wall tube is filled with water 10 cannot be performed in parallel with these operations.
The inspection period of the boiler has to be extended for flaw detection of the welded portion 6, and a decrease in the operation rate of the equipment is a problem.
一方、前記の超音波探傷法で炉壁支持金具3の溶接部
6を漏れなく検査する場合を第19図および第20図により
説明する。溶接部6の溶接幅全域を漏れなく探傷するに
は超音波有効ビーム幅を考慮しても超音波送受信用探触
子9は炉壁管1の周方向に所定のピッチで数回走査を繰
り返さなければならない。また、これらの探傷は管軸方
向に沿って正逆(A側からの探傷とB側からの探傷)に
2回行って、亀裂が有るか無いかの判断を行う必要があ
る。さらに、炉壁管1は平滑な形状でないため超音波送
受信用探触子9の走査は不安定となると共に炉壁管面へ
の押付力も一定とすることができない。On the other hand, a case where the welded portion 6 of the furnace wall support 3 is inspected without leakage by the ultrasonic flaw detection method will be described with reference to FIGS. 19 and 20. In order to detect the entire weld width of the welded portion 6 without flaws, the ultrasonic transmission / reception probe 9 repeats several scans at a predetermined pitch in the circumferential direction of the furnace wall tube 1 even in consideration of the ultrasonic effective beam width. There must be. In addition, it is necessary to perform these flaw detections twice in the forward and reverse directions (flaw detection from the A side and flaw detection from the B side) twice along the tube axis direction to determine whether there is a crack. Further, since the furnace wall tube 1 is not smooth, the scanning of the ultrasonic transmission / reception probe 9 becomes unstable, and the pressing force against the furnace wall tube surface cannot be constant.
このようなことから検査能率が低く検査精度が悪いと
いう問題があり、しかも探傷範囲が広い領域であるため
探触子が摩耗し、経済面での問題もあった。For this reason, there is a problem that the inspection efficiency is low and the inspection accuracy is poor, and further, since the flaw detection range is wide, the probe is worn out, and there is also a problem in terms of economy.
また、前記の超音波探傷法で炉壁支持金具3の溶接部
6を検査するには、第21図に示すように、作業員が炉内
に入り直接的に検査および検査記録の採取を行っている
が、炉内は密閉され、燃料灰の塵埃が充満し、そのうえ
被検査部が高所に位置していることからも安全衛生面に
問題があった。更に、これらの検査および検査記録の採
取は全て作業員が担っているため人為誤差が発生しやす
く、広大な検査範囲において精度の高い検査の維持が困
難であった。In addition, in order to inspect the welded portion 6 of the furnace wall support bracket 3 by the ultrasonic flaw detection method, as shown in FIG. 21, an operator enters the furnace and directly inspects and collects an inspection record. However, the inside of the furnace was sealed, filled with dust of fuel ash, and furthermore, there was a problem in terms of safety and hygiene because the part to be inspected was located at a high place. Further, since all of these inspections and inspection record collection are performed by workers, human errors are likely to occur, and it is difficult to maintain highly accurate inspections over a wide inspection range.
このため新たな超音波探傷装置の開発が要望されてい
る。For this reason, development of a new ultrasonic flaw detector is demanded.
本発明は、前記かかる事情に鑑みなされたものであ
り、炉壁管内部に水を充填することなく炉壁管の炉壁支
持金具の溶接部等を炉内側から探傷することによって、
工数を大幅に低減でき、しかも探傷漏れのない検査が高
能率で、しかも精度良く経済的に行うことができる超音
波探傷装置を提供することにある。The present invention has been made in view of the above circumstances, and by detecting a welded portion of a furnace wall support bracket of a furnace wall tube from the inside of the furnace without filling the inside of the furnace wall tube with water,
It is an object of the present invention to provide an ultrasonic flaw detector capable of significantly reducing the number of steps and performing inspections without flaw detection with high efficiency and with high accuracy and economical efficiency.
更に炉内が塵埃環境で被検査部が高所に位置するよう
な場合にも、安全衛生的に超音波探傷を行うことができ
る超音波探傷装置を提供することにある。It is still another object of the present invention to provide an ultrasonic inspection apparatus capable of performing an ultrasonic inspection with safety and hygiene even when the inspection target is located at a high place in a dust environment in a furnace.
上記した目的を達成するために、本発明の探傷装置
は、被検体に超音波を投射する複数の振動子で構成され
る超音波送信用探触子と、被検体を伝播してくる超音波
を受波させると共に超音波送信用探触子の振動子と同数
の振動子で構成される超音波受信用探触子が一対とな
り、一対の探触子を走査方向に対し、向かい合わせに配
置し、複数の超音波送信用探触子はそれぞれ被検体の異
なる所定部位に超音波を投射するように夫々配し、複数
の超音波受信用探触子はそれぞれ前記被検体の異なる所
定部位で反射・伝播してくる超音波を夫々受信可能な位
置に配したものである。In order to achieve the above-described object, a flaw detection apparatus according to the present invention includes an ultrasonic transmission probe including a plurality of transducers that project ultrasonic waves to a subject, and an ultrasonic wave that propagates through the subject. And a pair of ultrasonic receiving probes composed of the same number of transducers as the ultrasonic transmitting probe are arranged, and a pair of probes are arranged to face each other in the scanning direction. Then, the plurality of ultrasonic transmission probes are respectively arranged so as to project ultrasonic waves to different predetermined portions of the subject, and the plurality of ultrasonic reception probes are respectively provided at different predetermined portions of the subject. The ultrasonic waves reflected and propagated are arranged at positions where they can be received.
望ましくは、超音波送信用探触子と超音波受信用探触
子とを走査方向に応じて発振用および受信用に切り替え
る探触子切替装置を備え、さらに超音波送信用探触子お
よび超音波受信用探触子を夫々走査面に対して摺動自在
に付勢させる手段を備えたものである。Desirably, a probe switching device for switching between the ultrasonic transmission probe and the ultrasonic reception probe for oscillation and reception in accordance with the scanning direction is further provided, and the ultrasonic transmission probe and the ultrasonic transmission probe are further provided. It is provided with means for urging the sound wave receiving probes slidably with respect to the scanning plane.
更に本発明の超音波探傷装置は、超音波ビームを介し
て被検体の裏面を表面から探傷するものにおいて、軸方
向欠陥探傷用探触子と周方向欠陥探傷用探触子を被検体
面に対し、前後方向に移動させる前後軸移動機構部と、
この前後軸移動機構部を縦方向に移動させる縦軸移動機
構部と、この縦軸移動機構部を横方向に移動させる横軸
移動機構部とからなる走査装置と、該走査装置を被検査
部位に移動させる走行機構部と、前記の前後軸移動機構
部,縦軸移動機構部,横軸移動機構部を動かす駆動装置
と、前記軸方向欠陥探傷用探触子および周方向欠陥探傷
用探触子への探傷信号を送受信する超音波探傷装置と、
探傷結果を映像表示する表示装置と、探傷結果を記録す
る記録装置と、探傷条件にあわせて前記の駆動装置,超
音波探傷装置,表示装置,記録装置に対し、最適な制御
値を演算し、各装置の機能を制御する演算処理装置と、
を具備したことを特徴とするものである。Further, the ultrasonic flaw detector according to the present invention, in which flaw detection is performed on the back surface of the subject from the front surface through an ultrasonic beam, the probe for axial flaw detection and the probe for circumferential flaw detection are provided on the subject surface. On the other hand, a longitudinal axis moving mechanism that moves in the longitudinal direction,
A scanning device including a vertical axis moving mechanism for moving the front-rear axis moving mechanism in the vertical direction, and a horizontal axis moving mechanism for moving the vertical axis moving mechanism in the horizontal direction; , A driving device for moving the front-rear axis moving mechanism, the vertical axis moving mechanism, and the horizontal axis moving mechanism, the axial defect detecting probe and the circumferential defect detecting probe. An ultrasonic flaw detector that transmits and receives flaw detection signals to the child,
A display device for displaying the flaw detection result in an image, a recording device for recording the flaw detection result, and an optimum control value for the driving device, the ultrasonic flaw detection device, the display device, and the recording device according to the flaw detection conditions, An arithmetic processing unit that controls the function of each device;
It is characterized by having.
本発明の超音波探傷装置においては、管軸に対して角
度(α,θ)を与えた超音波を溶接部と管軸の略反対側
の炉内側より入射することにより、超音波は炉壁管の部
材中を伝播し、溶接部に到達する。そして、溶接部に亀
裂が存在すれば、この亀裂部で超音波が反射され、炉壁
管の部材中を通過して前記超音波を入射した位置の管軸
に対して対象な位置で受信できる。したがって、外壁、
保温材等の取り外し等の作業を要せず、かつ、炉壁管内
部に超音波を伝播させるための媒質(水)を充填する必
要がない。In the ultrasonic flaw detector according to the present invention, ultrasonic waves having an angle (α, θ) with respect to the tube axis are incident from the inside of the furnace substantially opposite to the welded portion and the tube axis, so that the ultrasonic waves are generated on the furnace wall. It propagates through the pipe members and reaches the weld. If there is a crack in the welded portion, the ultrasonic wave is reflected at the cracked portion, and can be received at a target position with respect to the tube axis at the position where the ultrasonic wave enters through the member of the furnace wall tube. . Therefore, the outer wall,
There is no need for work such as removal of the heat insulating material and the like, and there is no need to fill the inside of the furnace wall tube with a medium (water) for transmitting ultrasonic waves.
さらに、超音波送信用探触子を構成している複数の振
動子は被検体の異なる所定の部位に超音波を投射するよ
うに夫々配しているので、被検査部(溶接部)での有効
ビームを広範囲に分布させることができる。このように
配している夫々振動子から投射される超音波が被検査部
と反対側の炉内側管壁面から入射され、被検体の部材中
を伝播することにより、被検査部の広い範囲に到達す
る。そして、被検査部に亀裂や溶接部等が存在すれば超
音波は当該部で反射し、この反射した超音波も被検体の
部材中を通過し、被検査部の反対側の炉内側管壁面に伝
わる。当該管壁面には被検体の異なる所定の部位で反射
・伝播してくる超音波が受信できるように配した複数の
振動子で構成された超音波受信用探触子が配置されてい
るので広い検査範囲の一部で反射・伝播してきた超音波
でも複数配しているうちのいずれかの振動子で受波でき
る。Further, since the plurality of transducers constituting the ultrasonic transmission probe are arranged so as to project ultrasonic waves to different predetermined portions of the subject, the transducers at the inspected portion (welded portion) are arranged. The effective beam can be widely distributed. Ultrasonic waves projected from the vibrators arranged in this manner are incident from the furnace inner tube wall on the side opposite to the part to be inspected, and propagate through the member of the specimen, thereby covering a wide area of the part to be inspected. To reach. If cracks or welds are present in the part to be inspected, the ultrasonic waves are reflected by the part, and the reflected ultrasonic waves also pass through the member of the object to be inspected, and the wall surface of the furnace inner tube on the opposite side of the part to be inspected. It is transmitted to. An ultrasonic receiving probe composed of a plurality of transducers arranged so as to be able to receive ultrasonic waves reflected / propagated at different predetermined parts of the subject is arranged on the tube wall, so that the probe is wide. Even ultrasonic waves reflected and propagated in a part of the inspection range can be received by any one of the plurality of transducers.
被検査部(溶接部)の広い範囲で漏れなく探傷する場
合においても、所定の探傷ピッチで探触子走査を繰り返
す必要がない。さらに、超音波送信用探触子および超音
波受信用探触子は被検体と接触しつつ、一定の力で被検
体面に押し付けられるように支持されているため、被検
体面が平滑でなくとも探触子の走査は不安定とはなら
ず、探触子の押し付け力も一定し、摩耗も防止できる。Even when flaw detection is performed in a wide range of the inspected portion (welded portion) without leakage, it is not necessary to repeat probe scanning at a predetermined flaw detection pitch. Further, the ultrasonic transmission probe and the ultrasonic reception probe are supported so as to be pressed against the object surface with a constant force while being in contact with the object, so that the object surface is not smooth. In both cases, the scanning of the probe is not unstable, the pressing force of the probe is constant, and wear can be prevented.
また、またぎ走査探傷法は、走査方向に対し、向かい
合わせに配置した夫々一対の探触子(超音波送信用探触
子と超音波受信用探触子)を探触子切替装置により往路
と復路で使い分け−往復で正逆(A側からの探傷とB側
からの探傷)方向からの探傷が行われるので、探触子の
向きを変えて2回探傷を行う必要がない。In addition, in the straddling scanning flaw detection method, a pair of probes (ultrasonic transmitting probe and ultrasonic receiving probe), which are arranged to face each other in the scanning direction, are connected to the outward path by a probe switching device. Since the flaw detection is performed in the forward and reverse directions (flaw detection from the A side and flaw detection from the B side) in the return-to-return direction, it is not necessary to perform the flaw detection twice by changing the direction of the probe.
また、本発明による壁面の自動超音波探傷装置は、走
査装置を構成している横軸移動機構部と縦軸移動機構部
と前後軸移動機構部によって、超音波ビームを介して炉
壁管の炉外側を炉内側から探傷する軸方向欠陥探傷用探
触子と周方向欠陥探傷用探触子を炉壁面に対し横方向,
縦方向,前後方向に3次元的に移動させるようになって
おり、更に、走査装置は、炉内上部に設けた走行部材、
電動ホイスト等を備えた走行機構部により自在に移動さ
せることができるので高所に位置した炉壁支持金具溶接
部であっても炉内側から超音波探傷できるので保温材や
外壁を取り外す必要がない。In addition, the automatic ultrasonic flaw detector for a wall according to the present invention uses a horizontal axis moving mechanism, a vertical axis moving mechanism, and a front-rear axis moving mechanism that constitute a scanning device to form a furnace wall tube through an ultrasonic beam. A probe for flaw detection in the axial direction and a probe for flaw detection in the circumferential direction, which detect flaws on the outside of the furnace from the inside of the furnace, are placed laterally to the furnace wall.
The scanning device is configured to move three-dimensionally in the longitudinal direction and the front-back direction.
It can be moved freely by a traveling mechanism equipped with an electric hoist, etc., so even if the furnace wall support bracket welded part located at a high place can be ultrasonically flawed from inside the furnace, there is no need to remove the heat insulating material or the outer wall .
そのうえ、走査装置を構成している横軸移動機構部と
縦軸移動機構部と前後軸移動機構部の夫々モータを回転
させる駆動装置、軸方向欠陥探傷用探触子および周方向
欠陥探傷用探触子への探傷信号を送受信する超音波探傷
装置、探傷結果を映像表示する表示装置、探傷結果を記
録する記録装置は、遠隔位置に設置され、これら各装置
は探傷条件にあわせた最適な制御値を演算する演算処理
装置によって制御されているので、作業員が炉内に入り
検査および検査記録の採取をする必要がない。In addition, a driving device for rotating the motors of the horizontal axis moving mechanism, the vertical axis moving mechanism, and the front-rearward axis moving mechanism that constitute the scanning device, an axial defect detection probe, and a circumferential defect detection probe. An ultrasonic flaw detector that sends and receives flaw detection signals to the tentacles, a display that displays the flaw detection results on an image, and a recorder that records flaw detection results are installed at remote locations, and these devices are optimally controlled according to flaw detection conditions. Since it is controlled by the arithmetic processing unit that calculates the value, it is not necessary for the operator to enter the furnace and perform the inspection and collect the inspection record.
以下、本発明の実施例を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図〜第4図は本発明による超音波探傷の原理を説
明するもので、第1図は超音波探傷時の例を示す一部切
欠斜視図、第2図は第1図の炉内側正面図、第3図は第
2図の側面図、第4図は第2図のA−A′矢視図であ
る。1 to 4 illustrate the principle of ultrasonic flaw detection according to the present invention. FIG. 1 is a partially cutaway perspective view showing an example of ultrasonic flaw detection, and FIG. 2 is a furnace inside of FIG. FIG. 3 is a side view of FIG. 2, and FIG. 4 is a view taken along the line AA 'of FIG.
被検査部である溶接部6の亀裂を探傷するとき、炉壁
管1の炉内側表面に超音波送信用探触子7と超音波受信
用探触子8を当て、炉内側より炉外側にある炉壁管1と
炉壁支持金具3の溶接部6に発生した亀裂を探傷する。
この場合、超音波送信用探触子7および超音波受信用探
触子8の屈折角(θ)や管軸となす角(α)等は幾何学
的関係により次式(1)で定まる。When detecting a crack in the welded portion 6 to be inspected, the ultrasonic transmission probe 7 and the ultrasonic reception probe 8 are applied to the furnace inner surface of the furnace wall tube 1 so that the furnace is located outside the furnace from inside the furnace. A crack generated in a weld 6 between a furnace wall tube 1 and a furnace wall support 3 is detected.
In this case, the refraction angle (θ) of the ultrasonic wave transmitting probe 7 and the ultrasonic wave receiving probe 8 and the angle (α) formed with the tube axis are determined by the following equation (1) due to a geometric relationship.
ここで、α:超音波探触子が炉壁管軸となす角度 L:炉壁管中心線から超音波入射位置までの距離 D:超音波探触子を当てた位置から被検査部までの寸法 θ:超音波探触子の屈折角度 第5図および第6図(第5図の側面図)は、例えば、
外径25.4mm、肉厚4.2mmの炉壁を探傷する場合の探傷状
況を図式的に示したものであり、その時の探傷波形を第
7図乃至第10図に示している。探傷は、管軸方向に沿っ
て正逆の二方向から行う。 Here, α: the angle between the ultrasonic probe and the furnace wall tube axis L: the distance from the furnace wall tube center line to the ultrasonic wave incident position D: the distance from the position where the ultrasonic probe is applied to the part to be inspected Dimension θ: refraction angle of ultrasonic probe FIGS. 5 and 6 (side views of FIG. 5) show, for example,
7 schematically shows a flaw detection state when flaw detection is performed on a furnace wall having an outer diameter of 25.4 mm and a wall thickness of 4.2 mm, and flaw detection waveforms at that time are shown in FIGS. 7 to 10. Flaw detection is performed from two directions, forward and reverse, along the tube axis direction.
ここで溶接部6を探傷する場合、まず第5図および第
6図中のB側から探傷すると、探傷波形としては第8図
および第10図に示すように溶接部6表面からの大きな反
射波Bが返ってくる。この様子は亀裂の有無にかかわら
ず同じである。Here, when flaw detection is performed on the welded portion 6, first, flaw detection is performed from the B side in FIGS. 5 and 6, and as shown in FIGS. 8 and 10, a large reflected wave from the surface of the welded portion 6 is obtained as shown in FIGS. B returns. This situation is the same regardless of the presence or absence of cracks.
一方、溶接部6を第5図および第6図のA側から探傷
すると、亀裂がない場合には第7図に示すように反射波
はみられないが、亀裂がある場合には第9図に示すよう
に亀裂からの反射波Fが返ってくる。したがって、前記
(1)式に基づいて、各探触子におけるα、θ等を選定
し、探傷波形の観察により溶接部6における探傷を行な
うことができる。On the other hand, when the welded part 6 is inspected from the side A in FIGS. 5 and 6, if there is no crack, no reflected wave is seen as shown in FIG. 7, but if there is a crack, FIG. A reflected wave F from the crack is returned as shown in FIG. Therefore, based on the above equation (1), α, θ, and the like of each probe can be selected, and the flaw detection at the welded portion 6 can be performed by observing the flaw detection waveform.
なお、前記した例は、管に帯鋼を溶接したボイラ炉壁
構造の探傷方法について説明したが、本発明は管構造物
であれば、たとえ帯鋼のようなものが管に溶接されてい
なくても、その管外表面から超音波を入射し管部材中を
被検査部まで超音波伝播させ、さらに被検査部からの反
射波も管部材中を通過させ被検査部と反対側の管外表面
で受信できるので、このような構造物の探傷に適用でき
る。In addition, although the above-mentioned example demonstrated the flaw detection method of the boiler furnace wall structure which welded the strip to the pipe, if the present invention is a pipe structure, even if something like a strip is not welded to the pipe, However, an ultrasonic wave is incident from the outer surface of the tube, propagates the ultrasonic wave through the tube member to the portion to be inspected, and the reflected wave from the portion to be inspected also passes through the tube member, and the reflected wave from the tube opposite to the portion to be inspected is exposed. Since it can be received on the surface, it can be applied to flaw detection of such a structure.
第11図〜第14図は本発明の超音波探傷装置の一実施例
を示すもので、第11図は装置の全体構成図、第12図は第
11図の装置による探傷状況を示す炉内側正面図、第13図
は第12図のB−B′矢視図、第14図は第12図のC−C′
矢視図である。11 to 14 show an embodiment of the ultrasonic flaw detector of the present invention, FIG. 11 is an overall configuration diagram of the apparatus, and FIG.
FIG. 13 is a front view of the inside of the furnace showing a flaw detection situation by the apparatus of FIG. 11, FIG. 13 is a view taken along the line BB ′ of FIG. 12, and FIG.
It is an arrow view.
第11図は炉壁管1の炉外側に取り付けられている金具
溶接部(図示せず)を炉内側から検査している状況を示
している。図中の符号9a,9bは炉壁管1に炉内側より超
音波を投射するための複数の振動子で構成した超音波送
信用探触子、符号10a,10bは炉外側の被検査部で反射・
伝播してくる超音波を炉内側で受波するための複数の振
動子で構成した超音波受信用探触子である。FIG. 11 shows a state where a metal-welded portion (not shown) attached to the outside of the furnace of the furnace wall tube 1 is inspected from inside the furnace. Numerals 9a and 9b in the figure are probes for ultrasonic transmission composed of a plurality of transducers for projecting ultrasonic waves from the inside of the furnace to the furnace wall tube 1, and numerals 10a and 10b are parts to be inspected outside the furnace. Reflection
This is an ultrasonic receiving probe composed of a plurality of transducers for receiving propagating ultrasonic waves inside the furnace.
超音波送信用探触子9aは超音波送信用探触子9bと、超
音波受信用探触子10aは超音波受信用探触子10bと、それ
ぞれ走査方向に対して向かい合わせの位置関係を有して
いる。The ultrasonic transmission probe 9a and the ultrasonic reception probe 10b are arranged to face each other with respect to the scanning direction. Have.
そして、それぞれの探触子が炉壁管1と炉壁管1の谷
間に位置するように探触子支持具11にピン14により固定
されており、探触子支持具11に一端部に固定されたシヤ
フトは架台12に設けた孔部に嵌合され、このシヤフトに
は、スプリング16が巻回され、ネジ15がシャフト端部に
備えられている。Each probe is fixed to the probe support 11 by a pin 14 so that each probe is located in the valley between the furnace wall tube 1 and the furnace wall tube 1, and is fixed to one end of the probe support 11. The shaft thus provided is fitted into a hole provided in the gantry 12, a spring 16 is wound around the shaft, and a screw 15 is provided at an end of the shaft.
また、超音波送信用探触子9a,9bおよび超音波受信用
探触子10a,10bは炉壁管1面との接触部にローラ13を具
備し、炉壁管1面に倣い走査するので不平滑な炉壁管1
であっても安定した走査ができると共に、炉壁管1面へ
の押し付け力も探触子支持具ロット部と架台孔の摺動部
に装着したスプリング16の働きにより一定できるように
なっている。In addition, the ultrasonic transmission probes 9a and 9b and the ultrasonic reception probes 10a and 10b each have a roller 13 at a contact portion with the furnace wall tube 1 and perform scanning following the furnace wall tube 1. Uneven furnace wall tube 1
Even in this case, stable scanning can be performed, and the pressing force against the furnace wall tube 1 can be kept constant by the action of the spring 16 mounted on the probe support lot portion and the sliding portion of the pedestal hole.
なお、探傷時には、他手段による接触媒質の自動供給
ができるように超音波送信用探触子9a,9bおよび超音波
受信用探触子10a,10bの内部には接触媒質供給通路(図
示せず)が設けられている。During the flaw detection, the couplant supply passages (not shown) are provided inside the ultrasonic transmission probes 9a and 9b and the ultrasonic reception probes 10a and 10b so that the couplant can be automatically supplied by other means. ) Is provided.
超音波送信用探触子9a,9bおよび超音波受信用探触子1
0a,10bを構成している振動子は第12図乃至第14図に示す
如くである。この実施例は、外径25.4mm、肉厚4.2mmの
炉壁管1で構成された炉壁の炉外側に取り付けている炉
壁支持金具3の溶接部6を探傷する場合であり、超音波
送信用探触子9a,9bには夫々探傷用の振動子19a,19b,19c
が3個とカップリッグチェック用振動子20が1個で構成
され、超音波受信用探触子10a,10bには夫々探傷用の振
動子19a′,19b′,19c′が3個とカップリッグチェック
用振動子20の1個で構成されている。Ultrasonic transmitting probe 9a, 9b and ultrasonic receiving probe 1
The vibrators constituting 0a and 10b are as shown in FIG. 12 to FIG. In this embodiment, a welded portion 6 of a furnace wall support fitting 3 attached to a furnace outside of a furnace wall constituted by a furnace wall tube 1 having an outer diameter of 25.4 mm and a wall thickness of 4.2 mm is used for flaw detection. Transducers 9a and 9b have flaw detectors 19a, 19b and 19c, respectively.
Is composed of three transducers 20 for coupling and a cup rig check, and the ultrasonic receiving probes 10a and 10b are respectively provided with three transducers 19a ', 19b' and 19c 'for flaw detection and a coupling rig with three couplings. It is constituted by one of the check transducers 20.
次に上記のように構成される超音波探傷装置の作用に
つき説明する。Next, the operation of the ultrasonic flaw detector configured as described above will be described.
超音波送信用探触子9aを構成する探傷用の振動子19a
は投射する超音波が溶接部中心領域部に到達するよう
に、軸心とのなす角α1,屈折角θ1で設置する。そし
て、溶接部中心領域部の亀裂あるいは溶接部で超音波
は反射・伝播し、部で反射・伝播される超音波を受波
すべく軸心とのなす角α1′の屈折角θ1で設置されて
いる超音波受信用探触子10aを構成している探傷用の振
動子19a′で受波され、部領域の超音波探傷が行われ
る。Transducer 19a for flaw detection constituting probe 9a for ultrasonic transmission
Are set at an angle α 1 with the axis and a refraction angle θ 1 so that the ultrasonic waves to be projected reach the central region of the welded portion. Then, the refractive angle theta 1 at the crack or weld the weld central region portion ultrasound reflected and propagates, the angle alpha 1 of the axis and in order to receives ultrasonic waves reflected and Propagation in parts' The ultrasonic wave is received by the flaw detecting transducer 19a 'constituting the installed ultrasonic receiving probe 10a, and ultrasonic flaw detection of the partial region is performed.
また、前記の振動子19aから投射される有効ビームが
到達するように軸心とのなす角α2,屈折角θ2で設定
された超音波送信用探触子9aを構成する探傷用の振動子
19bにより超音波が投射される。そして、当該領域の
亀裂もしくは溶接部で超音波は反射・伝播し、当該領
域で反射・伝播してくる超音波を受波するように軸心と
のなす角α2′,屈折角θ3で設定されている超音波受
信用探触子10aを構成している探傷用の振動子19b′で受
波され領域の超音波探傷が行われる。Further, the vibration for flaw detection constituting the ultrasonic transmission probe 9a set by the angle α 2 and the refraction angle θ 2 with the axis so that the effective beam projected from the vibrator 19a arrives. Child
Ultrasonic waves are projected by 19b. Then, the ultrasonic wave is reflected and propagated at the crack or the welded portion in the region, and the angle α 2 ′ with the axis and the refraction angle θ 3 are formed so as to receive the ultrasonic wave reflected and propagated in the region. The ultrasonic wave is received by the flaw detecting transducer 19b 'constituting the set ultrasonic receiving probe 10a, and the area is subjected to ultrasonic flaw detection.
さらに、前記の振動子19a、19bから投射される有効ビ
ーム幅から外れる部領域には、当該部に有効ビームが
到達すように軸心とのなす角α3,屈折角θ3で設定さ
れた超音波送信用探触子9aを構成する探傷用の振動子19
cにより超音波が投射される。そして、当該部領域の
亀裂もしくは溶接部で超音波は反射・伝播し、当該領
域で反射・伝播してくる超音波を受波するように軸心と
のなす角α3′,屈折角θ2で設定されている超音波受
信用探触子10aを構成している探傷用の振動子19c′で受
波され領域の超音波探傷が行われる。Further, in an area deviating from the effective beam width projected from the vibrators 19a and 19b, an angle α 3 with the axis and a refraction angle θ 3 are set so that the effective beam reaches the area. Transducer 19 for flaw detection constituting probe 9a for ultrasonic transmission
Ultrasonic waves are projected by c. Then, the ultrasonic wave is reflected and propagated in the crack or the welded portion in the region, and the angle α 3 ′ with the axis and the refraction angle θ 2 are formed so as to receive the ultrasonic wave reflected and propagated in the region. The ultrasonic flaw detection is performed by the flaw detecting transducer 19c 'constituting the ultrasonic receiving probe 10a set in the above.
以上のように3個の探触子の1対を用いて探傷すれば
1回の走査により、溶接部全域が探傷できる。なお、探
傷時における超音波送信用探触子9a,9b及び超音波受信
用探触子10aおよび10bと炉壁管1との音響結合状況の確
認は夫々探触子に設けたカップリングチェック用振動子
20から投射された帯鋼の底面エコーを検出することによ
り行う。As described above, if a flaw is detected using a pair of three probes, the whole area of the weld can be detected by one scan. The ultrasonic transmission probes 9a and 9b, the ultrasonic reception probes 10a and 10b, and the acoustic coupling state between the furnace wall tube 1 and the furnace wall tube 1 at the time of flaw detection were checked for the coupling check provided on each probe. Vibrator
This is done by detecting the bottom echo of the strip projected from 20.
さらに、本発明によるまたぎ走査法のための超音波探
傷装置は、上述した超音波送信用探触子9aと超音波受信
用探触子10aの一対と同仕様の超音波送信用探触子9bと
超音波受信用探触子10bを走査方向に対し向かい合わせ
に備えた構造となっている。Further, the ultrasonic flaw detector for the straddle scanning method according to the present invention includes an ultrasonic transmission probe 9b having the same specifications as a pair of the ultrasonic transmission probe 9a and the ultrasonic reception probe 10a described above. And the ultrasonic receiving probe 10b are provided to face each other in the scanning direction.
したがって、A側からの探傷には、超音波送信用探触
子9aと超音波受信用探触子10aの一対を用いて行い、そ
の後に行うB側からの探傷には、第11図に示す探触子切
替装置17を用い、超音波送信用探触子9bと超音波受信用
探触子10bの一対の切り替え探傷を行う。Therefore, the flaw detection from the A side is performed using a pair of the ultrasonic transmission probe 9a and the ultrasonic reception probe 10a, and the flaw detection performed from the B side thereafter is shown in FIG. Using the probe switching device 17, a pair of switching flaw detection of the ultrasonic transmission probe 9b and the ultrasonic reception probe 10b is performed.
この探傷結果は、超音波探傷器18により確認できる。
このように、走査方向に対し向かい合わせに配置した各
々一対の探触子を往路と復路で使い分けることにより一
往復で正逆(A側からの探傷とB側からの探傷)方向か
らの探傷が行える。This flaw detection result can be confirmed by the ultrasonic flaw detector 18.
In this way, by using a pair of probes arranged opposite to each other in the scanning direction for the forward path and the return path, the flaw detection in the forward and reverse directions (flaw detection from the A side and flaw detection from the B side) can be performed in one round trip. I can do it.
上記した実施例では、探触子と被検体との接触を複数
のローラを介し被検面に倣い走査し、探触子の安定走査
と摩耗防止を図る方式について説明したが、この代わり
に耐摩耗性に優れた髭状の部材を設け、被検面に倣い走
査させ探触子の安定走査と耐摩耗性を図る方法でもよ
い。In the above-described embodiment, a method has been described in which the contact between the probe and the subject is scanned by following the surface to be inspected via a plurality of rollers to stably scan the probe and prevent abrasion. A method in which a beard-shaped member having excellent wear properties is provided, and scanning is performed following the surface to be inspected to achieve stable scanning and wear resistance of the probe.
また、超音波送信用探触子及び超音波受信用探触子を
構成する振動子の数は、各々3個用いた場合につき説明
したが、被検査面の広さと振動子の有効ビーム幅により
用いる振動子の数は増減することができる。In addition, the number of transducers constituting the ultrasonic transmission probe and the ultrasonic reception probe has been described in the case of using three transducers each. However, the number of transducers depends on the size of the surface to be inspected and the effective beam width of the transducer. The number of transducers used can be increased or decreased.
次に本発明の超音波探傷装置の他の実施例を第15図〜
第17図を基に説明する。Next, another embodiment of the ultrasonic flaw detector of the present invention is shown in FIGS.
This will be described with reference to FIG.
第15図は壁面の自動超音波探傷システムの全体構成図
で、炉壁管1の炉外側に取付けられている炉壁支持金具
溶接部6を遠隔位置から検査している状況を示してい
る。図中符号21は走行装置を示し、炉内の上部に設けて
いる走行部材22と電動ホイスト23により炉内全域を自在
に移動できると共に、炉壁管1の任意の被検査部(炉壁
支持金具溶接部)炉内側に磁石24a,24b,24c,24dで固定
されるようになっている。FIG. 15 is an overall configuration diagram of the automatic ultrasonic flaw detection system for a wall surface, and shows a state where a furnace wall support bracket welded portion 6 attached to the outside of the furnace wall tube 1 is inspected from a remote position. In the drawing, reference numeral 21 denotes a traveling device, which can be freely moved throughout the furnace by means of a traveling member 22 and an electric hoist 23 provided at the upper part of the furnace, and an arbitrary inspected portion of the furnace wall tube 1 (furnace wall support). Metal fittings are fixed inside the furnace with magnets 24a, 24b, 24c, 24d.
この走査装置21の構成を第16図を用いて説明する。軸
方向欠陥探傷用探触子25は、前後軸移動機構部27aによ
って炉壁管1の炉内側面に押し当てられるようになって
おり、周方向欠陥探傷用探触子26は、前後軸移動機構部
27bによって炉壁管1の炉内側面に押し当てられるよう
になっている。The configuration of the scanning device 21 will be described with reference to FIG. The axial flaw detection probe 25 is pressed against the inner surface of the furnace wall tube 1 by the front-rear axis movement mechanism 27a. Mechanism
27b presses against the furnace inner side surface of the furnace wall tube 1.
そして、この前後軸移動機構部27a,27bは、蛇腹30に
覆われ防塵化された縦軸移動機構部28によって縦方向に
移動されるようになっている。更に、縦軸移動機構部28
は、蛇腹31a,31bに覆われ防塵化がなされた2系の横軸
移動機構部29a,29bにより精度よく横方向に移動される
ようになっている。前記の前後軸移動機構部27a,27bの
作動原理は、ネジ32a,32bに嵌合されたナット(図示せ
ず)をモータ35a,35bにより回転させることにより移動
させるようになっている。The front-rear axis moving mechanisms 27a and 27b are vertically moved by a dust-proof vertical axis moving mechanism 28 covered with a bellows 30. Further, the vertical axis moving mechanism 28
Is moved in the horizontal direction with high accuracy by the two-system horizontal axis moving mechanisms 29a and 29b covered with the bellows 31a and 31b and dustproofed. The operating principle of the front-rear axis moving mechanism units 27a and 27b is such that nuts (not shown) fitted to the screws 32a and 32b are moved by rotating the nuts by motors 35a and 35b.
また、縦軸移動機構部28および横軸移動機構部29a,29
bの作動原理は、ナット(図示せず)に嵌合されたネジ3
3,34a,34bをモータ36,37a,37bにより回転させることに
よって、移動させるようになっている。一方、モータ35
a,35b,36,37a,37bは、第17図に示すように遠隔位置に配
置された駆動装置39によって回転されるようになってい
るが、この駆動装置39は探傷条件にあわせて最適な制御
値を演算する演算処理装置40によって制御されるように
なっている。Further, the vertical axis moving mechanism section 28 and the horizontal axis moving mechanism sections 29a, 29
The operating principle of b is that the screw 3 fitted to the nut (not shown)
The motors 3, 34a, 34b are moved by being rotated by motors 36, 37a, 37b. Meanwhile, the motor 35
a, 35b, 36, 37a, 37b are rotated by a driving device 39 disposed at a remote position as shown in FIG. 17, and this driving device 39 is optimally adapted to flaw detection conditions. It is controlled by an arithmetic processing unit 40 that calculates a control value.
更に、この演算処理装置40は、前記軸方向欠陥探傷用
探触子25および周方向欠陥探傷用探触子26へ探傷信号を
送受信する超音波探傷装置41,探傷結果を映像表示する
表示装置42,探傷結果を記録する記録装置43に対して
も、探傷条件にあわせて最適な制御値を演算し制御する
ようになっていると共に、前記の軸方向欠陥探傷用探触
子25および周方向欠陥探傷用探触子26に対し、接触媒質
を供給する媒質供給装置44の制御もするようになってい
る。Further, the arithmetic processing unit 40 includes an ultrasonic flaw detector 41 for transmitting / receiving a flaw detection signal to / from the axial flaw detection probe 25 and the circumferential flaw detection probe 26, and a display device 42 for displaying a flaw detection result as an image. For the recording device 43 for recording the flaw detection result, the optimal control value is calculated and controlled in accordance with the flaw detection conditions, and the axial defect flaw detection probe 25 and the circumferential flaw are also controlled. The medium supply device 44 that supplies a couplant to the flaw detection probe 26 is also controlled.
次に、このように構成された本システムを用いて炉壁
管1の炉外側に取付けられている炉壁支持金具溶接部6
を炉内側から検査する場合について説明する。Next, using the thus configured system, the furnace wall support bracket welding portion 6 attached to the furnace outside of the furnace wall tube 1 is used.
Is described from the inside of the furnace.
まず、炉内上部に設置した走行部材22と電動ホイスト
23を遠隔位置から操作し、走査装置21を炉壁支持金具溶
接部6の炉内側まで移動する。その後、磁石24a,24b,24
c,24dに磁力を発生させ炉壁面に走査装置21を固定させ
る。First, the traveling member 22 installed in the upper part of the furnace and the electric hoist
23 is operated from a remote position to move the scanning device 21 to the inside of the furnace wall support bracket welded portion 6 inside the furnace. Then, magnets 24a, 24b, 24
A magnetic force is generated in c and 24d to fix the scanning device 21 to the furnace wall.
次に、炉外の遠隔位置に設置した演算処理装置40に適
正な探傷条件を入力すると駆動装置39,媒質供給装置44,
超音波探傷装置41,表示装置42,記録装置43に対し、最適
な制御値を演算し、各装置の動きを制御する。ここで、
駆動装置39は演算処理装置40の制御によりモータ35a,35
bを回転させ前後軸移動機構部27a,27bに装着されている
軸方向欠陥探傷用探触子25あるいは周方向欠陥探触子26
を炉壁管1の表面に押し当てる。Next, when an appropriate flaw detection condition is input to the arithmetic processing device 40 installed at a remote position outside the furnace, the driving device 39, the medium supply device 44,
An optimum control value is calculated for the ultrasonic flaw detector 41, the display device 42, and the recording device 43, and the movement of each device is controlled. here,
The driving device 39 controls the motors 35a, 35 under the control of the arithmetic processing device 40.
By rotating b, the axial flaw detection probe 25 or the circumferential flaw probe 26 attached to the front-rear axis movement mechanism 27a, 27b
Is pressed against the surface of the furnace wall tube 1.
このとき、演算処理装置40の制御により媒質供給装置
44が始動し媒質供給ケーブル46を経由した接触媒質が前
記の軸方向欠陥探傷用探触子25あるいは周方向欠陥探傷
用探触子26に供給され、炉壁管1との音響結合が計ら
れ、演算処理装置40に制御された超音波探傷装置41から
の探傷信号を炉壁管1に伝播できるようになる。At this time, the medium supply device is controlled by the control of the arithmetic processing device 40.
44 is started and the couplant via the medium supply cable 46 is supplied to the above-mentioned probe 25 for axial flaw detection or the probe 26 for circumferential flaw detection, and the acoustic coupling with the furnace wall tube 1 is measured. The flaw detection signal from the ultrasonic flaw detector 41 controlled by the arithmetic processing unit 40 can be transmitted to the furnace wall tube 1.
この状態でモータ36が自動的に回転し縦軸移動機構部
28により前後軸移動機構部27a,27bが移動され、軸方向
欠陥探傷用探触子25と周方向欠陥探傷用探触子26を縦方
向に走査する。In this state, the motor 36 automatically rotates and the vertical axis moving mechanism
The front / rear axis moving mechanism units 27a and 27b are moved by 28 to scan the axial defect detecting probe 25 and the circumferential defect detecting probe 26 in the vertical direction.
次にモータ37aと37bが回転を始め横軸移動機構部29a,
29bにより、縦軸移動機構部28および前後軸移動機構部2
7a,27bを介し、軸方向欠陥探傷用探触子25および周方向
欠陥探傷用探触子26を横方向に走査する。このように、
軸方向欠陥探傷用探触子25および周方向欠陥探傷用探触
子26を前後方向,縦方向,横方向に3次元的に走査しな
がら得られた探傷信号は、探傷ケーブル38を介し、超音
波探傷装置41を経由して、演算処理装置40で演算処理
し、探傷結果は表示装置42に映像表示すると共に記録は
記録装置により出力される。Next, the motors 37a and 37b start rotating and the horizontal axis moving mechanism 29a,
29b, the longitudinal axis moving mechanism section 28 and the longitudinal axis moving mechanism section 2
The probe 25 for axial flaw detection and the probe 26 for circumferential flaw detection are scanned in the lateral direction via 7a and 27b. in this way,
A flaw detection signal obtained by three-dimensionally scanning the probe 25 for flaw detection in the axial direction and the probe 26 for flaw detection in the circumferential direction in the front-rear direction, the vertical direction, and the horizontal direction is transmitted through the flaw detection cable 38 to Through the ultrasonic inspection device 41, the arithmetic processing device 40 performs arithmetic processing, the inspection result is displayed on the display device 42, and the recording is output by the recording device.
前記した第15図〜第17図に示す実施例ではボイラ炉壁
管の炉外側の付着金具溶接部を炉内側から超音波探傷検
査する場合について説明したが、本発明は壁面を形成す
る大型タンクおよび船舶等の外壁の検査に適用できるこ
とは言うまでもない。また、本発明の走査装置の大きさ
は特に限定されるものでなく、更に、この走査装置を分
解組立構造あるいは折畳み構造にしても何ら問題はな
い。In the embodiment shown in FIGS. 15 to 17 described above, the case where the welded portion of the metal fittings on the outer side of the boiler furnace wall tube is subjected to ultrasonic inspection from the inside of the furnace has been described. Needless to say, the present invention can be applied to inspection of outer walls of ships and the like. Further, the size of the scanning device of the present invention is not particularly limited, and there is no problem even if this scanning device is disassembled / assembled or folded.
本発明の装置によれば、ボイラの炉壁や炉壁支持金具
の溶接部の探傷を炉内側より外壁や保温材を外さずに、
かつ炉壁管内部に水を充填することなく、超音波探傷を
行うことができ、これにより従来多大の工数を要してい
た外壁や保温材の撤去及びこれらの復旧、さらには炉壁
管内部に充填する水の水質管理が省略できる。また、定
期検査期間中に行われる炉壁管の切り取り作業や炉壁管
内部の清掃作業ともに並行して探傷できるため探傷のた
めに特別に定期検査期間を延長する必要がなくなり、ボ
イラ設備の稼働率の向上が図れる。According to the apparatus of the present invention, flaw detection of the welded portion of the furnace wall of the boiler and the furnace wall support metal, without removing the outer wall and the heat insulating material from the inside of the furnace,
In addition, ultrasonic flaw detection can be performed without filling the inside of the furnace wall tube with water, thereby removing the outer wall and heat insulating material, which previously required a lot of man-hours, and restoring them, and furthermore, inside the furnace wall tube. The quality control of the water to be filled into the container can be omitted. In addition, it is not necessary to extend the periodic inspection period specifically for flaw detection because flaw detection can be performed concurrently with the furnace wall tube cutting work and the furnace wall tube cleaning work that are performed during the periodic inspection period, and the boiler equipment operation The rate can be improved.
また、本発明の装置によれば、複数の振動子で探触子
を構成しているので、被検査面での有効ビーム幅が広く
分布し、探傷漏れのない検査を行う場合でも探触子走査
ピッチが粗くて済み、かつ、探触子を走査方向に対し、
向かい合わせに配置しているので、これらの探触子を走
査方向に応じて選択的に使い分けることにより、正逆か
らの探傷を一往復でできる。このようなことから検査能
率を高くする効果がある。しかも、探触子は、被検体と
の接触に一定の力で被検査面に押し付けられるように支
持されているため、被検体面が平滑でない場合も探触子
の走査は安定し、探触子の押し付け力も一定するという
効果が得られる。Further, according to the apparatus of the present invention, since the probe is composed of a plurality of transducers, the effective beam width on the surface to be inspected is widely distributed, and the probe is used even when performing inspection without flaw detection leakage. The scanning pitch may be coarse, and the probe may be moved in the scanning direction.
Since the probes are arranged facing each other, by selectively using these probes in accordance with the scanning direction, flaw detection from normal and reverse directions can be performed in one round trip. This has the effect of increasing inspection efficiency. In addition, since the probe is supported so as to be pressed against the surface to be inspected with a certain force in contact with the object, even when the surface of the object is not smooth, the scanning of the probe is stable, and The effect that the pressing force of the child is also constant is obtained.
更に本発明の超音波探傷装置によれば、炉内側からの
検査および記録の採取は遠隔位置から自動制御によって
行うことができるので炉内が塵埃環境で被検査部が高所
に位置するような場合でも安全衛生的かつ、精度の高い
検査の維持が可能となる。Further, according to the ultrasonic flaw detector of the present invention, since the inspection and the recording of the record from the inside of the furnace can be performed by automatic control from a remote position, the inside of the furnace is in a dust environment and the inspected part is located at a high place. Even in this case, it is possible to maintain a safe and hygienic and highly accurate inspection.
第1図は本発明による超音波探傷の原理を示し、超音波
探傷時の例を示す一部切欠斜視図、第2図は第1図の炉
内側正面図、第3図は第2図の側面図、第4図は第2図
のA−A′矢視図、第5図及び第6図は溶接部の探傷状
況を示す説明図、第7図は第8図,第9図および第10図
はそれぞれ探傷波形例を示すグラフ、第11図は本発明の
超音波探傷装置の一実施例を示す全体構成図、第12図は
第11図の装置による探傷状況を示す炉内側正面図、第13
図は第12図のB−B′矢視図、第14図は第12図のC−
C′矢視図、第15図は本発明の超音波探傷装置の他の実
施例を示す全体構成図、第16図は第15図における走行装
置の構成図、第17図は第15図の装置におけるブロック
図、第18図は従来の探傷方法を示す一部切欠斜視図、第
19図及び第20図は第18図の方法における問題点を示すた
めの説明図、第21図は従来の超音波探傷の作業例を示す
説明図である。 1……炉壁管、2……帯鋼、3……炉壁支持金具、4…
…外壁、5……保温材、6……溶接部、7……超音波送
信用探触子、8……超音波受信用探触子、9a,9b……超
音波送信用探触子、10……水、10a,10b……超音波受信
用探触子、11……探触子支持具、12……架台、13……ロ
ーラ、14……ピン、15……ネジ、16……スプリング、17
……探触子切替装置、18……超音波探傷器、19a,19a′,
19b,19b′,19c,19c′……振動子、20……カップリング
チェック用振動子、21……走査装置、22……走行部材、
23……電動ホイスト、24a,24b,24c,24d……磁石、25…
…軸方向欠陥探傷用探触子、26……周方向欠陥探傷用探
触子、27a,27b……前後軸移動機構部、28……縦軸移動
機構部、29a,29b……横軸移動機構部、30,31a,31b……
蛇腹、38……探傷ケーブル、39……駆動装置、40……演
算処理装置、41……超音波探傷装置、42……表示装置、
43……記録装置、44……媒質供給装置、45……駆動ケー
ブル、46……媒質ケーブル。FIG. 1 shows the principle of ultrasonic flaw detection according to the present invention, and is a partially cutaway perspective view showing an example of ultrasonic flaw detection, FIG. 2 is a front view of the inside of the furnace of FIG. 1, and FIG. Fig. 4 is a side view, Fig. 4 is a view taken along the line AA 'in Fig. 2, Figs. 5 and 6 are explanatory views showing the flaw detection state of the welded part, and Fig. 7 is Figs. 10 is a graph showing each of the flaw detection waveform examples, FIG. 11 is an overall configuration diagram showing one embodiment of the ultrasonic flaw detection apparatus of the present invention, FIG. 12 is a front view inside the furnace showing a flaw detection situation by the apparatus of FIG. , Thirteenth
FIG. 14 is a view taken along the line BB ′ in FIG. 12, and FIG.
FIG. 15 is an overall configuration diagram showing another embodiment of the ultrasonic flaw detector of the present invention, FIG. 16 is a configuration diagram of the traveling device in FIG. 15, and FIG. FIG. 18 is a block diagram showing the conventional flaw detection method, and FIG.
FIG. 19 and FIG. 20 are explanatory diagrams showing problems in the method of FIG. 18, and FIG. 21 is an explanatory diagram showing an operation example of the conventional ultrasonic inspection. 1 ... furnace wall tube, 2 ... steel strip, 3 ... furnace wall support bracket, 4 ...
... outer wall, 5 ... heat insulating material, 6 ... welded part, 7 ... probe for ultrasonic transmission, 8 ... probe for ultrasonic reception, 9a, 9b ... probe for ultrasonic transmission, 10 ... water, 10 a, 10 b ... ultrasonic receiving probe, 11 ... probe support, 12 ... stand, 13 ... roller, 14 ... pin, 15 ... screw, 16 ... Spring, 17
...... Probe switching device, 18 ... Ultrasonic flaw detector, 19a, 19a ',
19b, 19b ', 19c, 19c' ... vibrator, 20 ... coupling check vibrator, 21 ... scanning device, 22 ... traveling member,
23… Electric hoist, 24a, 24b, 24c, 24d… Magnet, 25…
... Axial flaw detection probe, 26 ... Circumferential flaw detection probe, 27a, 27b ... Front / back axis moving mechanism, 28 ... Vertical axis moving mechanism, 29a, 29b ... Horizontal axis Mechanism part, 30, 31a, 31b ……
Bellows, 38 ... flaw detection cable, 39 ... drive device, 40 ... arithmetic processing device, 41 ... ultrasonic flaw detection device, 42 ... display device,
43 ... Recording device, 44 ... Medium supply device, 45 ... Drive cable, 46 ... Medium cable.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾田原 房季 兵庫県尼崎市若王寺3丁目3番22号 関 西電力株式会社内 (72)発明者 野間崎 行雄 広島県呉市宝町6番9号 バブコック日 立株式会社呉工場内 (72)発明者 諸永 雅晴 広島県呉市宝町6番9号 バブコック日 立株式会社呉工場内 (56)参考文献 特開 昭54−114697(JP,A) 特開 昭62−148853(JP,A) 特開 昭61−105460(JP,A) 特開 昭62−2152(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 29/00 - 29/28 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Fuki Odawara 3-2-22-2 Wakaoji Temple, Amagasaki City, Hyogo Kansai Electric Power Co., Inc. (72) Inventor Yukio Nomazaki 6-9 Takaracho, Kure City, Hiroshima Prefecture No. Babcock Hitachi Ltd. Kure Factory (72) Inventor Masaharu Moronaga 6-9 Takaracho, Kure City, Hiroshima Prefecture Inside Babcock Hitachi Kure Factory (56) References JP-A-54-114697 (JP, A) JP-A-62-148853 (JP, A) JP-A-61-105460 (JP, A) JP-A-62-2152 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01N 29/00-29/28
Claims (4)
構成される超音波送信用探触子と、前記被検体を伝播し
てくる超音波を受波させると共に前記超音波送信用探触
子の振動子と同数の振動子で構成される超音波受信用探
触子が一対となり、前記一対の探触子を走査方向に対
し、向かい合わせに配置し、前記複数の超音波送信用探
触子はそれぞれ被検体の異なる所定部位に超音波を投射
するように夫々配され、前記複数の超音波受信用探触子
はそれぞれ前記被検体の異なる所定部位で反射・伝播し
てくる超音波を夫々受信可能な位置に配されていること
を特徴とする管構造物の超音波探傷装置。An ultrasonic transmission probe comprising a plurality of transducers for projecting ultrasonic waves to an object, an ultrasonic wave propagating through the object and receiving the ultrasonic waves. An ultrasonic receiving probe composed of the same number of transducers as the transducers is paired, and the pair of probes are arranged to face each other in a scanning direction, and the plurality of ultrasonic transmitting units are arranged. The credit probes are respectively arranged so as to project ultrasonic waves to different predetermined portions of the subject, and the plurality of ultrasonic receiving probes are respectively reflected and propagated at different predetermined portions of the subject. An ultrasonic flaw detector for a pipe structure, which is arranged at a position where it can receive ultrasonic waves.
用探触子とを走査方向に応じて発振用および受信用に切
り替える探触子切替装置を備えたことを特徴とする請求
項(1)記載の管構造物の超音波探傷装置。2. A probe switching device for switching between the ultrasonic transmission probe and the ultrasonic reception probe for oscillation and reception in accordance with a scanning direction. Item (1): An ultrasonic flaw detector for a pipe structure.
受信用探触子を夫々走査面に対して摺動自在に付勢させ
る手段を備えたことを特徴とする請求項(1)記載の管
構造物の超音波探傷装置。3. The apparatus according to claim 1, further comprising means for slidably urging the ultrasonic transmission probe and the ultrasonic reception probe with respect to a scanning plane. An ultrasonic flaw detector for a pipe structure as described in the above.
から探傷するものにおいて、軸方向欠陥探傷用探触子と
周方向欠陥探傷用探触子を被検体面に対し、前後方向に
移動させる前後軸移動機構部と、この前後軸移動機構部
を縦方向に移動させる縦軸移動機構部と、この縦軸移動
機構部を横方向に移動させる横軸移動機構部とからなる
走査装置と、該走査装置を被検査部位に移動させる走行
機構部と、前記の前後軸移動機構部,縦軸移動機構部,
横軸移動機構部を動かす駆動装置と、前記軸方向欠陥探
傷用探触子および周方向欠陥探傷用探触子への探傷信号
を送受信する超音波探傷装置と、探傷結果を映像表示す
る表示装置と、探傷結果を記録する記録装置と、探傷条
件にあわせて前記の駆動装置,超音波探傷装置,表示装
置,記録装置に対し、最適な制御値を演算し、各装置の
機能を制御する演算処理装置と、を具備したことを特徴
とする管構造物の自動超音波探傷装置。4. An apparatus for detecting flaws on the back surface of an object from an upper surface through an ultrasonic beam, wherein a probe for flaw detection in an axial direction and a probe for flaw detection in a circumferential direction are arranged in front and rear directions with respect to the surface of the object. A scanning device comprising: a longitudinal axis moving mechanism for moving, a longitudinal axis moving mechanism for vertically moving the longitudinal axis moving mechanism, and a horizontal axis moving mechanism for moving the longitudinal axis moving mechanism in the horizontal direction. A traveling mechanism for moving the scanning device to the region to be inspected, the front-rear axis moving mechanism, the vertical axis moving mechanism,
A driving device for moving the horizontal axis moving mechanism, an ultrasonic flaw detection device for transmitting and receiving flaw detection signals to the axial flaw detection probe and the circumferential flaw detection probe, and a display device for displaying a flaw detection result on an image And a recording device for recording the flaw detection result, and a calculation for calculating the optimum control values for the driving device, the ultrasonic flaw detection device, the display device, and the recording device in accordance with the flaw detection conditions, and controlling the function of each device. An automatic ultrasonic flaw detector for a pipe structure, comprising: a processing device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2224011A JP2881658B2 (en) | 1990-08-24 | 1990-08-24 | Ultrasonic testing equipment for pipe structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2224011A JP2881658B2 (en) | 1990-08-24 | 1990-08-24 | Ultrasonic testing equipment for pipe structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04105060A JPH04105060A (en) | 1992-04-07 |
JP2881658B2 true JP2881658B2 (en) | 1999-04-12 |
Family
ID=16807191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2224011A Expired - Fee Related JP2881658B2 (en) | 1990-08-24 | 1990-08-24 | Ultrasonic testing equipment for pipe structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2881658B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2587098Y2 (en) * | 1992-12-21 | 1998-12-14 | 三菱重工業株式会社 | Inspection device |
CN1075034C (en) | 1994-10-07 | 2001-11-21 | 四国化工机株式会社 | Narrow band connecting apparatus |
JPH08108957A (en) | 1994-10-07 | 1996-04-30 | Shikoku Kakoki Co Ltd | Tape connecting device |
JP2016114465A (en) * | 2014-12-15 | 2016-06-23 | 東京瓦斯株式会社 | Transversal crack detection device |
JP6758083B2 (en) * | 2016-05-12 | 2020-09-23 | 株式会社日立製作所 | Piping inspection equipment |
-
1990
- 1990-08-24 JP JP2224011A patent/JP2881658B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04105060A (en) | 1992-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5549004A (en) | Hand held tube wall thickness ultrasonic measurement probe and system | |
US6424150B2 (en) | Magnetostrictive sensor rail inspection system | |
KR101134431B1 (en) | Ultrasonic scanning device and method | |
US4593568A (en) | Ultrasonic inspection of tube to tube plate welds | |
JP4116483B2 (en) | Tubular ultrasonic inspection method and apparatus | |
KR20020022046A (en) | Electromagnetic acoustic transducer (emat) inspection of cracks in boiler tubes | |
CN108431592A (en) | Equipment and its implementation for controlling and measuring the weld defect on cylindrical wall | |
JP2881658B2 (en) | Ultrasonic testing equipment for pipe structures | |
JP2001021542A (en) | Measuring of weld line transverse crack defect length | |
JP2001074713A (en) | Tank-inspecting apparatus | |
JPH09257764A (en) | Manual scanning type ultrasonic flaw detection apparatus | |
JP2004077292A (en) | Method and device for inspecting stress corrosion cracking | |
JP3571473B2 (en) | Angle beam ultrasonic inspection method and apparatus | |
RU2621216C1 (en) | Intra tube method of ultrasonic testing of welds | |
JP4175762B2 (en) | Ultrasonic flaw detector | |
JP3052550B2 (en) | Bevel probe for ultrasonic flaw detection | |
JP2004212308A (en) | Method and apparatus for inspecting weld | |
JP6173636B1 (en) | Ultrasonic inspection method and ultrasonic inspection apparatus | |
JP2002071332A (en) | Probe for measurement thickness of clad steel ply material | |
JPS61133857A (en) | Method and apparatus for diagnosing corrosion of underground pipeline | |
Takatsubo et al. | Generation laser scanning method for visualizing ultrasonic waves propagating on 3-D objects | |
Puchot et al. | Inspection technique for above ground storage tank floors using MsS technology | |
RU2149393C1 (en) | Process of ultrasonic test of cylindrical articles | |
JP2000221023A (en) | Wall inspection method for liquid storing structure | |
KR100347366B1 (en) | Ultrasonic testing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |