[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3754555B2 - Method and apparatus for detecting flaws on the surface and inside of the leading edge of a turbine blade - Google Patents

Method and apparatus for detecting flaws on the surface and inside of the leading edge of a turbine blade Download PDF

Info

Publication number
JP3754555B2
JP3754555B2 JP09767998A JP9767998A JP3754555B2 JP 3754555 B2 JP3754555 B2 JP 3754555B2 JP 09767998 A JP09767998 A JP 09767998A JP 9767998 A JP9767998 A JP 9767998A JP 3754555 B2 JP3754555 B2 JP 3754555B2
Authority
JP
Japan
Prior art keywords
turbine blade
blade
contact member
tip
leading edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09767998A
Other languages
Japanese (ja)
Other versions
JPH11295278A (en
Inventor
逸郎 海老海
千代治 佐藤
克彦 古谷
幹雄 久下
英志 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aspect Inc
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Aspect Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Aspect Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP09767998A priority Critical patent/JP3754555B2/en
Publication of JPH11295278A publication Critical patent/JPH11295278A/en
Application granted granted Critical
Publication of JP3754555B2 publication Critical patent/JP3754555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、タービン翼の探傷方法及び探傷装置に関し、とりわけ火力発電用のタービン翼前縁部の表面及び内部を探傷するのに好適な探傷方法及び探傷装置に関する。
【0002】
【従来の技術】
発電用のタービン翼は、高温で使用されるため、従来から、その健全性を確認する目的で定期検査が行われている。
【0003】
この定期検査では、主として浸透探傷法が採用されているが、この浸透探傷法では、表面の探傷しかできないという不都合がある。
【0004】
特に、タービン翼とりわけ火力発電用のタービン翼にはその内部に翼根部から先端部に向かって冷却孔が形成されており、浸透探傷法ではこの翼前縁部の内部に形成された冷却孔の表面全体やその周壁近傍の探傷ができないという問題がある。
【0005】
【発明が解決しようとする課題】
一方、タービン翼の内部の探傷法に、超音波探傷法がある。この超音波探傷法では、タービン翼の翼根部からその先端部に亘って延びる翼面に超音波探触子を接触させて走査することにより探傷が可能であるが、タービン翼の表面は高温に曝され浸食等により粗く荒れやすく、超音波探触子を直接接触させて走査することによる超音波探傷方法では、超音波探触子と翼面とのカップリングが安定せず、走査を安定して行うことができない。すなわち、タービン翼の表面からのエコーが大きく、翼前縁部の欠陥によるエコーが表面反射のエコーに埋もれるため、正確で迅速な検査を行うことができないという問題がある。
【0006】
本発明は、上記の事情に鑑みて為されたもので、その目的は、タービン翼前縁部の翼面の表面粗さの影響を受けることなくタービン翼の特に前縁部表面又は内部を探傷し、タービン翼を正確かつ迅速に探傷することにより、潜在的・顕在的欠陥の定期検査を可能ならしめたタービン翼前縁部の表面及び内部の探傷方法及び探傷装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明の請求項1に記載のタービン翼前縁部の探傷方法は、上記課題を解決するため、前縁部に翼根部から先端部に亘って貫設された冷却孔を有し、ロータに固定されるタービン翼の前縁部を超音波探触子により探傷する方法であって、前記タービン翼の翼根部から前記先端部に至る形状に沿う形状を有し超音波を伝播可能な樹脂製接触部材を前記タービン翼面に対し前記翼根部から前記先端部に亘って密着させ、超音波探触子を前記樹脂製接触部材に密着させて前記翼根部と前記先端部との間で走査することにより、タービン翼前縁部の表面及び内部を探傷することを特徴とする。
【0008】
本発明の請求項2に記載のタービン翼前縁部の表面及び内部の探傷装置は、前縁部に翼根部から先端部に亘って貫設された冷却孔を有するタービン翼の前縁部を超音波探触子により探傷する装置であって、前記タービン翼の前記前縁部の前記翼根部から先端部の形状に沿って密着せしめ超音波を伝播可能な樹脂製接触部材と、前記樹脂製接触部材に密着せしめて前記翼根部と前記先端部との間で往復動可能に走査する超音波探触子と、前記樹脂製接触部材を前記タービン翼の前記前縁部に密着して支持させるための支持体と、前記支持体に設けられ、かつ前記超音波探触子を前記翼根部と前記先端部との間で往復動させる往復動機構と、を備えている。
【0009】
本発明の請求項3に記載のタービン翼前縁部の表面及び内部の探傷装置では、前記タービン翼の前記翼根部から前記先端部に向かって延びる冷却孔に嵌合される嵌合ピン及び前記タービン翼をその厚さ方向に両側から挟持するクランプ機構を備える支持体と、前記嵌合ピンと前記クランプ機構とにより前記支持体が前記タービン翼に着脱可能に固定される。
【0010】
【発明の実施の形態】
以下に本発明のタービン翼前縁部の表面及び内部の探傷方法及び探傷装置の発明の実施の形態を図面を参照しつつ説明する。
【0011】
図1は、タービン翼1の翼面のうち特にその前縁部2に超音波が伝播可能な樹脂製接触部材3を接触させ、超音波探触子4を用いて探傷する場合の説明図である。そのタービン翼1の前縁部2には、空気冷却用の冷却孔5がロータに固定される基部から先端部7に亘って貫通形成されている。
【0012】
超音波探触子4は支持体8にジンバル機構9を介して支持されている。支持体8は上下方向に延びる枠部10を有する。その枠部10の上部にはモータ11が固定されている。その枠部10の下部にはエンコーダ12が設けられている。そのモータ11の出力軸13には歯付きプーリ14が設けられ、歯付きプーリ14とエンコーダ12との間にはタイミングベルト15が掛け渡されている。
【0013】
枠部10には上下方向に延びるリニアガイド穴16が設けられている。タイミングベルト15には移動体17がリニアガイド穴16を介して連結され、移動体17にはガイドロッド18が設けられている。ジンバル機構9はこのガイドロッド18と、ガイドロッド18にガイドされるブロック19と、ブロック19を矢印A方向に付勢するスプリング20と、ブロック19に植設されて超音波探触子4を回動可能に支持する支持板21とから構成されている。
【0014】
樹脂製接触部材3は典型的にはタービン翼前縁部2に接触される面3bの側が図2に示すようにこの前縁部2の外形状に沿う形状とされている。樹脂製接触部材3をタービン翼前縁部2に接触させることにより、樹脂製接触部材3と冷却孔の貫設された前縁部2との間の隙間が、直接前縁部2に超音波探触子4を接触させた場合に前縁部2と超音波探触子4との間に生じる隙間よりも小さくでき、樹脂製接触部材3と前縁部2との間の隙間の音響インピーダンスの不整合を一層少なくするために、グリセリン等の充填材料によりその隙間を埋めるのが望ましい。
【0015】
モータ11、エンコーダ12、プーリ14、タイミングベルト15、移動体17、ジンバル機構9は超音波探触子4を樹脂製接触部材3に密着させて翼根部6と先端部7との間で往復走査させる往復動機構22を構成しており、超音波探触子4が滑らかに往復動されるように樹脂製接触部材3の表面3aにもグリセリン等の充填材料が塗布されている。
【0016】
支持体8はその上部に上板23が設けられ、樹脂製接触部材3はその上板23に支持されている。上板23には冷却孔5に対応する箇所に嵌合ピン24が設けられ、上板23の先端は二股に分岐されて下方に屈曲され、その屈曲板部23aにクランプ機構25が設けられている。クランプ機構25は円盤状摘み部26と円盤状弾性挟持部材27と屈曲板部23aに形成されたネジ孔(図示を略す)に螺合するネジ部材28とから大略構成され、クランプ機構25はタービン翼1をその厚さ方向両側から挟持する。支持体8はそのクランプ機構25と嵌合ピン24とにより定期検査中にタービン翼1に着脱可能に固定される検査治具として用いられ、樹脂製接触部材3はこれによって冷却孔の貫設された前縁部2に密着される。
【0017】
モータ11の駆動、エンコーダ12からの超音波探触子4の走査位置情報、超音波探触子4の超音波の発信・受信制御は図3に示す探傷装置本体29により行われる。この探傷装置本体29はバッテリ30と探傷回路31と走査制御回路32とプリンタ33とを備え、バッテリ30にはバッテリチャージャー34を介してAC100V電源が供給される。走査制御回路32は図示を略すスイッチをオンすると、ケーブル35を介してモータ11を駆動する。これにより、タイミングベルト15が回転され、このタイミングベルト15の回転により回転されるエンコーダ12のパルス情報がケーブル35を介して走査制御回路32に入力され、これにより超音波探触子4の走査位置情報が検出される。
【0018】
超音波探触子4は例えば図4(a)、図5(a)に示すものからなり、超音波を発信させる振動子36と前縁部2からの超音波の反射波(エコー)を受信する受信子(図示を略す)とを備えている。その超音波探触子4と探傷回路31との信号の授受はケーブル37を介して行われる。そして、探傷回路31は所定の走査位置情報毎に、プリンタ33に向かって探傷検査情報を出力し、プリンタ33はこれをプリントアウトする。
【0019】
次に、樹脂製接触部材3を介在させずに直接超音波探触子4を前縁部2に接触させて走査した場合と、樹脂製接触部材3を超音波探触子4と前縁部2との間に介在させると共に、その前縁部2と樹脂製接触部材3との間の隙間を埋める充填材料を介在させて前縁部2を探傷した結果の比較例を示す。
【0020】
図4(a)は樹脂製接触部材3を介在させずに直接超音波探触子4を前縁部2に接触させて探傷走査した場合を示し、図4(b)はその探傷結果を示すグラフである。
【0021】
ここでは、冷却孔を貫設した前縁部2の表面に欠陥38が存在し、内部の冷却孔5の周壁に欠陥39が存在するものとする。超音波探触子4を前縁部2に直接接触させて走査すると、前縁部2の表面が大きく荒れているので、走査が滑らかに行われず、走査中に超音波探触子4が振動すること及び隙間が存在することにより、超音波の入射が不安定となると共に、図4(b)に示すように前縁部2の表面からのエコー40が大きく、欠陥38の存在に基づくエコーが表面からのエコー40に埋もれ、表面に欠陥38が存在するか否かを判定できない。なお、図4(b)において、41は超音波の発信出力、42は内部に存在する欠陥39に基づくエコーである。
【0022】
図5(a)は樹脂製接触部材3を冷却孔を貫設した前縁部2と超音波探触子4との間に介在させると共に、この前縁部2と樹脂製接触部材3との間に隙間を埋める充填材料を介在させて、前縁部2を探傷走査する場合を示し、図5(b)はその探傷結果を示すグラフである。この図5(b)は超音波探触子4が摺接する樹脂製接触部材3の表面にも超音波探触子4と樹脂製接触部材3との間の隙間を埋める充填材料を介在させて得られた探傷結果を示している。
【0023】
本発明によれば、走査中に超音波探触子4が大きく振動することなく、かつ、隙間がほとんどないので、冷却孔が貫設され欠陥が重大な結果をもたらすおそれの大きい前縁部2の表面粗さ等に基づく表面からのエコー40は小さく、タービン翼内部の欠陥38に基づくエコー43がエコー40に埋もれることがない。なお、44は樹脂製接触部材3と超音波探触子4との界面で反射されたエコーである。
【0024】
【発明の効果】
本発明のタービン翼前縁部の表面及び内部の探傷方法及び探傷装置によれば、実機使用により生じたタービン翼前縁部表面の表面粗さの影響を受けることなく探傷検査を行うことができるので、正確かつ迅速にタービン翼の複雑な形態をしたタービン翼前縁部の表面及びその内部が検査可能であるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明に係わるタービン翼前縁部の表面及び内部の探傷装置の側面図である。
【図2】 本発明に係わるタービン翼前縁部の表面及び内部の探傷装置の上面図である。
【図3】 本発明に係わるタービン翼前縁部の表面及び内部の探傷装置の回路図である。
【図4】 樹脂製接触部材を介在させずに直接超音波探触子を翼表面に接触させて探傷走査した場合の説明図で、(a)は樹脂製接触部材を介在させずに直接超音波探触子を翼表面に接触させて探傷走査する概念図を示し、(b)はその探傷結果を示すグラフである。
【図5】 本発明に係わるタービン翼表面及び内部の探傷装置の作用を説明するための説明図であって、(a)は樹脂製接触部材を翼表面と超音波探触子との間に介在させると共に、冷却孔を有する前縁部と樹脂製接触部材との間にこの隙間を埋める充填材料を介在させて翼表面を探傷走査する概念図を示し、(b)はその探傷結果を示すグラフである。
【符号の説明】
1…タービン翼
2…前縁部
3…樹脂製接触部材
4…超音波探触子
5…タービン翼の冷却孔
6…翼根部
7…先端部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a turbine blade flaw detection method and a flaw detection device, and more particularly, to a flaw detection method and a flaw detection device suitable for flaw detection on the surface and inside of a turbine blade leading edge for thermal power generation.
[0002]
[Prior art]
Since turbine blades for power generation are used at high temperatures, regular inspections have conventionally been performed for the purpose of confirming their soundness.
[0003]
In this periodic inspection, the penetrant flaw detection method is mainly employed, but this penetrant flaw detection method has a disadvantage that only surface flaw detection can be performed.
[0004]
In particular, a turbine blade, particularly a turbine blade for thermal power generation, has a cooling hole formed in the inside from the blade root portion to the tip portion. In the penetrant flaw detection method, the cooling hole formed inside the blade leading edge portion is formed. There is a problem that the entire surface and the vicinity of the peripheral wall cannot be detected.
[0005]
[Problems to be solved by the invention]
On the other hand, there is an ultrasonic flaw detection method as a flaw detection method inside the turbine blade. In this ultrasonic flaw detection method, flaw detection is possible by scanning an ultrasonic probe in contact with the blade surface extending from the blade root to the tip of the turbine blade, but the surface of the turbine blade is heated to a high temperature. In the ultrasonic flaw detection method that scans with direct contact with the ultrasonic probe due to exposure and erosion, the coupling between the ultrasonic probe and the blade surface is not stable, and the scanning is stable. Can not be done. That is, there is a problem that echoes from the surface of the turbine blade are large and echoes due to defects at the blade leading edge are buried in the echoes of the surface reflection, so that accurate and quick inspection cannot be performed.
[0006]
The present invention has been made in view of the above circumstances, and its purpose is to detect the surface of the front edge of the turbine blade or the inside thereof without being affected by the surface roughness of the blade surface of the front edge of the turbine blade. Another object of the present invention is to provide a flaw detection method and a flaw detection device for the surface and the inside of a turbine blade leading edge that enable periodic inspection of potential and obvious defects by accurately and rapidly flawing the turbine blade.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the method for flaw detection of a turbine blade leading edge according to claim 1 of the present invention has a cooling hole penetrating from the blade root to the tip at the leading edge, and the rotor has A method of flaw-detecting a leading edge portion of a turbine blade to be fixed by an ultrasonic probe, and having a shape extending from a blade root portion to the tip portion of the turbine blade and made of a resin capable of propagating ultrasonic waves A contact member is brought into close contact with the turbine blade surface from the blade root portion to the tip portion, and an ultrasonic probe is brought into close contact with the resin contact member to scan between the blade root portion and the tip portion. Thus, flaw detection is performed on the surface and the inside of the leading edge portion of the turbine blade.
[0008]
According to a second aspect of the present invention, there is provided a flaw detection apparatus for a surface and an interior of a turbine blade leading edge, wherein the front edge of the turbine blade having a cooling hole penetrating from the blade root to the tip is formed in the leading edge. An apparatus for flaw detection with an ultrasonic probe, which is made of a resin contact member capable of propagating ultrasonic waves by adhering along the shape of the tip from the blade root of the front edge of the turbine blade, and the resin An ultrasonic probe that is brought into close contact with a contact member and reciprocally scans between the blade root portion and the tip portion, and the resin contact member is closely attached to and supported by the front edge portion of the turbine blade. And a reciprocating mechanism provided on the support for reciprocating the ultrasonic probe between the blade root and the tip.
[0009]
In the flaw detection device on the surface and inside of the turbine blade leading edge according to claim 3 of the present invention, the fitting pin fitted into the cooling hole extending from the blade root portion toward the tip portion of the turbine blade, and the The support body is detachably fixed to the turbine blade by a support body including a clamp mechanism that clamps the turbine blade from both sides in the thickness direction thereof, and the fitting pin and the clamp mechanism.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the surface and internal flaw detection method and flaw detection apparatus according to the present invention will be described below with reference to the drawings.
[0011]
FIG. 1 is an explanatory diagram of a case where a resin contact member 3 capable of propagating ultrasonic waves is brought into contact with the front edge portion 2 of the blade surface of the turbine blade 1 and flaw detection is performed using the ultrasonic probe 4. is there. A cooling hole 5 for air cooling is formed through the front edge 2 of the turbine blade 1 from the base fixed to the rotor to the tip 7.
[0012]
The ultrasonic probe 4 is supported on a support 8 via a gimbal mechanism 9. The support 8 has a frame portion 10 extending in the vertical direction. A motor 11 is fixed to the upper portion of the frame portion 10. An encoder 12 is provided below the frame portion 10. A toothed pulley 14 is provided on the output shaft 13 of the motor 11, and a timing belt 15 is stretched between the toothed pulley 14 and the encoder 12.
[0013]
The frame portion 10 is provided with a linear guide hole 16 extending in the vertical direction. A moving body 17 is connected to the timing belt 15 via a linear guide hole 16, and a guide rod 18 is provided on the moving body 17. The gimbal mechanism 9 includes the guide rod 18, a block 19 guided by the guide rod 18, a spring 20 that urges the block 19 in the direction of arrow A, and an ultrasonic probe 4 that is implanted in the block 19. It is comprised from the support plate 21 supported so that a movement is possible.
[0014]
The resin contact member 3 typically has a shape along the outer shape of the leading edge 2 as shown in FIG. 2 on the side of the surface 3b that contacts the turbine blade leading edge 2. By bringing the resin contact member 3 into contact with the turbine blade leading edge 2, a gap between the resin contact member 3 and the front edge 2 through which the cooling hole is penetrated is directly applied to the front edge 2. The acoustic impedance of the gap between the resin contact member 3 and the front edge 2 can be made smaller than the gap generated between the front edge 2 and the ultrasonic probe 4 when the probe 4 is brought into contact. In order to further reduce the mismatch, it is desirable to fill the gap with a filling material such as glycerin.
[0015]
The motor 11, the encoder 12, the pulley 14, the timing belt 15, the moving body 17, and the gimbal mechanism 9 reciprocally scan between the blade root portion 6 and the tip portion 7 with the ultrasonic probe 4 in close contact with the resin contact member 3. A reciprocating mechanism 22 is configured, and a filling material such as glycerin is also applied to the surface 3a of the resin contact member 3 so that the ultrasonic probe 4 is smoothly reciprocated.
[0016]
The support 8 is provided with an upper plate 23 at the top thereof, and the resin contact member 3 is supported by the upper plate 23. The upper plate 23 is provided with a fitting pin 24 at a location corresponding to the cooling hole 5, the tip of the upper plate 23 is bifurcated and bent downward, and a clamp mechanism 25 is provided on the bent plate portion 23a. Yes. The clamp mechanism 25 is generally composed of a disc-shaped knob 26, a disc-shaped elastic clamping member 27, and a screw member 28 that is screwed into a screw hole (not shown) formed in the bent plate portion 23a. The clamp mechanism 25 is a turbine. The blade 1 is clamped from both sides in the thickness direction. The support 8 is used as an inspection jig that is detachably fixed to the turbine blade 1 during the periodic inspection by the clamp mechanism 25 and the fitting pin 24, and the resin contact member 3 is thereby provided through the cooling hole. It is closely attached to the front edge 2.
[0017]
The driving of the motor 11, the scanning position information of the ultrasonic probe 4 from the encoder 12, and the transmission / reception control of the ultrasonic wave of the ultrasonic probe 4 are performed by the flaw detector main body 29 shown in FIG. The flaw detection apparatus main body 29 includes a battery 30, a flaw detection circuit 31, a scanning control circuit 32, and a printer 33. The battery 30 is supplied with AC 100 V power via a battery charger 34. When the switch (not shown) is turned on, the scanning control circuit 32 drives the motor 11 via the cable 35. As a result, the timing belt 15 is rotated, and pulse information of the encoder 12 rotated by the rotation of the timing belt 15 is input to the scanning control circuit 32 via the cable 35, whereby the scanning position of the ultrasonic probe 4 is detected. Information is detected.
[0018]
The ultrasonic probe 4 includes, for example, those shown in FIG. 4A and FIG. 5A, and receives ultrasonic waves reflected from the transducer 36 and the front edge 2 that transmit ultrasonic waves. Receiver (not shown). Transmission / reception of signals between the ultrasonic probe 4 and the flaw detection circuit 31 is performed via a cable 37. Then, the flaw detection circuit 31 outputs flaw detection inspection information to the printer 33 for each predetermined scanning position information, and the printer 33 prints out the information.
[0019]
Next, when the ultrasonic probe 4 is directly brought into contact with the front edge portion 2 without interposing the resin contact member 3 and scanned, the resin contact member 3 is moved to the ultrasonic probe 4 and the front edge portion. 2 and a comparative example of the result of flaw detection of the front edge 2 by interposing a filling material that fills the gap between the front edge 2 and the resin contact member 3.
[0020]
FIG. 4A shows a case where the ultrasonic probe 4 is directly brought into contact with the front edge portion 2 without the resin contact member 3 interposed, and flaw detection scanning is performed, and FIG. 4B shows the flaw detection result. It is a graph.
[0021]
Here, it is assumed that a defect 38 exists on the surface of the front edge portion 2 penetrating the cooling hole, and a defect 39 exists on the peripheral wall of the internal cooling hole 5. When scanning with the ultrasonic probe 4 in direct contact with the front edge portion 2, the surface of the front edge portion 2 is greatly roughened, so that the scanning is not performed smoothly, and the ultrasonic probe 4 vibrates during scanning. And the presence of a gap makes the incidence of ultrasonic waves unstable, and the echo 40 from the surface of the leading edge 2 is large as shown in FIG. Is buried in the echo 40 from the surface, and it cannot be determined whether or not the defect 38 exists on the surface. In FIG. 4B, 41 is an ultrasonic wave transmission output, and 42 is an echo based on a defect 39 existing inside.
[0022]
FIG. 5 (a) shows that the resin contact member 3 is interposed between the front edge portion 2 penetrating the cooling hole and the ultrasonic probe 4, and between the front edge portion 2 and the resin contact member 3. FIG. 5B is a graph showing the flaw detection result when a flaw detection scan is performed on the front edge portion 2 with a filler filling the gap therebetween. In FIG. 5B, a filling material that fills the gap between the ultrasonic probe 4 and the resin contact member 3 is also interposed on the surface of the resin contact member 3 with which the ultrasonic probe 4 is in sliding contact. The obtained flaw detection results are shown.
[0023]
According to the present invention, since the ultrasonic probe 4 does not vibrate greatly during scanning and there is almost no gap, the leading edge 2 has a large possibility that a cooling hole is penetrated and a defect has a serious result. The echo 40 from the surface based on the surface roughness or the like is small, and the echo 43 based on the defect 38 inside the turbine blade is not buried in the echo 40. Reference numeral 44 denotes an echo reflected at the interface between the resin contact member 3 and the ultrasonic probe 4.
[0024]
【The invention's effect】
According to the flaw detection method and flaw detection device for the surface and inside of the turbine blade leading edge according to the present invention, it is possible to perform flaw detection inspection without being affected by the surface roughness of the turbine blade leading edge surface caused by using the actual machine. Therefore, there is an effect that the surface of the leading edge portion of the turbine blade having a complicated shape of the turbine blade and the inside thereof can be inspected accurately and quickly.
[Brief description of the drawings]
FIG. 1 is a side view of a surface of a turbine blade leading edge and an internal flaw detector according to the present invention.
FIG. 2 is a top view of the surface of a turbine blade leading edge and an internal flaw detector according to the present invention.
FIG. 3 is a circuit diagram of the flaw detection apparatus on the surface and inside of the turbine blade leading edge according to the present invention.
FIG. 4 is an explanatory diagram of a case where flaw detection scanning is performed with an ultrasonic probe in direct contact with the blade surface without interposing a resin contact member. FIG. The conceptual diagram which carries out a flaw detection scan by making an acoustic probe contact the blade surface is shown, and (b) is a graph which shows the flaw detection result.
FIG. 5 is an explanatory diagram for explaining the operation of a turbine blade surface and an internal flaw detector according to the present invention, wherein (a) shows a resin contact member between the blade surface and an ultrasonic probe; A conceptual diagram of performing flaw detection scanning on the blade surface by interposing a filling material filling the gap between the front edge portion having the cooling hole and the resin contact member is shown, and (b) shows the flaw detection result. It is a graph.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Turbine blade 2 ... Leading edge part 3 ... Resin contact member 4 ... Ultrasonic probe 5 ... Turbine blade cooling hole 6 ... Blade root part 7 ... Tip part

Claims (3)

前縁部に翼根部から先端部に亘って貫設された冷却孔を有し、ロータに固定されるタービン翼の前縁部を超音波探触子により探傷する方法であって、
前記タービン翼の翼根部から前記先端部に至る形状に沿う形状を有し超音波を伝播可能な樹脂製接触部材を前記タービン翼面に対し前記翼根部から前記先端部に亘って密着させ、超音波探触子を前記樹脂製接触部材に密着させて前記翼根部と前記先端部との間で走査することにより、タービン翼前縁部の表面及び内部を探傷することを特徴とするタービン翼前縁部の探傷方法。
It has a cooling hole penetrating from the blade root part to the tip part at the leading edge part, and is a method of flaw-detecting the leading edge part of the turbine blade fixed to the rotor with an ultrasonic probe,
A resin contact member having a shape extending from the blade root portion of the turbine blade to the tip portion and capable of propagating ultrasonic waves is brought into close contact with the turbine blade surface from the blade root portion to the tip portion. The front surface of the turbine blade is flaw-detected by scanning the probe between the blade root portion and the tip portion while bringing the acoustic probe into close contact with the resin contact member. Edge inspection method.
縁部に翼根部から先端部に亘って貫設された冷却孔を有するタービン翼の前縁部を超音波探触子により探傷する装置であって、
前記タービン翼の前記前縁部の前記翼根部から先端部の形状に沿って密着せしめ超音波を伝播可能な樹脂製接触部材と、
前記樹脂製接触部材に密着せしめて前記翼根部と前記先端部との間で往復動可能に走査する超音波探触子と、
前記樹脂製接触部材を前記タービン翼の前記前縁部に密着して支持させるための支持体と、
前記支持体に設けられ、かつ前記超音波探触子を前記翼根部と前記先端部との間で往復動させる往復動機構と、
によって構成されることを特徴とするタービン翼前縁部の表面及び内部の探傷装置。
The leading edge of the turbine blade to have a formed through cooling holes over the distal portion from the blade root to the leading edge to a device for testing by the ultrasonic probe,
A resin contact member capable of propagating ultrasonic waves by adhering along the shape of the tip from the blade root of the front edge of the turbine blade;
An ultrasonic probe that closely contacts the resin contact member and reciprocally scans between the blade root and the tip;
A support for closely supporting the resin contact member to the front edge of the turbine blade; and
A reciprocating mechanism provided on the support and reciprocating the ultrasonic probe between the blade root and the tip;
The surface of the front edge part of the turbine blade and the internal flaw detection device characterized by comprising.
前記タービン翼の前記翼根部から前記先端部に向かって延びる前記冷却孔に嵌合される嵌合ピンと、前記タービン翼をその厚さ方向に両側から挟持するクランプ機構とを有する前記支持体と、を備え、前記嵌合ピンと前記クランプ機構とにより前記支持体が前記タービン翼に着脱可能に固定されてなることを特徴とする請求項2に記載のタービン翼前縁部の表面及び内部の探傷装置。  The support body having a fitting pin fitted into the cooling hole extending from the blade root portion of the turbine blade toward the tip portion, and a clamp mechanism for clamping the turbine blade from both sides in the thickness direction; The surface of the front edge part of the turbine blade and an internal flaw detector according to claim 2, wherein the support body is detachably fixed to the turbine blade by the fitting pin and the clamp mechanism. .
JP09767998A 1998-04-09 1998-04-09 Method and apparatus for detecting flaws on the surface and inside of the leading edge of a turbine blade Expired - Fee Related JP3754555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09767998A JP3754555B2 (en) 1998-04-09 1998-04-09 Method and apparatus for detecting flaws on the surface and inside of the leading edge of a turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09767998A JP3754555B2 (en) 1998-04-09 1998-04-09 Method and apparatus for detecting flaws on the surface and inside of the leading edge of a turbine blade

Publications (2)

Publication Number Publication Date
JPH11295278A JPH11295278A (en) 1999-10-29
JP3754555B2 true JP3754555B2 (en) 2006-03-15

Family

ID=14198690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09767998A Expired - Fee Related JP3754555B2 (en) 1998-04-09 1998-04-09 Method and apparatus for detecting flaws on the surface and inside of the leading edge of a turbine blade

Country Status (1)

Country Link
JP (1) JP3754555B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215936A (en) * 2007-03-01 2008-09-18 Tokyo Electric Power Co Inc:The Ultrasonic flaw detection method for blade of gas turbine
KR102187106B1 (en) * 2019-10-25 2020-12-04 주식회사 파워인스 A Test Device For Titanium Turbine blade
KR102280126B1 (en) * 2019-11-15 2021-07-21 주식회사 파워인스 Apparatus and method for ultrasonic signal evaluation in the turbine blade using artificial intelligence
CN111855682B (en) * 2020-06-28 2022-12-13 汪俊 Automatic detection system for surface defects of turbine blades of aero-engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108659A (en) * 1980-12-26 1982-07-06 Komatsu Ltd Ultrasonic wave flaw detecting and checking method
JPH01142456A (en) * 1987-11-28 1989-06-05 Nkk Corp Ultrasonic medium
JPH09133664A (en) * 1995-11-07 1997-05-20 Toyota Motor Corp Ultrasonic flaw detection method
JP3128196B2 (en) * 1996-01-08 2001-01-29 三菱重工業株式会社 Ultrasonic flaw detector for turbine blades

Also Published As

Publication number Publication date
JPH11295278A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
US6089095A (en) Method and apparatus for nondestructive inspection and defect detection in packaged integrated circuits
US5275052A (en) Tenon inspection systems and methods
JP2613654B2 (en) Ultrasonic testing
CN1261760C (en) Ultrasonic imaging non-destructive detection method and detection system for appliance switch contact bonding quality
KR102485090B1 (en) Position control device, position control method, and ultrasonic image system
JP3754555B2 (en) Method and apparatus for detecting flaws on the surface and inside of the leading edge of a turbine blade
JPH112627A (en) Equipment and method for inspecting spot welding
JPH07128314A (en) Ultrasonic flaw detecting method for socket welding coupling
Gieske et al. Nondestructive evaluation (NDE) of composite/metal bond interface of a wind turbine blade uskng an acousto-ultrasonic technique
JPH09145696A (en) Method and apparatus for measuring depth of flaw
US5046363A (en) Apparatus for rapid non-destructive measurement of die attach quality in packaged integrated circuits
US4380929A (en) Method and apparatus for ultrasonic detection of near-surface discontinuities
JP3745628B2 (en) Welded part inspection method and ultrasonic flaw detector
JP3212541B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
US3883879A (en) Portable pantograph c-scan recording flaw detecting system
JP4271898B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
GB2292610A (en) Crack detection in a sheet of material around a fastener hole
KR101654298B1 (en) Realtime monitoring system by ultrasonography
CN215910398U (en) Water logging formula phased array device of detecting a flaw
JPH01299456A (en) Ultrasonic wave flaw detector
JP2020159884A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
CN218099014U (en) Ultrasonic detection device
JPH08136518A (en) Ultrasonic inspection equipment
CN114397368B (en) Phased array ultrasonic detection system and method
JP2001324484A (en) Ultrasonic flaw detection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees