[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3748427B2 - Rectangular channel built-in cooling panel and method of manufacturing the same - Google Patents

Rectangular channel built-in cooling panel and method of manufacturing the same Download PDF

Info

Publication number
JP3748427B2
JP3748427B2 JP2002318287A JP2002318287A JP3748427B2 JP 3748427 B2 JP3748427 B2 JP 3748427B2 JP 2002318287 A JP2002318287 A JP 2002318287A JP 2002318287 A JP2002318287 A JP 2002318287A JP 3748427 B2 JP3748427 B2 JP 3748427B2
Authority
JP
Japan
Prior art keywords
rectangular tube
rectangular
cooling panel
flat plates
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002318287A
Other languages
Japanese (ja)
Other versions
JP2004148387A (en
Inventor
真一 佐藤
清治 森
敏雄 大崎
憲介 毛利
英夫 伊勢
敏勝 石田
恭信 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2002318287A priority Critical patent/JP3748427B2/en
Publication of JP2004148387A publication Critical patent/JP2004148387A/en
Application granted granted Critical
Publication of JP3748427B2 publication Critical patent/JP3748427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、ブランケット、リミター、ダイバータなどの核融合炉の炉内構造物の高熱負荷機器を冷却するための矩形流路内蔵型冷却パネルの製作方法に関するもので、殊に矩形流路内蔵型冷却パネルを構成する冷却媒体の流路となる矩形管とこの矩形管を囲む平板とを熱間静水圧加圧装置を用いて接合するについて、接合される矩形流路内蔵型冷却パネル製品の変形を抑制し、歩留まりの良い製品が製作できるようにすることである。
【0002】
【従来の技術】
核融合炉の炉内構造物である高熱負荷機器、例えばブランケットやダイバータなどには、冷却用パネルが備え付けられている。この冷却用のパネルは、ブランケットを例にすると全体としての幅1.5m、厚さが約15mm、長さが1mのものであり、矩形断面の中空部材あるいは円形断面の中空部材を複数に並べ、この中空部材をプレート状シール材で囲んで、中空部材同士、中空部材とプレート状シール材、プレート状シール材同士を接合することによって作られるものである。
この矩形断面あるいは円形断面の中空部材は、水などの冷却媒体を流す流路として利用されるものである。従来この中空部材、プレート状シール材の接合は、熱間静水圧加圧処理により行われることが良く知られている。
この冷却パネルの製作は、図5乃至図7で示すような、例えば、特公平5−21670号公報に記載するようにして行われる。
即ち、このものは、図5に示すように予め成形された矩形断面の複数の中空部材の側面を互いに接触させて並列に並べ、この並べられた中空部材の上下面と両側面とを4枚のプレート状シール材で囲んで断面が矩形形状になるようにアッセンブリし、このプレート状シール材同士の各接触部および中空部材の長手方向の端面とプレート状シール材との接触部の周囲をTIG溶接などでシール溶接して気密シールを行った後、熱間静水圧加圧装置内で各プレート状シール材で囲まれた部分を真空状態にして部材全体を、即ち、熱間静水圧加圧装置内をアルゴンなど不活性ガスの雰囲気にして、ほぼ1000℃程度の温度まで昇温すると共に1500〜2000気圧になるまで圧力を加えることによって、プレート状シール材や中空部材の全ての接触面を冶金的(固相接合)に接合させるものである。
ところが、このような冷却用パネルの製作方法では、図7に示すように両側のプレート状シール材近傍に配置されている中空部材の2乃至3個程度のものが熱間静水圧加圧処理の際に大きく変形を起こしてしまって製品にならず、このため、この変形した両側の中空部材を最終的には除去しなければならなかった。このために、多くの手間を掛けて成形した上記両側の中空部材を、切断除去して廃棄することになるので、材料の面でも、中空部材の加工工数の面でも非常な無駄を生じ、このために、上記冷却用パネルの生産コストが高くなるという問題があった。
【0003】
【刊行物】
【特許文献1】
特公平5−21670号
【0004】
【解決しようとする課題】
ところで、断面が矩形の中空部材の隅部に亀裂が生じにくいように丸みが形成されていることから、この丸みを有する中空部材がプレート状シール材で囲んだ際に、この丸み部分とプレート状シール材との間に空間(隙間部)ができ(図6参照)、熱間静水圧加圧装置による加圧処理の際に、中空部材が、加熱温度が上昇し、加圧圧力が上昇するに伴って、上記空間を埋めるように膨らむ。そしてこの膨らみにより上下のプレート状シール材に外方への力が作用して中空部材だけが膨らんで、上記の両側の中空部材の変形は生じるものと考えられている。つまり、上下プレート状シール材と両側プレート状シール材との突き合わせ接触部の溶接金属が上下プレートシール材に対して延性が低いので、この溶接金属の存在により上下プレート状シール材の膨らみ量が両側プレート状シール材に伝わることがなく、図7に示すような両側の中空部材が変形すると予想されている。
そこで、この発明は、上記の問題点を解消するべくなされたもので、核融合炉の炉内構造物などの高熱負荷機器を冷却する矩形流路内蔵型冷却パネルを熱間静水圧加圧処理によって製作するについて、複数の矩形管を互いに接触させて並列に並べた矩形管ブロックの両側に配置される矩形管が変形するのを抑制するために、両側に配置される矩形管とこれら矩形管の側部に配置される平板(側プレート状シール材に相当)との間の構造を工夫することをその課題とするものである。
【0005】
【課題解決のために講じた手段】
【解決手段1】
上記課題解決のために講じた手段1は、核融合炉の炉内構造物などの高熱負荷機器を冷却するための矩形流路内蔵型冷却パネルの製作方法について、冷却媒体の流路となる複数の矩形管を互いに接触させて並列に並べて矩形管のブロックを形成し、当該ブロックの上下面と両側面とを4枚の平板で囲い、平板同士の突き合わせ接触部および矩形管の長手方向両端部と平板との接触部の周囲をTIG溶接などでシール溶接して気密シールを行った後、各シール材で囲まれた部分を真空状態にして部材全体をアルゴンガスなどの不活性ガス雰囲気の中で熱間静水圧加圧処理することを前提として、上記矩形管ブロックの両側部に配置される矩形管と両側に配置される平板との間に、中実部材を配置して熱間静水圧加圧処理により矩形流路内蔵型冷却パネルを製作することである。
【0006】
【作用】
上記矩形管ブロックの両側部に配置される矩形管とこれら矩形管に対向して設けられる側部平板との間に中実部材を配置したことにより、左右両端の中実部材の角部が高内圧力によって、外方に変形して、上下の平板の端部を内側から押さえることはない。したがって、高外圧による上下両平板の端部の中央部と異なる形状に全体が変形することはない。
したがって、両端の中実部材の一部を切除することによって、上下面が平坦な矩形流路内蔵型冷却パネルが形成され、このとき切除されるのは、高価な矩形管ではなく、廉価な中実部材の一部にすぎないから、矩形流路内蔵型冷却パネルの製作コストが大幅に低減される。
【0007】
【解決手段2】
上記矩形管ブロックを形成する両側に配置される矩形管とそれら矩形管の側部に配置される平板との間の中実部材を、上記矩形管の外形と同外形寸法にしたことである。
【0008】
【作用】
上記課題解決のために講じた手段2は、上記矩形管ブロックの両側に配置される矩形管とこれら矩形管に対向して配置される側部の平板との間に矩形管外形と同寸法外形の中実部材を配置したことにより、平板同士の突き合わせ接触部の溶接金属部分と両側部の矩形管との間が矩形管1個分の幅に相当する長さ分離れるために、両側部の矩形管が熱間静水圧加圧処理の際に、上記溶接金属からの影響を受けることがなくなって拡管されるので、両側部の矩形管の過度な変形が抑制される。また、中実部材の外形は矩形管とほぼ同型のものにしたことにより、冷却パネルの組立作業が簡便化される。
【0009】
【解決手段3】
上記課題解決のために講じた手段3は、冷却媒体の流路となる複数の矩形管を互いに接触させて並列に並べて矩形管ブロックを形成し、当該矩形管ブロックの上下面と両側面とを平板で囲い、平板同士の各接触部と、矩形管の長手方向両端部と上下平板との接触部の周囲をTIG溶接などでシール溶接して気密シールを行った後、各シール材で囲まれた部分を真空状態にして部材全体をアルゴンガスなどの不活性ガス雰囲気の中で熱間静水圧加圧処理することを前提として、
上記矩形管ブロックの上面又下面と両側面を囲む上下の平板を、その側板部に鍔のついたコの字形状の板部材に成形し、
当該コの字形状の上下の板部材同士の上記側板部を、隙間を介して突き合わせた状態で上記矩形管ブロックを囲い、この突き合わされた側板部に設けた鍔部先端を互いにシール溶接すると共に、上記矩形管の長手方向両端部と板部材の接触部をシール溶接して熱間静水圧加圧処理して接合させ、
上記側板部に設けた鍔部を切除して、矩形流路内臓型冷却パネルの製作をする、ことである。
【0010】
【作用】
上記矩形管ブロックを鍔付コの字形状に成形した板部材の側板部を隙間を介して突き合わせて囲い、側板部に設けた鍔の先端を互いに溶接するようにしたことで、熱間静水圧加圧処理における高外圧によって、上下の板部材の両端部が上記側板部間の上記隙間を減少させながら中央部分と同様に変形するので、その上面が平坦に保持され、左右両端部の矩形管が異常に変形されることはない。
そして、熱間静水圧加圧処理後に鍔部分を切断するだけで、矩形流路内蔵型冷却パネルに仕上げられ、材料の無駄、作業工数の無駄が著しく低減される。
【0011】
【実施の形態】
次に、この発明の核融合炉の炉内構造物である高熱負荷機器、例えばブランケットやダイバータを冷却するのに用いる矩形流路内蔵型冷却パネルの製作方法について図1〜図4を参照しつつ、詳細に説明する。
この実施の形態は、図5〜図7に示す従来の冷却用の冷却パネルの製作方法と基本的には類似するもので、その製作方法は次のとおりである。
この実施形態に用いるステンレス製の矩形管1は、4隅部に集中応力を受けた際に亀裂が起こりにくいように丸み部2が成形されており、その矩形管1の長さがほぼ3m、幅がほぼ10〜15mm、高さがほぼ5〜8mm、肉厚がほぼ1mmに形成されたものである。また、中実部材3は、矩形管1とほぼ同じ外形寸法に成形されている。
上記矩形管1と中実部材3の外表面は、気密性を保つために当然ながら研磨と脱脂とを施した滑らかな表面仕上げ加工がされており、また、矩形管1と中実部材3の外周面を囲む例えば矩形管1や中実部材3と同材質の4枚の平板4, 4aの外表面は、矩形管1や中実部材3と同様に研磨と脱脂がなされた滑らかな表面仕上げ加工がされている。
この加工された複数の矩形管1は、それぞれの側面同士を接触するように並列に並べられて矩形管ブロック5を形成しており、この矩形管ブロック5の両側の矩形管1,1の外側面に、ほぼ同じ外形寸法の中実部材3の側面を接触させた状態で、中実部材3がそれぞれ配置されている。
そして、この矩形管ブロック5と中実部材3とを4枚の平板4、4aで囲み、この上下の平板4の両端部と両側に配置される平板4aの上下端部の突き合わせ面を仮付け溶接することによって、断面が矩形形状で幅が10〜15mmの冷却パネル6を成形する。
次に、上記冷却パネル6は、この冷却パネル6の矩形管1の長手方向の両端部と矩形管1の上下の平板4との接触部、中実部材3,3の長手方向の両端部と上下の平板4との接触部をTIG溶接などによりシール溶接して、接合面の周囲を完全にシールする。その後、接合面間の空隙を脱気して真空状態にし(真空封止)、真空封止された冷却パネル6を、熱間静水圧加圧装置内にセットする(図示略)。冷却パネル6がセットされた状態で、熱間静水圧加圧装置内をアルゴンガスなどの不活性ガス雰囲気にして、温度をほぼ1000℃位まで昇温させると共に、この昇温に追従させて気圧をもほぼ1500〜2000気圧位まで昇圧させて、矩形管1同士の接触部、矩形管1と上下平板4,4との接触部、両側の矩形管1と中実部材3との接触部、中実部材3と上下・両側の平板4,4aとの接触部を拡散接合させる。これによって、図2に示すような矩形流路内蔵型冷却パネルが作製される。
そして、この作製された矩形流路内蔵型冷却パネルは、両側に配置された中実部材3,3の任意の位置を図2に示すような位置から切断除去して最終製品となる。
このように、この発明では、中実部材3,3を矩形管ブロック5の両側端に配置することで、上下・側部の平板4,4aを突き合わせた接触部の溶接金属部分と矩形管ブロック5の両側矩形管1の隅部(角部)の丸み部分とが遠くに離れることになるので、従来技術における隙間s、すなわち、平板4,4a同士の突き合わせ溶接部(角部)と矩形管1,1との隅部間の隙間sがなくなり、したがって、両側端の矩形管1の変形が回避される。
【0012】
ところで、矩形流路内蔵型冷却パネルに用いられる矩形管1は、上記のように、矩形管1,1同士を互いに接触させて並べ、それら接触部を熱間静水圧加圧処理して接合したときに、接合状態の信頼性が高まるように、平らな接触面を持つ矩形形状にしたものが多く用いられる。ところが、矩形管1の4隅部が角形状になっているとその隅部は、核融合炉内の高い熱荷重、内圧荷重、非対称な電磁力負荷などによる過大な応力がかかって亀裂が生じ易くなる。このために、矩形管の角部は、図1に示すように丸み部2が設けられている。
【0013】
次に、この発明の他の実施形態について、図3,図4を参照して説明する。
このものは、上記実施態様のものと同じ方法で製作されるものではあるが、図1のものでは、矩形管1を複数個並列に並べて矩形管ブロック5を形成し、この矩形管ブロック5の両側に配置される矩形管の隣り合わせに中実部材3を並列に並べ、これら矩形管ブロック5と中実部材3とを4枚の平板4,4aで囲んで冷却パネル6を成形したものであり、また、この実施形態では、中実部材を配置しない矩形管7だけを並べて矩形管ブロック7を形成し、この矩形管ブロック7をコの字形状に成形した板部材8で囲んで冷却パネル11を形成している。
即ち、この矩形管ブロック7を形成する矩形管1は、図1の矩形管1と同形状寸法に成形されたもので、その材質も同じ例えばステンレスなどである。
そして、この矩形管ブロック7は、断面が矩形形状になるように、図1に示す平板4,4aの変わりに、肉厚5mmのコの字形状の板部材8で囲むものである。
このコの字形状の板部材8の両側の板部9には、成形の際に鍔10が外方に延設して設けられ、この鍔10同士を突き合わせて上記矩形管ブロック7を囲むようにしたものである。そして、鍔10の突き合わせ端部の接触部、矩形管1の長手方向の両端部とコの字形状の板部材8の長手方向の両端部との接触部を、仮付け溶接して冷却パネル11を形成し、その箇所をTIG溶接などでシール溶接する。このとき、両側の板部9,9の内端面間には0.5〜1mm程度の隙間sが残されている。
その後、接合面間の空隙を脱気して真空状態にし(真空封止)、真空封止された冷却パネル11を、熱間静水圧加圧装置内にセットする(図示略)。そして、上記の実施形態のものと同様に、冷却パネル11は、真空状態にしたアルゴンガスの不活性ガス雰囲気の熱間静水圧加圧装置(図示省略)で、温度をほぼ1000℃位まで昇温させ、この昇温に追従させて気圧をもほぼ1500〜2000気圧位まで昇圧させて、接合面を接合させて矩形流路内蔵型冷却パネルを作製する。
なお、上記の昇温、加圧の初期において、板部材8の左右両端部が、上記隙間sを縮小させながら内側に変形して、外端部の矩形管1の角を押さえるので、当該角がその外側の隙間s(図6における隙間s)に向かって変形することが防止される。
そして、製作された矩形流路内蔵型冷却パネルの、鍔10部分を切断除去して最終製品に仕上げられる。
また、この実施形態の場合は、上記のように矩形管ブロック7を囲む際に、両側に鍔10を一体成形したコの字形状の板部材8を用い、突き合わされる鍔10の外側に位置するところをTIG溶接などで溶接して仮組を行うようにしたので、その溶接部の溶接金属から両側に配置される矩形管1は遠く離れることになる。
したがって、溶接金属の延性が低くても、熱間静水圧加圧処理における矩形管ブロック7の両側の矩形管の板部材8との均質な接合に影響を与えることはない。
【0014】
【効果】
上記矩形管ブロックの両側部に配置される各々の矩形管とこの矩形管に対向して設けられる矩形管ブロックを囲む側部平板との間に中実部材を配置したことによって、上記矩形管ブロックを囲む上下平板の両側端部と側部平板の上下端部との接合部の溶接金属部と、上記両側部の矩形管との間が中実部材の幅分だけ離されることになり、熱間静水圧加圧処理される際に両側端部に配置された中実部材は外側に膨らむことはないから、上下平板の両側端部が高外圧によって平坦に変形され、上下平板が平坦に保たれる。したがって、上記中実部材の一部が切除されてその残部が左右端部部材となった矩形流路内蔵型冷却パネルが製作される。そして、中実部材の製作コストは矩形管の製作コストに比して廉価であるので、矩形管を無駄にしない分だけ、矩形流路内蔵型冷却パネルの生産コストが低減される。
また、複数の矩形管をそれぞれ接触させて並列に並べた矩形管ブロックを、鍔付コの字形状の板部材同士を隙間を介して突き合わせて囲い、この鍔同士の突き合わせ端部をTIG溶接などにより接合したことで、上下平板の両側端部が、中央部分と同様に、熱間静水圧加圧処理における高外圧によってスムーズに変形するので、上下平板が全体として平坦に保たれる。したがって、左右両側端に配置された矩形管が異常に変形することはない。そして、鍔部分を切断するだけで、最終の矩形流路内蔵型冷却パネル製品に仕上げられるので、フランジの切断工数や除去される材料が僅かであるので、それだけコストが低減される。
【図面の簡単な説明】
【図1】は、この発明に用いられる、矩形管ブロックとその両側に中実部材を配置して平板で囲んで作られた冷却パネルの概略断面図である。
【図2】は、図1の冷却パネルから作られた矩形流路内蔵型冷却パネルの概略断面図である。
【図3】は、この発明の他の実施形態のもので、矩形管ブロックを鍔付コの字状形状の板部材同士を突き合わせて形成した冷却パネルの概略断面図である。
【図4】は、図3の冷却パネルから作られた矩形流路内蔵型冷却パネルの概略断面図である。
【図5】は、従来の冷却用パネルを製作するための複数の中空部材をプレート状シール材で囲み作られた冷却パネルの概略斜視図である。
【図6】は、図5の冷却パネルを構成する中空部材の端部とプレート状シール材との接触部、中空部材同士の突き合わせ接触部を脱気してTIG溶接によりシール溶接した状態を示す概略斜視図である。
【図7】は、図6の冷却パネルから作られた冷却用のパネルの概略断面図である。
【符号の説明】
1:矩形管
2:丸み部
3:中実部材
4:平板
5:矩形管ブロック
6:冷却パネル
7:矩形管ブロック
8:コの字形状に成形した板部材
9:板部
10:鍔
11:冷却パネル
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a rectangular channel built-in type cooling panel for cooling a high heat load device such as a blanket, a limiter, a diverter, etc. Regarding the joining of the rectangular tube that forms the flow path of the cooling medium constituting the panel and the flat plate surrounding the rectangular tube using a hot isostatic pressurizing device, It is to be able to control and manufacture products with good yield.
[0002]
[Prior art]
High heat load devices, such as blankets and diverters, which are in-core structures of fusion reactors, are equipped with cooling panels. This cooling panel has an overall width of 1.5 m, a thickness of about 15 mm, and a length of 1 m, taking a blanket as an example. The hollow member is surrounded by a plate-shaped sealing material, and the hollow members, the hollow member and the plate-shaped sealing material, and the plate-shaped sealing materials are joined to each other.
The hollow member having the rectangular cross section or the circular cross section is used as a flow path for flowing a cooling medium such as water. Conventionally, it is well known that the hollow member and the plate-shaped sealing material are joined by hot isostatic pressing.
The cooling panel is manufactured as described in, for example, Japanese Patent Publication No. 5-21670 as shown in FIGS.
That is, as shown in FIG. 5, the side surfaces of a plurality of hollow members having a rectangular cross section formed in advance are brought into contact with each other and arranged in parallel, and the upper and lower surfaces and both side surfaces of the arranged hollow members are arranged in four pieces. The plate-shaped sealing material is assembled so as to have a rectangular cross-section, and the contact portions between the plate-shaped sealing materials and the periphery of the contact portion between the longitudinal end surface of the hollow member and the plate-shaped sealing material are TIG. After performing hermetic sealing by seal welding by welding, etc., the part surrounded by each plate-shaped sealing material in the hot isostatic pressing device is evacuated to the whole member, that is, hot isostatic pressing By making the inside of the apparatus an atmosphere of an inert gas such as argon and raising the temperature to about 1000 ° C. and applying pressure to 1500 to 2000 atm, all of the plate-shaped sealing material and the hollow member It is intended to be joined to the metallurgical (solid phase bonding) the Sawamen.
However, in such a method for manufacturing a cooling panel, as shown in FIG. 7, about 2 to 3 hollow members arranged in the vicinity of the plate-shaped sealing materials on both sides are subjected to hot isostatic pressing. At the same time, a large deformation occurred and the product did not become a product. For this reason, the deformed hollow members on both sides had to be finally removed. For this reason, the hollow members on both sides formed with much effort are cut off and discarded, resulting in a great waste both in terms of materials and processing man-hours of the hollow members. Therefore, there is a problem that the production cost of the cooling panel is increased.
[0003]
【Publications】
[Patent Document 1]
JP-B-5-21670 [0004]
[Problems to be solved]
By the way, since roundness is formed so that cracks are unlikely to occur at the corners of the hollow member having a rectangular cross section, when the round hollow member is surrounded by the plate-shaped sealing material, the rounded portion and the plate shape A space (gap) is formed between the sealing material (see FIG. 6), and the heating temperature of the hollow member rises and the pressurization pressure rises during the pressurizing process by the hot isostatic press. Along with this, it swells to fill the space. And it is thought that the outward force acts on the upper and lower plate-shaped sealing materials by this swelling, and only the hollow member is swollen, and the hollow members on both sides are deformed. That is, the weld metal at the butt contact portion between the upper and lower plate-shaped sealing materials and the both-side plate-shaped sealing materials has low ductility with respect to the upper and lower plate sealing materials. It is expected that the hollow members on both sides as shown in FIG. 7 are deformed without being transmitted to the plate-shaped sealing material.
Accordingly, the present invention has been made to solve the above-described problems, and a hot-water isostatic pressurizing process is performed on a rectangular channel built-in type cooling panel for cooling a high heat load device such as a reactor internal structure of a nuclear fusion reactor. In order to suppress the deformation of the rectangular tubes arranged on both sides of the rectangular tube block in which a plurality of rectangular tubes are brought into contact with each other in order to be deformed, the rectangular tubes arranged on both sides and these rectangular tubes The problem is to devise a structure between a flat plate (corresponding to a side plate-shaped sealing material) disposed on the side of the plate.
[0005]
[Measures taken to solve the problem]
[Solution 1]
Means 1 taken to solve the above-described problem is a plurality of methods for producing a cooling channel with a built-in rectangular channel for cooling a high heat load device such as a reactor internal structure of a nuclear fusion reactor. The rectangular tubes are brought into contact with each other and arranged in parallel to form a block of the rectangular tube, and the upper and lower surfaces and both side surfaces of the block are surrounded by four flat plates, the butt contact portion between the flat plates and both longitudinal ends of the rectangular tube After sealing the periphery of the contact area between the plate and the flat plate by TIG welding or the like and performing hermetic sealing, the part surrounded by each sealing material is evacuated and the entire member is placed in an inert gas atmosphere such as argon gas. Assuming that the hot isostatic pressing process is performed, a solid member is disposed between the rectangular tube disposed on both sides of the rectangular tube block and the flat plate disposed on both sides. Built-in rectangular channel cooling by pressure treatment It is to fabricate the panel.
[0006]
[Action]
By arranging the solid members between the rectangular tubes arranged on both sides of the rectangular tube block and the side plates provided facing these rectangular tubes, the corners of the solid members on the left and right ends are raised. Due to the internal pressure, it does not deform outward and does not press the ends of the upper and lower flat plates from the inside. Therefore, the whole is not deformed into a shape different from the central portion of the ends of the upper and lower flat plates due to the high external pressure.
Accordingly, a part of the solid member at both ends is cut to form a rectangular channel built-in cooling panel with flat upper and lower surfaces. At this time, it is not an expensive rectangular tube but an inexpensive medium. Since it is only a part of the actual member, the manufacturing cost of the rectangular channel built-in cooling panel is greatly reduced.
[0007]
[Solution 2]
The solid members between the rectangular tubes arranged on both sides forming the rectangular tube block and the flat plates arranged on the sides of the rectangular tubes are made to have the same outer dimensions as the outer shapes of the rectangular tubes.
[0008]
[Action]
Means 2 taken to solve the above problem is that the outer shape of the rectangular tube is the same size as that of the rectangular tube between the rectangular tube arranged on both sides of the rectangular tube block and the flat plate on the side portion opposed to the rectangular tube. Since the solid member is disposed, the distance between the weld metal portion of the butt contact portion between the flat plates and the rectangular tube on both sides is equivalent to the width of one rectangular tube. Since the rectangular tube is expanded without being affected by the weld metal during the hot isostatic pressing process, excessive deformation of the rectangular tubes on both sides is suppressed. In addition, since the outer shape of the solid member is substantially the same as that of the rectangular tube, the assembly operation of the cooling panel is simplified.
[0009]
[Solution 3]
The means 3 taken for solving the above problem is to form a rectangular tube block by bringing a plurality of rectangular tubes that serve as cooling medium flow paths into contact with each other and arranging them in parallel. Enclose with flat plates, seal the surroundings of the contact portions between the flat plates and the contact portions between the longitudinal ends of the rectangular tube and the upper and lower flat plates by TIG welding etc., and then enclose with each sealing material Assuming that the entire part is vacuumed and subjected to hot isostatic pressing in an inert gas atmosphere such as argon gas,
The upper and lower flat plates surrounding the upper and lower surfaces and both side surfaces of the rectangular tube block are formed into a U-shaped plate member with a hook on the side plate portion,
While enclosing the rectangular tube block in a state where the side plate portions of the U-shaped upper and lower plate members are abutted with each other through a gap, the flange tips provided on the abutted side plate portions are sealed and welded together. , Both the longitudinal ends of the rectangular tube and the contact portion of the plate member are sealed and bonded by hot isostatic pressing,
The flange part provided in the said side-plate part is cut off, and a rectangular flow path built-in type cooling panel is manufactured.
[0010]
[Action]
The side plate portion of the plate member formed into a rectangular U-shaped shape with the flange is abutted and surrounded through a gap, and the tips of the flanges provided on the side plate portion are welded to each other so that the hot isostatic pressure Due to the high external pressure in the pressurizing process, both ends of the upper and lower plate members are deformed in the same manner as the central portion while reducing the gap between the side plate portions. Is not deformed abnormally.
Then, after cutting the flange portion after the hot isostatic pressing process, a rectangular channel built-in cooling panel is finished, and waste of materials and work man-hours are significantly reduced.
[0011]
Embodiment
Next, high-heat-load equipment is a reactor internal component of a fusion reactor of the present invention, for example with reference to FIGS about manufacturing method of the rectangular channel embedded cooling panel used to cool the blanket and divertor This will be described in detail.
This embodiment is basically similar to the conventional cooling panel manufacturing method shown in FIGS. 5 to 7, and the manufacturing method is as follows.
The rectangular tube 1 made of stainless steel used in this embodiment has a rounded portion 2 formed so that cracks are unlikely to occur when subjected to concentrated stress at the four corners, and the length of the rectangular tube 1 is approximately 3 m, The width is approximately 10 to 15 mm, the height is approximately 5 to 8 mm, and the wall thickness is approximately 1 mm. Further, the solid member 3 is formed to have substantially the same outer dimensions as the rectangular tube 1.
The outer surfaces of the rectangular tube 1 and the solid member 3 are naturally subjected to a smooth surface finishing process that is polished and degreased in order to maintain airtightness. For example, the outer surfaces of the four flat plates 4 , 4 a made of the same material as the rectangular tube 1 and the solid member 3 surrounding the outer peripheral surface are polished and degreased similarly to the rectangular tube 1 and the solid member 3. Has been processed.
A plurality of rectangular pipes 1 this to processed is arranged in parallel so as to contact the respective side faces forms a rectangular tube block 5, the both sides of the rectangular tube block 5 of the rectangular tube 1,1 the outer surface, being in contact with the side surface of the solid member 3 in substantially the same external dimensions, solid member 3 is arranged.
Then, the rectangular tube block 5 and the solid member 3 are surrounded by four flat plates 4 and 4a, and the butted surfaces of the upper and lower ends of the flat plate 4a disposed on both sides and both sides of the upper and lower flat plates 4 are temporarily attached. By welding, the cooling panel 6 having a rectangular cross section and a width of 10 to 15 mm is formed.
Next, the cooling panel 6 includes a contact portion between the longitudinal end portions of the rectangular tube 1 of the cooling panel 6 and the upper and lower flat plates 4 of the rectangular tube 1, and both longitudinal end portions of the solid members 3 and 3. The contact portion with the upper and lower flat plates 4 is sealed and welded by TIG welding or the like to completely seal the periphery of the joint surface. Thereafter, the gap between the joint surfaces is degassed to be in a vacuum state (vacuum sealing), and the vacuum-sealed cooling panel 6 is set in a hot isostatic press (not shown). With the cooling panel 6 set, the hot isostatic pressurizing apparatus is placed in an inert gas atmosphere such as argon gas, and the temperature is raised to about 1000 ° C. Is increased to approximately 1500 to 2000 atmospheres, the contact portion between the rectangular tubes 1, the contact portion between the rectangular tube 1 and the upper and lower flat plates 4, 4, the contact portion between the rectangular tube 1 on both sides and the solid member 3, The contact portions between the solid member 3 and the upper and lower flat plates 4 and 4a are diffusion bonded. Thus, a rectangular channel built-in cooling panel as shown in FIG. 2 is produced.
The manufactured rectangular channel built-in cooling panel is cut into and removed from any position of the solid members 3 and 3 disposed on both sides from the position shown in FIG.
As described above, in the present invention, the solid members 3 and 3 are arranged on both side ends of the rectangular tube block 5, so that the weld metal portion and the rectangular tube block at the contact portion where the upper and lower flat plates 4 and 4a are abutted with each other. 5, the rounded portion of the corner (corner) of the both-side rectangular tube 1 is far away, so the gap s in the prior art, that is, the butt weld (corner) between the flat plates 4 and 4 a and the rectangular tube. The gap s between the corners 1 and 1 is eliminated, and therefore deformation of the rectangular tube 1 at both ends is avoided.
[0012]
By the way, as described above, the rectangular tube 1 used for the rectangular channel built-in cooling panel is arranged by bringing the rectangular tubes 1 and 1 into contact with each other, and joining the contact portions by hot isostatic pressing. Sometimes, a rectangular shape having a flat contact surface is often used so as to improve the reliability of the bonded state. However, if the four corners of the rectangular tube 1 are square, the corners are cracked due to excessive stress due to high thermal load, internal pressure load, asymmetric electromagnetic force load, etc. in the fusion reactor. It becomes easy. For this purpose, a rounded portion 2 is provided at the corner of the rectangular tube as shown in FIG.
[0013]
Next, another embodiment of the present invention will be described with reference to FIGS.
This is manufactured by the same method as that of the above embodiment, but in the case of FIG. 1, a plurality of rectangular tubes 1 are arranged in parallel to form a rectangular tube block 5, and the rectangular tube block 5 The solid members 3 are arranged in parallel next to the rectangular tubes arranged on both sides, and the rectangular tube block 5 and the solid member 3 are surrounded by four flat plates 4 and 4a to form the cooling panel 6. In this embodiment, the rectangular tube blocks 7 are formed by arranging only the rectangular tubes 7 in which no solid member is arranged, and the rectangular tube block 7 is surrounded by a plate member 8 formed in a U-shape, thereby cooling the panel 11. Is forming.
That is, the rectangular tube 1 forming the rectangular tube block 7 is formed in the same shape and dimensions as the rectangular tube 1 of FIG. 1, and the material thereof is, for example, stainless steel.
The rectangular tube block 7 is surrounded by a U-shaped plate member 8 having a thickness of 5 mm instead of the flat plates 4 and 4a shown in FIG.
The plate portions 9 on both sides of the U-shaped plate member 8 are provided with flanges 10 extending outward at the time of molding, so that the flanges 10 face each other so as to surround the rectangular tube block 7. It is a thing. And the contact part of the contact | abutting edge part of the collar 10, the contact part of the both ends of the longitudinal direction of the rectangular tube 1 and the both ends of the longitudinal direction of the U-shaped board member 8 are tack-welded, and the cooling panel 11 is attached. And seal welding the part by TIG welding or the like. At this time, between the inner end surfaces on both sides of the plate portion 9, 9 a gap s 1 of about 0.5~1mm remain.
Thereafter, the gap between the joining surfaces is deaerated to be in a vacuum state (vacuum sealing), and the vacuum-sealed cooling panel 11 is set in a hot isostatic pressure apparatus (not shown). Similarly to the above-described embodiment, the cooling panel 11 is heated to about 1000 ° C. with a hot isostatic press (not shown) in an inert gas atmosphere of argon gas in a vacuum state. The temperature is raised and the temperature is raised to raise the pressure to about 1500 to 2000 atm, and the joining surfaces are joined to produce a rectangular channel built-in cooling panel.
The above Atsushi Nobori, in the initial pressure, left and right ends of the plate member 8, deformed inward while reducing the gap s 1, so hold the corners of the rectangular tube 1 of the outer end portion, the The corner is prevented from being deformed toward the outer gap s (gap s in FIG. 6).
Then, the manufactured rectangular channel built-in type cooling panel is finished by cutting and removing the ridge 10 portion.
In the case of this embodiment, when the rectangular tube block 7 is surrounded as described above, a U-shaped plate member 8 in which the flanges 10 are integrally formed on both sides is used, and the rectangular tube block 7 is positioned on the outside of the flange 10 to be abutted. Since the place to do is welded by TIG welding or the like to perform temporary assembly, the rectangular tubes 1 arranged on both sides from the weld metal of the welded portion are far away.
Therefore, even if the ductility of the weld metal is low, it does not affect the homogeneous joining with the rectangular tube plate members 8 on both sides of the rectangular tube block 7 in the hot isostatic pressing process.
[0014]
【effect】
By disposing a solid member between each rectangular tube disposed on both sides of the rectangular tube block and a side plate surrounding the rectangular tube block provided opposite to the rectangular tube, the rectangular tube block The width of the solid metal member is separated from the weld metal part of the joint between the both side ends of the upper and lower flat plates and the upper and lower ends of the side flat plates, and the rectangular pipes on the both side parts. Since the solid members arranged at both end portions do not bulge outward during the isostatic pressing process, both end portions of the upper and lower flat plates are deformed flat by high external pressure, and the upper and lower flat plates are kept flat. Be drunk. Therefore, a rectangular channel built-in type cooling panel in which a part of the solid member is cut and the remaining part becomes left and right end members is manufactured. Since the production cost of the solid member is lower than the production cost of the rectangular tube, the production cost of the rectangular channel built-in cooling panel is reduced as much as the rectangular tube is not wasted.
Also, rectangular tube blocks arranged in parallel with each other in contact with a plurality of rectangular tubes are surrounded by a pair of flanged U-shaped plate members with a gap interposed therebetween, and the butted ends of the flanges are TIG welded, etc. Since the both ends of the upper and lower flat plates are smoothly deformed by the high external pressure in the hot isostatic pressing process, the upper and lower flat plates are kept flat as a whole. Therefore, the rectangular tubes arranged at the left and right ends are not abnormally deformed. Then, the final rectangular channel built-in cooling panel product can be finished simply by cutting the flange portion, so that the cutting man-hours of the flange and the material to be removed are small, so that the cost is reduced accordingly.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a cooling panel formed in a rectangular tube block and a solid member disposed on both sides of the rectangular tube block and enclosed by a flat plate used in the present invention.
FIG. 2 is a schematic cross-sectional view of a rectangular channel built-in cooling panel made from the cooling panel of FIG. 1;
FIG. 3 is a schematic sectional view of a cooling panel according to another embodiment of the present invention, in which a rectangular tube block is formed by abutting a square U-shaped plate member with each other.
4 is a schematic cross-sectional view of a rectangular channel built-in cooling panel made from the cooling panel of FIG. 3; FIG.
FIG. 5 is a schematic perspective view of a cooling panel in which a plurality of hollow members for manufacturing a conventional cooling panel are surrounded by a plate-shaped sealing material.
6 shows a state in which the contact portion between the end of the hollow member and the plate-shaped sealing material constituting the cooling panel of FIG. 5 and the butt contact portion between the hollow members are degassed and sealed by TIG welding. It is a schematic perspective view.
FIG. 7 is a schematic cross-sectional view of a cooling panel made from the cooling panel of FIG.
[Explanation of symbols]
1: rectangular tube 2: rounded portion 3: solid member 4: flat plate 5: rectangular tube block 6: cooling panel 7: rectangular tube block 8: plate member 9 formed into a U-shape: plate portion 10: ridge 11: Cooling panel

Claims (5)

核融合炉の炉内構造物などの高熱負荷機器を冷却するための矩形流路内蔵型冷却パネルの製作方法であって、
冷却媒体の流路となる複数の矩形管を互いに接触させて並列に並べて矩形管ブロックを形成し、当該ブロックの上下面と両側面とを平板で囲い、平板同士の各接触部および矩形管の長手方向端部と平板との接触部の周囲をTIG溶接などでシール溶接して気密シールを行った後、各シール材で囲まれた部分を真空状態にして部材全体をアルゴンガスなどの不活性ガス雰囲気の中で熱間静水圧加圧処理する矩形流路内蔵型冷却パネルの製作方法において、
上記矩形管ブロックの両側部に配置される矩形管と上記両側に配置される平板との間に中実部材を配置して熱間静水圧加圧処理により製作することを特徴とする矩形流路内蔵型冷却パネルの製作方法。
A method of manufacturing a rectangular channel built-in type cooling panel for cooling a high heat load device such as a reactor internal structure of a fusion reactor,
A plurality of rectangular tubes serving as cooling medium flow paths are brought into contact with each other and arranged in parallel to form a rectangular tube block. The upper and lower surfaces and both side surfaces of the block are surrounded by flat plates. After sealing the periphery of the contact part between the longitudinal end and the flat plate by TIG welding or the like and performing an airtight seal, the part surrounded by each sealing material is evacuated and the entire member is inert with argon gas or the like In the manufacturing method of a rectangular channel built-in cooling panel that performs hot isostatic pressing in a gas atmosphere,
A rectangular channel characterized in that a solid member is disposed between a rectangular tube disposed on both sides of the rectangular tube block and a flat plate disposed on both sides, and is manufactured by hot isostatic pressing. How to make a built-in cooling panel.
上記矩形管ブロックの両側に配置される矩形管とこれら矩形管の側部に配置される平板との間の中実部材を、上記矩形管の外形と同外形寸法にしたことを特徴とする請求項1の矩形流路内蔵型冷却パネルの製作方法。A solid member between a rectangular tube arranged on both sides of the rectangular tube block and a flat plate arranged on a side portion of the rectangular tube has the same outer dimensions as the outer shape of the rectangular tube. The manufacturing method of the rectangular channel built-in type cooling panel of claim | item 1. 冷却媒体の流路となる複数の矩形管を互いに接触させて並列に並べて矩形管ブロックを形成し、当該矩形管ブロックの上下面と両側面とを平板で囲い、平板同士の各接触部および矩形管の長手方向両端部と上下平板との接触部の周囲をTIG溶接などでシール溶接して気密シールを行った後、各シール材で囲まれた部分を真空状態にして部材全体をアルゴンガスなどの不活性ガス雰囲気中で熱間静水圧加圧処理する矩形流路内蔵型冷却パネルの製作方法において、
上記矩形管ブロックの上面又下面と両側面を囲む上下の平板を、その側板部に鍔のついたコの字形状の板部材に成形し、
当該コの字形状の上下の板部材同士の上記側板部を隙間を介して突き合わせた状態で上記矩形管ブロックを囲い、この突き合わされた側板部に設けた鍔部先端を互いにシール溶接すると共に、上記矩形管の長手方向両端部と板部材の接触部をシール溶接して熱間静水圧加圧処理して接合させ、
上記側板部に設けた鍔部を切除することを特徴とする矩形流路内蔵型冷却パネルの製作方法。
A plurality of rectangular tubes serving as cooling medium flow paths are brought into contact with each other and arranged in parallel to form a rectangular tube block, and the upper and lower surfaces and both side surfaces of the rectangular tube block are surrounded by flat plates. After sealing the periphery of the contact portion between the longitudinal ends of the tube and the upper and lower flat plates by TIG welding or the like and performing hermetic sealing, the portion surrounded by each sealing material is evacuated and the entire member is filled with argon gas, etc. In the manufacturing method of a rectangular channel built-in cooling panel that performs hot isostatic pressing in an inert gas atmosphere of
The upper and lower flat plates surrounding the upper and lower surfaces and both side surfaces of the rectangular tube block are formed into a U-shaped plate member with a hook on the side plate portion,
Surrounding the rectangular tube block in a state where the side plate portions of the U-shaped upper and lower plate members are abutted via a gap, and seal-welding the flange tips provided on the abutted side plate portions, Seal welding the longitudinal direction both ends of the rectangular tube and the contact portion of the plate member and joining them by hot isostatic pressing treatment,
A method of manufacturing a rectangular channel built-in type cooling panel, wherein a collar provided on the side plate is cut off.
核融合炉の炉内構造物などの高熱負荷機器を冷却するための矩形流路内蔵型冷却パネルであり、冷却媒体の流路となる複数の矩形管を互いに接触させて並列に並べて矩形管ブロックを形成し、当該ブロックの上下面と両側面とを平板で囲い、平板同士の各接触部および矩形管の長手方向端部と平板との接触部の周囲をTIG溶接などでシール溶接して気密シールを行った後、各シール材で囲まれた部分を真空状態にして、部材全体が熱間静水圧加圧処理で接合されている矩形流路内蔵型冷却パネルにおいて、
上記矩形管ブロックの両外側部が中実部材である矩形流路内蔵型冷却パネル。
This is a rectangular channel built-in type cooling panel for cooling high heat load equipment such as in-core structures of a nuclear fusion reactor. The upper and lower surfaces and both side surfaces of the block are surrounded by flat plates, and each contact portion between the flat plates and the periphery of the contact portion between the longitudinal end of the rectangular tube and the flat plate are sealed and welded by TIG welding or the like. After sealing, in the rectangular channel built-in cooling panel in which the part surrounded by each sealing material is in a vacuum state, the entire member is joined by hot isostatic pressing,
A rectangular channel built-in cooling panel in which both outer side portions of the rectangular tube block are solid members.
冷却媒体の流路となる複数の矩形管を互いに接触させて並列に並べて矩形管ブロックを形成し、当該矩形管ブロックの上下面と両側面とを平板で囲い、平板同士の各接触部および矩形管の長手方向両端部と上下平板との接触部の周囲をTIG溶接などでシール溶接して気密シールを行った後、各シール材で囲まれた部分を真空状態にして部材全体をアルゴンガスなどの不活性ガス雰囲気中で熱間静水圧加圧処理して製作した矩形流路内蔵型冷却パネルにおいて、
上記矩形管ブロックの上面又下面と両側面を囲む上下の平板が、その側板部に鍔のついたコの字形状の板部材であり、
当該コの字形状の上下の板部材同士の上記側板部が突き合わせた状態で上記矩形管ブロックを囲っている矩形流路内蔵型冷却パネル。
A plurality of rectangular tubes serving as cooling medium flow paths are brought into contact with each other and arranged in parallel to form a rectangular tube block, and the upper and lower surfaces and both side surfaces of the rectangular tube block are surrounded by flat plates. After sealing the periphery of the contact portion between the longitudinal ends of the tube and the upper and lower flat plates by TIG welding or the like and performing hermetic sealing, the portion surrounded by each sealing material is evacuated and the entire member is filled with argon gas, etc. In a rectangular channel built-in cooling panel manufactured by hot isostatic pressing in an inert gas atmosphere of
The upper and lower flat plates surrounding the upper surface or the lower surface and both side surfaces of the rectangular tube block are U-shaped plate members with ridges on the side plate portions,
A rectangular channel built-in type cooling panel that surrounds the rectangular tube block in a state where the side plate portions of the upper and lower U-shaped plate members face each other.
JP2002318287A 2002-10-31 2002-10-31 Rectangular channel built-in cooling panel and method of manufacturing the same Expired - Fee Related JP3748427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318287A JP3748427B2 (en) 2002-10-31 2002-10-31 Rectangular channel built-in cooling panel and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318287A JP3748427B2 (en) 2002-10-31 2002-10-31 Rectangular channel built-in cooling panel and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004148387A JP2004148387A (en) 2004-05-27
JP3748427B2 true JP3748427B2 (en) 2006-02-22

Family

ID=32461453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318287A Expired - Fee Related JP3748427B2 (en) 2002-10-31 2002-10-31 Rectangular channel built-in cooling panel and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3748427B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936179B1 (en) * 2008-09-23 2010-10-15 Commissariat Energie Atomique METHOD FOR MANUFACTURING A HEAT EXCHANGER SYSTEM, PREFERABLY OF THE EXCHANGER / REACTOR TYPE
CN104439678B (en) * 2014-11-24 2017-10-13 中国核动力研究设计院 A kind of method of the steel Diffusion Weldings of CLF 1
CN108242270B (en) * 2016-12-27 2020-10-23 核工业西南物理研究院 Structure for reducing MHD (hydrogen-high-voltage) voltage drop of liquid cladding
CN112682585A (en) * 2020-12-18 2021-04-20 合肥工业大学 Welding assembly for manufacturing square-tube-array cooling water channel and preparation method thereof

Also Published As

Publication number Publication date
JP2004148387A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
KR20120062851A (en) Method for manufacturing a module having hollow area, preferably for the circulation of fluid
JP4190034B2 (en) Metal diffusion bonding
US10119327B2 (en) Method and apparatus for an insulating glazing unit and compliant seal for an insulating glazing unit
US2820286A (en) Method of making composite plates
JP2008039255A (en) Heat exchanger and its manufacturing method
CN104174752A (en) Manufacturing method for dissimilar alloy double-shell composite structural part
CN110014202A (en) A kind of temperature plate welding method
US5253796A (en) Retort for gas diffusion bonding of metals under vacuum
JP3748427B2 (en) Rectangular channel built-in cooling panel and method of manufacturing the same
JP3025441B2 (en) Method for manufacturing first cooling wall of fusion reactor
JP3725114B2 (en) Corrugated cooling panels for fusion reactors.
CN108716871B (en) Heat dissipating element and manufacturing method thereof
JPH0360592B2 (en)
TWI661172B (en) Heat dissipation component and manufacturing method thereof
CN108907460A (en) Thermal unit manufacturing method
US3497945A (en) Method for solid state welding
US3533156A (en) Tapered workpiece method and means
JP2005246472A (en) Brazing apparatus and brazing method
CN109531077B (en) Preparation method for eliminating surface groove of titanium alloy three-layer structure
JP5580004B2 (en) Vacuum container and vacuum processing apparatus
JP3241524B2 (en) Metal integral molding method
JP4746898B2 (en) Insulated container and manufacturing method thereof
US20200025461A1 (en) Method of manufacturing heat dissipation unit
JP2823411B2 (en) Diffusion bonding member manufacturing method
JPS607590B2 (en) Product manufacturing method using diffusion bonding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3748427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees