[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008039255A - Heat exchanger and its manufacturing method - Google Patents

Heat exchanger and its manufacturing method Download PDF

Info

Publication number
JP2008039255A
JP2008039255A JP2006212116A JP2006212116A JP2008039255A JP 2008039255 A JP2008039255 A JP 2008039255A JP 2006212116 A JP2006212116 A JP 2006212116A JP 2006212116 A JP2006212116 A JP 2006212116A JP 2008039255 A JP2008039255 A JP 2008039255A
Authority
JP
Japan
Prior art keywords
joining
bonding
plate
joint
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006212116A
Other languages
Japanese (ja)
Inventor
Toshiaki Fuse
俊明 布施
Masahiro Saito
正弘 齋藤
Hiroaki Yoshioka
洋明 吉岡
Shigeki Maruyama
茂樹 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006212116A priority Critical patent/JP2008039255A/en
Publication of JP2008039255A publication Critical patent/JP2008039255A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a heat exchanger by certainly joining joint plates without interfering channels provided to a joint part of two or more joint plates. <P>SOLUTION: In this manufacturing method of the heat exchanger by joining two or more first joint plates 1 formed with the channel 3 and second joint plates 2 formed with channels 4, two or more joint plates 1, 2 are joined to each other by the combination of at least two types of joining of a brazing joining for joining the joint plates 1, 2 to each other by using brazing filler metal 5, diffusion joining for joining the joint plates 1, 2 to each other by pressurizing them in a uniaxial direction by a pressurizing machine, and high temperature isostatic pressure-joining for joining the joint plates 1, 2 to each other by pressurization of isotropic pressure by gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流路が形成された複数枚の接合板を接合して製造される熱交換器及びその製造方法に関する。   The present invention relates to a heat exchanger that is manufactured by bonding a plurality of bonding plates in which flow paths are formed, and a method for manufacturing the same.

流路等が形成された複数枚の接合板を接合して製造される熱交換器について、特許文献1に「一体型積層構造熱交換器」が、特許文献2に「積層型蒸発器」が、特許文献3に「積層式熱交換器」がそれぞれ開示されている。   Regarding heat exchangers manufactured by joining a plurality of joining plates formed with flow paths and the like, Patent Document 1 discloses an “integrated laminated structure heat exchanger” and Patent Document 2 discloses a “stacked evaporator”. Patent Document 3 discloses a “stacked heat exchanger”.

特許文献1に記載の「一体型積層構造熱交換器」は、流路が形成された金属板を積層し、拡散接合により一体の積層構造に構成したものである。また、特許文献2に記載の「積層型蒸発器」は、エッチング加工された溝を有する複数枚のプレートを積層し、拡散接合にて構成したものである。更に、特許文献3に記載の「積層式熱交換器」は、流路が形成された流路プレートを複数枚積層し、ろう付け接合して構成したものである。
特開2005−282951号公報 特開2003−269882号公報 特開2001−215093号公報
The “integrated laminated structure heat exchanger” described in Patent Document 1 is configured by laminating metal plates on which flow paths are formed and forming an integral laminated structure by diffusion bonding. In addition, the “stacked evaporator” described in Patent Document 2 is configured by stacking a plurality of plates having etched grooves and by diffusion bonding. Furthermore, the “stacked heat exchanger” described in Patent Document 3 is configured by laminating a plurality of flow path plates in which flow paths are formed and brazing them.
JP 2005-282951 A JP 2003-269882 A Japanese Patent Laid-Open No. 2001-215093

上記特許文献1及び2には、熱交換器としての効率を向上させるための流路構造について主に説明されており、その製造に関しては、拡散接合を用いることのみが記載されている。また、特許文献3には、同様に流路構造について主に説明されており、その製造に関しては、ろう付け接合を用いることのみが記載されている。   Patent Documents 1 and 2 mainly describe a flow channel structure for improving the efficiency as a heat exchanger, and only describe the use of diffusion bonding for the manufacture thereof. Similarly, Patent Document 3 mainly describes the flow channel structure, and only describes the use of brazed joints for the manufacture thereof.

ところが、複数枚の接合板を拡散接合し、あるいはろう付け接合する場合には、種々の課題があり、実際には接合板の接合面を確実に接合することは容易でない。   However, there are various problems in diffusion bonding or brazing bonding of a plurality of bonding plates, and it is not easy to reliably bond the bonding surfaces of the bonding plates in practice.

例えば、拡散接合では、ホットプレスなどを用いた加圧が必要であり、特に、耐熱性の高い接合板の場合にはそれに応じた高い加圧力が必要となる。このため、接合板に形成された流路が変形したり、加圧力の高い大型のホットプレスが必要になる。更に、ホットプレスを用いて接合板に高加圧力を作用しても、接合板の接合面への加圧力の作用が不均一となって、接合性の劣る部分(未接合部)が生ずる場合がある。   For example, in diffusion bonding, pressurization using a hot press or the like is required, and particularly in the case of a bonding plate having high heat resistance, a high pressurizing force corresponding to that is required. For this reason, the flow path formed in the joining plate is deformed, or a large hot press with high pressure is required. Furthermore, even when a high pressure is applied to the bonded plate using a hot press, the pressure applied to the bonded surface of the bonded plate becomes non-uniform, resulting in a poorly bonded part (unbonded portion). There is.

また、ろう付け接合の場合には、冶具による拘束や加圧力などが簡易的でよいが、ろう材の流出により、接合板に形成された流路が閉塞されたり、流路の形状が損なわれる恐れがある。特に、熱交換器の性能向上を目指して微細な流路を形成した場合には、ろう材による影響が著しい。また、高温・高圧の流体が流路に流れる熱交換器の場合には、接合板に高温での強度に優れる材料が使用されるが、この強度と比較してろう付け接合部の強度が劣り、熱交換器の耐熱性及び耐圧性が低下する恐れがある。また、ろう付け接合時のろう材の流れは、対向する接合面における隙間の影響が大きく、これらの接合面の全面に均一にろう材を流すことは容易でない。このため、ろう付け接合では、ろう材の流れ不良に起因する未接合部が発生し易い。   In the case of brazing and joining, restraint or pressing force by a jig may be simple, but the flow path formed in the joining plate is blocked or the shape of the flow path is damaged by the outflow of the brazing material. There is a fear. In particular, when a fine flow path is formed with the aim of improving the performance of the heat exchanger, the influence of the brazing material is significant. In addition, in the case of a heat exchanger in which high-temperature and high-pressure fluid flows in the flow path, a material having excellent strength at high temperatures is used for the joining plate, but the strength of the brazed joint is inferior to this strength. The heat resistance and pressure resistance of the heat exchanger may be reduced. Further, the flow of the brazing material during brazing and joining is greatly affected by the gaps at the opposing joining surfaces, and it is not easy to flow the brazing material uniformly over the entire joining surfaces. For this reason, in brazing joining, the unjoined part resulting from the poor flow of a brazing material tends to occur.

本発明の目的は、上述の事情を考慮してなされたものであり、複数枚の接合板の接合部に設けられる流路に支障をきたすことなく、これらの接合板を確実に接合して熱交換器を製造できる熱交換器の製造方法、及びその製造方法により製造された熱交換器を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and these joining plates are reliably joined to each other without causing any trouble in the flow path provided at the joining portion of the plurality of joining plates. It is providing the manufacturing method of the heat exchanger which can manufacture an exchanger, and the heat exchanger manufactured by the manufacturing method.

本発明に係る熱交換器の製造方法は、上述した課題を解決するために、流路が形成された複数枚の接合板を接合して熱交換器を製造する熱交換器の製造方法において、上記接合板をろう材を用いて接合するろう付け接合と、上記接合板を加圧機により一軸方向に加圧することによって接合する拡散接合と、上記接合板をガスによる等方圧力の加圧により接合する高温等方加圧(Hot Isostatic Pressing(以下HIPという。))接合処理とを、少なくとも2種類組み合わせることで複数枚の上記接合板を接合することを特徴とするものである。   In order to solve the above-described problems, the heat exchanger manufacturing method according to the present invention is a heat exchanger manufacturing method in which a plurality of bonding plates formed with flow paths are bonded to manufacture a heat exchanger. Brazing joining for joining the joining plate using a brazing material, diffusion joining for joining the joining plate by uniaxially pressing the joining plate with a pressurizing machine, and joining the joining plate by applying an isotropic pressure with gas. A combination of at least two types of hot isostatic pressing (hereinafter referred to as HIP) bonding treatment is performed to bond a plurality of the above-described bonding plates.

また、本発明に係る熱交換器は、上述した課題を解決するために、上記接合板をろう材を用いて接合するろう付け接合と、上記接合板を加圧機により一軸方向に加圧することによって接合する拡散接合と、上記接合板をガスによる等方圧力の加圧により接合するHIP接合処理とが、少なくとも2種類組み合わされて複数枚の上記接合板が接合され構成されたことを特徴とするものである。   Moreover, in order to solve the above-described problems, the heat exchanger according to the present invention includes brazing and joining the joining plates using a brazing material, and pressurizing the joining plates in a uniaxial direction with a pressurizer. Diffusion bonding for bonding and HIP bonding treatment for bonding the bonding plate by applying an isotropic pressure with a gas are combined to form a plurality of the bonding plates. Is.

本発明によれば、複数枚の接合板を、ろう付け接合、拡散接合、HIP接合処理の少なくとも2種類を組み合わせて接合することから、各接合の長所を有効に活用し、短所を解消することで、複数枚の接合板の接合部に設けられる流路に支障をきたすことなく、これらの接合板の接合性を向上させて熱交換器を製造できる。例えば、ろう付け接合、拡散接合において低加圧力を作用することで流路に支障をきたすことがなく、また、HIP接合処理を高加圧力で実施することで、接合部に残存する未接合部やボイドを消滅させて接合部の接合性を向上させることができる。   According to the present invention, since a plurality of joining plates are joined by combining at least two types of brazing joining, diffusion joining, and HIP joining treatment, the advantages of each joining are effectively utilized and the disadvantages are eliminated. Thus, the heat exchanger can be manufactured by improving the bondability of these bonding plates without hindering the flow paths provided at the bonding portions of the plurality of bonding plates. For example, there is no trouble in the flow path by applying a low pressure in brazing and diffusion bonding, and an unjoined portion remaining in the joint by performing the HIP bonding process at a high pressure. And voids can be eliminated and the bondability of the joint can be improved.

本発明を実施するための最良の形態を、図面に基づき説明する。但し、本発明は、これらの実施形態に限定されるものではない。   The best mode for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to these embodiments.

[A]第1の実施形態(図1)
図1は、本発明に係る熱交換器の製造方法における第1の実施形態を一部切欠いて示す製造工程図である。
[A] First embodiment (FIG. 1)
FIG. 1 is a manufacturing process diagram showing a first embodiment of the heat exchanger manufacturing method according to the present invention with a part cut away.

この第1の実施形態における熱交換器の製造方法は、表面に流路3が形成された第1接合板1と、表面に流路4が形成された第2接合板2とを交互に複数枚、例えば10枚ずつ合計20枚接合して熱交換器を製造するものである。これらの第1接合板1と第2接合板2の接合は、ろう付け接合、拡散接合、HIP(Hot Isostatic Pressing)接合処理の少なくとも2種類(本実施形態では全種類)を順次実施することにより実現される。   The manufacturing method of the heat exchanger according to the first embodiment includes a plurality of first joining plates 1 having flow paths 3 formed on the surface and second joining plates 2 having flow paths 4 formed on the surfaces alternately. A total of 20 sheets, for example, 10 sheets are joined together to manufacture a heat exchanger. The first bonding plate 1 and the second bonding plate 2 are joined by sequentially performing at least two types (all types in this embodiment) of brazing bonding, diffusion bonding, and HIP (Hot Isostatic Pressing) bonding processing. Realized.

上記第1接合板1及び第2接合板2は、ステンレス鋼製であり、種々の寸法の板材が使用されるが、本実施形態では、例えば一辺が約100mmの正方形状で、厚さが約5mmの板材が用いられる。また、上記流路3及び4は、例えば幅が約5mmで、深さが約2mmであり、ろう付け接合時にろう材の流入によって閉塞や詰まりなどの恐れがない程度の寸法である。   The first joining plate 1 and the second joining plate 2 are made of stainless steel, and plate materials having various dimensions are used. In this embodiment, for example, the first joining plate 1 and the second joining plate 2 have a square shape with a side of about 100 mm and a thickness of about 100 mm. A 5 mm plate is used. The flow paths 3 and 4 have a width of about 5 mm and a depth of about 2 mm, for example, and have dimensions that do not cause clogging or clogging due to the inflow of brazing material during brazing and joining.

上記ろう付け接合は、ろう材を用いて被接合部材を接合するものであり、面シール性に優れる。本実施形態におけるろう付け接合時に使用されるろう材5は、第1接合板1及び第2接合板2の材質(ステンレス鋼)を考慮して、ニッケル系のアモルファスシートが用いられる。このろう材5は、図1(A)に示すように、第1接合板1の流路3を除く表面である接合面6と、第2接合板2の裏面である接合面9との間に配置され、更に、第2接合板2の流路4を除く表面である接合面7と、第1接合板1の裏面である接合面8との間に配置される。   The brazing joint joins a member to be joined using a brazing material, and is excellent in surface sealability. The brazing material 5 used at the time of brazing and joining in the present embodiment is a nickel-based amorphous sheet in consideration of the material (stainless steel) of the first joining plate 1 and the second joining plate 2. As shown in FIG. 1A, the brazing material 5 is formed between a bonding surface 6 that is a surface excluding the flow path 3 of the first bonding plate 1 and a bonding surface 9 that is the back surface of the second bonding plate 2. Furthermore, it arrange | positions between the joining surface 7 which is the surface except the flow path 4 of the 2nd joining board 2, and the joining surface 8 which is the back surface of the 1st joining board 1. FIG.

このようにして第1接合板1、第2接合板2間にろう材5を配置した構造体を真空炉内で、例えば約1050℃に15分間程度保持して、第1接合板1と第2接合板2とをろう付け接合する。但し、このろう付け接合により接合面6と9間、接合面7と8間にそれぞれ形成されるろう付け接合部10には、ろう材が均一に流れずにろう不足が生じた部分(未接合部)や、ボイドが存在している部分がある。これらのろう不足部分及びボイドを消失させるために、前記拡散接合を次に実施する。   In this way, the structure in which the brazing material 5 is disposed between the first bonding plate 1 and the second bonding plate 2 is held in a vacuum furnace at, for example, about 1050 ° C. for about 15 minutes, and the first bonding plate 1 and the first bonding plate 1 2 The joining plate 2 is brazed and joined. However, the brazed joint 10 formed between the joint surfaces 6 and 9 and between the joint surfaces 7 and 8 by this brazing joint is a portion where the brazing material is not flown uniformly and brazing is insufficient (unjoined). Part) and there are parts where voids exist. In order to eliminate these wax-deficient portions and voids, the diffusion bonding is performed next.

この拡散接合は、被接合部材を加熱しながら加圧し、これらの被接合部材の接合面に原子拡散を生じさせて、上記接合面を接合するものである。この拡散接合では、通常、ホットプレスを加工機として用いて、被接合部材に一軸方向の加圧力を作用して接合する。本実施形態においては、図1(B)に示すように、ろう付け接合された第1接合板1と第2接合板2の接合体を、ホットプレスを用い、例えば約1000℃で30分間程度加熱しつつ、接合面6、7、8、9に対し垂直な一軸方向に約5MPaの圧力で加圧して、拡散接合を実施する。この拡散接合では、第1接合板1の接合面6、8、第2接合板2の接合面7、9と、ろう材5の表面、裏面との間で、これらの接合板1、2とろう材5とが拡散により均一化されて接合される。   In this diffusion bonding, the members to be bonded are pressurized while being heated, and atomic diffusion is caused on the bonding surfaces of these members to be bonded, thereby bonding the bonding surfaces. In this diffusion bonding, usually, a hot press is used as a processing machine, and a uniaxial pressure is applied to the members to be bonded. In the present embodiment, as shown in FIG. 1B, the joined body of the first joining plate 1 and the second joining plate 2 that are brazed and joined is, for example, about 1000 ° C. for about 30 minutes using a hot press. Diffusion bonding is performed by applying pressure at a pressure of about 5 MPa in a uniaxial direction perpendicular to the bonding surfaces 6, 7, 8, 9 while heating. In this diffusion bonding, between the bonding surfaces 6 and 8 of the first bonding plate 1, the bonding surfaces 7 and 9 of the second bonding plate 2, and the front and back surfaces of the brazing material 5, these bonding plates 1 and 2 The brazing material 5 is made uniform by diffusion and joined.

この拡散接合により接合面6と9間、接合面7と8間にそれぞれ形成される拡散接合部11のろう層は、拡散接合時の加圧力により薄くなり、このろう層内において、ろう付け接合部10に生じたろう不足による未接合部にろう材が流れ込み、且つろう付け接合部10内に残存したボイドも減少した状態となる。但し、この拡散接合においては、第1接合板1の流路3、第2接合板2の流路4が変形しないように加圧力が抑制されていることから、上記ろう不足による未接合部や残存ボイドをすべて消失させることは困難であり、これらを消失させるために、前記HIP接合処理を次に実施する。   The brazing layer of the diffusion bonding portion 11 formed between the bonding surfaces 6 and 9 and between the bonding surfaces 7 and 8 by this diffusion bonding is thinned by the pressure applied during diffusion bonding. The brazing material flows into the unjoined portion due to the lack of brazing that has occurred in the portion 10, and the voids remaining in the brazed joint portion 10 are also reduced. However, in this diffusion bonding, the applied pressure is suppressed so that the flow path 3 of the first bonding plate 1 and the flow path 4 of the second bonding plate 2 are not deformed. It is difficult to eliminate all the remaining voids, and in order to eliminate these, the HIP bonding process is performed next.

このHIP接合処理は、高温雰囲気下で被接合部材を、ガスによる等方圧力の加圧によって接合するものであり、高い等方圧力を加えることが可能である。本実施形態では、拡散接合部11により接合された第1接合板1と第2接合板2の接合体をHIP炉(不図示)内に収容し、例えば約1000℃で60分間程度を加熱しつつ、ガスにより約100MPaの等方圧力を作用して、HIP接合処理を実施する。このHIP接合処理により、第1接合板1と第2接合板2とは、接合面6と9間、接合面7と8間にそれぞれ形成されたHIP接合部12により接合される。   This HIP joining process joins the members to be joined by applying an isotropic pressure with a gas in a high-temperature atmosphere, and a high isotropic pressure can be applied. In this embodiment, the joined body of the first joining plate 1 and the second joining plate 2 joined by the diffusion joining portion 11 is accommodated in a HIP furnace (not shown), and heated at, for example, about 1000 ° C. for about 60 minutes. However, the HIP bonding process is performed by applying an isotropic pressure of about 100 MPa with gas. By this HIP bonding process, the first bonding plate 1 and the second bonding plate 2 are bonded by the HIP bonding portions 12 formed between the bonding surfaces 6 and 9 and between the bonding surfaces 7 and 8, respectively.

このHIP接合処理では、ガスによる高い等方圧力が第1接合板1、第2接合板2及び拡散接合部11に作用するので、HIP接合部12内では、拡散接合部11内に存在したろう不足による未接合部及び残存ボイドを略完全に消失させることができる。これにより、第1接合板1と第2接合板2が冶金的に一体となり、これらの第1接合板1と第2接合板2の接合性を向上させることができる。   In this HIP bonding process, a high isotropic pressure due to the gas acts on the first bonding plate 1, the second bonding plate 2 and the diffusion bonding portion 11, so that the HIP bonding portion 12 would have existed in the diffusion bonding portion 11. Unjoined portions and residual voids due to the shortage can be almost completely eliminated. Thereby, the 1st joining plate 1 and the 2nd joining plate 2 become metallurgically integrated, and the joining property of these 1st joining plates 1 and the 2nd joining plates 2 can be improved.

また、このHIP接合処理では、ガスによる高い圧力が第1接合板1、第2接合板2に作用し、従って、このガス圧力が第1接合板1の流路3及び第2接合板2の流路4内にも作用するので、これらの流路3及び流路4の変形や損傷を防止することが可能となる。   Further, in this HIP bonding process, a high pressure due to gas acts on the first bonding plate 1 and the second bonding plate 2, and accordingly, this gas pressure is applied to the flow path 3 of the first bonding plate 1 and the second bonding plate 2. Since it acts also in the flow path 4, it becomes possible to prevent the deformation | transformation and damage of these flow paths 3 and 4.

尚、HIP接合処理においては、一般に、接合されるべき接合部位の周囲を溶接等によりシールして、この接合部位にHIP接合処理時のガスが流入しないようにシール処理する必要がある。これに対し、本実施形態では、第1接合板1、第2接合板2間のろう付け接合部10はシール性が高く、拡散接合部11は更にシール性が高くなっているため、上述のシール処理を施すことなくHIP接合処理を実施することが可能となる。   In the HIP joining process, it is generally necessary to seal the periphery of the joining part to be joined by welding or the like, and to perform a sealing process so that the gas during the HIP joining process does not flow into this joining part. On the other hand, in the present embodiment, the brazed joint 10 between the first joint plate 1 and the second joint plate 2 has a high sealing performance, and the diffusion joint 11 has a higher sealing performance. It becomes possible to carry out the HIP bonding process without performing the sealing process.

以上のように、第1接合板1と第2接合板2とをろう付け接合し、次に拡散接合し、その後HIP接合処理を実施して熱交換器を製造することから、次の効果(1)〜(3)を奏する。   As described above, the first bonding plate 1 and the second bonding plate 2 are brazed and bonded, then diffusion bonded, and then the HIP bonding process is performed to manufacture the heat exchanger. 1) to 3) are performed.

(1)複数枚の第1接合板1及び第2接合板2を、ろう付け接合、拡散接合、HIP接合処理を順次実施することで接合することから、ろう付け接合部10及び拡散接合部11に生ずるろう不足による未接合部や残留ボイドをHIP接合処理において略完全に消失させることができる。この結果、第1接合板1と第2接合板2を確実に接合して、熱交換器を製造することができる。   (1) Since the plurality of first joining plates 1 and second joining plates 2 are joined by sequentially performing brazing joining, diffusion joining, and HIP joining processing, the brazing joining part 10 and the diffusion joining part 11. In the HIP joining process, unjoined parts and residual voids due to insufficient soldering can be eliminated almost completely. As a result, the heat exchanger can be manufactured by reliably joining the first joining plate 1 and the second joining plate 2.

(2)ろう付け接合時及び拡散接合時には、第1接合板1及び第2接合板2に低加圧力が作用するため、第1接合板1の流路3及び第2接合板2の流路4に変形等を生じさせることがない。更に、HIP接合処理時には、ガスによる高い等方圧力が作用するものの、このガス圧が第1接合板1の流路3、第2接合板2の流路4にも作用するので、これらの流路3及び流路4が変形等することがない。これらのことから、ろう付け接合、拡散接合、HIP接合処理の順次実施により製造された熱交換器の寸法精度を良好に確保できる。   (2) At the time of brazing joining and diffusion joining, a low pressure acts on the first joining plate 1 and the second joining plate 2, so the flow path 3 of the first joining plate 1 and the flow path of the second joining plate 2. 4 is not deformed or the like. Furthermore, during the HIP bonding process, a high isotropic pressure due to the gas acts, but since this gas pressure also acts on the flow path 3 of the first bonding plate 1 and the flow path 4 of the second bonding plate 2, The channel 3 and the channel 4 are not deformed. From these facts, it is possible to satisfactorily ensure the dimensional accuracy of the heat exchanger manufactured by sequentially performing the brazing joining, the diffusion joining, and the HIP joining treatment.

(3)ろう付け接合部10、拡散接合部11のシール性が良好であることから、HIP接合処理において、接合部位の周囲を溶接等によりシールするシール処理を省略して、熱交換器を製造することができる。   (3) Since the sealing performance of the brazed joint 10 and the diffusion joint 11 is good, the heat treatment is manufactured by omitting the sealing process for sealing the periphery of the joint part by welding or the like in the HIP joining process. can do.

[B]第2の実施形態(図2)
図2は、本発明に係る熱交換器の製造方法における第2の実施形態を一部切欠いて示す製造工程図である。
[B] Second Embodiment (FIG. 2)
FIG. 2 is a manufacturing process diagram showing a second embodiment of the heat exchanger manufacturing method according to the present invention with a part cut away.

この第2の実施形態における熱交換器の製造方法は、表面に流路23が形成された第1接合板21と、表面に流路24が形成された第2接合板22とを交互に複数枚、例えば5枚ずつ合計10枚接合し、これら複数の接合部のうち、一の接合部と他の接合部とで、ろう付け接合、拡散接合、HIP接合処理の組合せ種類を異ならせて熱交換器を製造するものである。尚、上記第1接合板21及び第2接合板22は、ニッケル基超合金製である。   In the heat exchanger manufacturing method according to the second embodiment, a plurality of first joining plates 21 having flow paths 23 formed on the surface and second joining plates 22 having flow paths 24 formed on the surface are alternately provided. A total of 10 pieces, for example, 5 pieces are joined, and heat is produced by changing the combination of brazing joining, diffusion joining, and HIP joining processing between one joining part and the other joining part among these joining parts. An exchange is manufactured. The first joining plate 21 and the second joining plate 22 are made of a nickel-base superalloy.

つまり、第1接合板21の流路23を除く表面である接合面26と、第2接合板22の裏面である接合面29とを接合する接合部を、ろう付け接合、拡散接合、HIP接合処理を順次実施して形成する。また、第2接合板22の流路24を除く表面である接合面27と、第1接合板21の裏面である接合面28とを接合する接合部を、拡散接合、HIP接合処理を順次実施して形成する。   That is, the joint part that joins the joint surface 26 that is the surface excluding the flow path 23 of the first joint plate 21 and the joint surface 29 that is the back surface of the second joint plate 22 is brazed joint, diffusion joint, and HIP joint. Processes are formed sequentially. Further, diffusion bonding and HIP bonding processing are sequentially performed on the bonding portion that bonds the bonding surface 27 that is the surface excluding the flow path 24 of the second bonding plate 22 and the bonding surface 28 that is the back surface of the first bonding plate 21. To form.

その理由は次の通りである。第1接合板21の上記流路23は、例えば幅が約5mmで、深さが約2mmに形成されており、ろう付け接合時のろう材の流入によっても閉塞される恐れが少ない。このため、この流路23を臨む接合面26と第2接合板22の接合面29との最初の接合をろう付け接合としたのである。また、第2接合板22の上記流路24は、例えば幅が約5mmで、深さが約1mmに形成されており、ろう付け接合時のろう材の流入によって閉塞される恐れがある。このため、流路24を臨む接合面27と第1接合板21の接合面28との最初の接合を拡散接合としたのである。   The reason is as follows. The flow path 23 of the first joining plate 21 is, for example, about 5 mm wide and about 2 mm deep, and is less likely to be blocked by the inflow of brazing material during brazing joining. For this reason, the first joint between the joint surface 26 facing the flow path 23 and the joint surface 29 of the second joint plate 22 is brazed joint. Further, the flow path 24 of the second joining plate 22 is, for example, about 5 mm in width and about 1 mm in depth, and may be blocked by the inflow of brazing material during brazing joining. For this reason, the first bonding between the bonding surface 27 facing the flow path 24 and the bonding surface 28 of the first bonding plate 21 is diffusion bonding.

このようにして製造する熱交換器の製造手順は、まず、図2(A)に示すように、第1接合板21の接合面26と第2接合板22の接合面29との間に図示しないろう材(例えばニッケルろう)を介装し、これらを真空炉内で例えば約1120℃に10分間程度保持して、第1接合板21と第2接合板22とをろう付け接合する。このろう付け接合により、第1接合板21の接合面26と第2接合板22の接合面29との間にろう付け接合部30が形成される。   As shown in FIG. 2A, the manufacturing procedure of the heat exchanger manufactured in this way is first illustrated between the bonding surface 26 of the first bonding plate 21 and the bonding surface 29 of the second bonding plate 22. A brazing material (for example, nickel brazing) is interposed, and these are held in a vacuum furnace at, for example, about 1120 ° C. for about 10 minutes to braze and join the first joining plate 21 and the second joining plate 22. By this brazing joint, a brazed joint portion 30 is formed between the joint surface 26 of the first joint plate 21 and the joint surface 29 of the second joint plate 22.

次に、図2(B)に示すように、ろう付け接合により接合された上述の接合体を5層(但し、図2(B)では簡略して3層を示す)積層する。そして、この積層体を、ホットプレスを用いて、例えば約1120℃で30分間程度を加熱しつつ、接合面26、27、28、29に対し垂直な一軸方向に約10MPaの圧力で加圧して、拡散接合を実施する。この拡散接合により、第2接合板22の接合面27と、第1接合板21の接合面28との間に拡散接合部31が形成される。更に、第1接合板21の接合面26と第2接合板22の接合面29との間にも拡散接合が実施されて、上記ろう付け接合部30が、前記第1実施形態と同様にして拡散接合部33となる。   Next, as shown in FIG. 2B, the above-described joined body joined by brazing is stacked in five layers (however, three layers are simply shown in FIG. 2B). Then, this laminated body is pressed at a pressure of about 10 MPa in a uniaxial direction perpendicular to the bonding surfaces 26, 27, 28, 29 while being heated at about 1120 ° C. for about 30 minutes using a hot press. Perform diffusion bonding. By this diffusion bonding, a diffusion bonding portion 31 is formed between the bonding surface 27 of the second bonding plate 22 and the bonding surface 28 of the first bonding plate 21. Further, diffusion bonding is also performed between the bonding surface 26 of the first bonding plate 21 and the bonding surface 29 of the second bonding plate 22, and the brazed bonding portion 30 is the same as in the first embodiment. The diffusion junction 33 is formed.

その後、ろう付け接合及び拡散接合された接合体をHIP炉に収容し、例えば約1120℃で30分間程度を加熱しつつ、ガスにより約100MPaの等方圧力を作用してHIP接合処理を実施する。このHIP接合処理により、図2(C)に示すように、第1接合板21の接合面26と第2接合板22の接合面29との間、第2接合板22の接合面27と第1接合板21の接合面28との間にHIP接合部32がそれぞれ形成される。このHIP接合部32では、拡散接合部31、33に残存した未接合部やボイドなどの欠陥が略完全に消失して、第1接合板21と第2接合板22とを冶金的に一体化でき、これらの第1接合板21と第2接合板22との接合性が向上する。   Thereafter, the brazed and diffusion bonded assemblies are accommodated in a HIP furnace, and the HIP bonding process is performed by applying an isotropic pressure of about 100 MPa with gas while heating at about 1120 ° C. for about 30 minutes, for example. . As shown in FIG. 2C, the HIP bonding process causes the bonding surface 27 of the second bonding plate 22 and the bonding surface 29 of the second bonding plate 22 to be bonded to the first bonding plate 26 and the bonding surface 29 of the second bonding plate 22. HIP joint portions 32 are formed between the joint surfaces 28 of the one joint plate 21. In the HIP joint portion 32, defects such as unjoined portions and voids remaining in the diffusion joint portions 31 and 33 disappear almost completely, and the first joint plate 21 and the second joint plate 22 are integrated metallurgically. It is possible to improve the bondability between the first bonding plate 21 and the second bonding plate 22.

ここで、前述のような第1接合板21の接合面26と第2接合板22の接合面29との最初の接合、第2接合板22の接合面27と第1接合板21の接合面28との最初の接合を、ろう付け接合時のろう材により流路23、24が閉塞されるか否かの観点からではなく、その他の観点または理由によって、ろう付け接合と拡散接合のいずれかを選択してもよい。一例として、流路23、24を流れる流体の温度や圧力の違いにより、当該流路23、24近傍の接合部に要求される強度が異なるので、この強度の相違に応じて、接合面を接合する接合部の最初の接合をろう付け接合、または拡散接合のいずれかに選択してもよい。   Here, the first joint between the joint surface 26 of the first joint plate 21 and the joint surface 29 of the second joint plate 22 as described above, the joint surface 27 of the second joint plate 22 and the joint surface of the first joint plate 21. 28. The first bonding with 28 is not based on whether or not the flow paths 23 and 24 are blocked by the brazing material at the time of the brazing bonding, and is either brazing bonding or diffusion bonding depending on other viewpoints or reasons. May be selected. As an example, the strength required for the joint in the vicinity of the flow paths 23 and 24 differs depending on the temperature and pressure of the fluid flowing in the flow paths 23 and 24. Therefore, the joint surfaces are joined according to the difference in strength. The initial joining of the joints to be performed may be selected from either brazing joining or diffusion joining.

具体的には、流路23、24が共に、例えば幅約5mmで、深さが約2mmに形成されて、ろう付け接合時にろう材により閉塞される恐れがない場合であっても、例えば流路24に流れるガスの温度や圧力が高く、この流路24近傍の、接合面27と接合面28との接合部に高強度が要求される場合には、当該接合面27と接合面28との最初の接合を拡散接合とする。また、例えば流路23に流れるガスの温度や圧力が低く、この流路23近傍の、接合面26と接合面29との接合部に高強度が要求されない場合には、当該接合面26と接合面29との最初の接合をろう付け接合とすることができる。   Specifically, even if the flow paths 23 and 24 are both formed to have a width of, for example, about 5 mm and a depth of about 2 mm, and there is no risk of being blocked by the brazing material at the time of brazing joining, When the temperature and pressure of the gas flowing in the passage 24 are high and high strength is required for the joint portion between the joint surface 27 and the joint surface 28 in the vicinity of the channel 24, the joint surface 27 and the joint surface 28 The first bonding is referred to as diffusion bonding. For example, when the temperature and pressure of the gas flowing in the flow path 23 are low and high strength is not required for the joint between the joint surface 26 and the joint surface 29 in the vicinity of the flow path 23, The first joint with the surface 29 can be a brazed joint.

以上のように構成されたことから、本実施形態によれば次の効果(4)等を奏する。   Since it is configured as described above, according to the present embodiment, the following effect (4) and the like are achieved.

(4)複数枚の第1接合板21及び第2接合板22を接合し、一の接合部と他の接合部とでろう付け接合、拡散接合、HIP接合処理の組合せ種類を異にして熱交換器を製造する。   (4) A plurality of first joining plates 21 and second joining plates 22 are joined, and heat is produced with different combinations of brazing joining, diffusion joining, and HIP joining treatment between one joining part and another joining part. Manufacture exchangers.

例えば、ろう付け接合でろう材の流入により閉塞される恐れがある流路24近傍の接合部は、最初の接合を拡散接合とし、ろう付け接合でろう材により閉塞される恐れが低い流路23近傍の接合部は、最初の接合をろう付け接合とする。従って、種々の形状の流路23、24を有する第1接合板21、第2接合板22を用いて熱交換器を製造することができる。   For example, in the vicinity of the flow path 24 that may be blocked by the inflow of the brazing material in the brazing joint, the flow path 23 is less likely to be blocked by the brazing material by using the first joint as a diffusion joint. For the nearby joint, the first joint is a brazed joint. Therefore, a heat exchanger can be manufactured using the 1st joining board 21 and the 2nd joining board 22 which have the flow paths 23 and 24 of various shapes.

また、温度、圧力が異なる流体を流す流路23、24近傍の接合部は、要求される強度が異なるので、この接合部に要求される強度に応じて、各接合部の最初の接合をろう付け接合または拡散接合に選択することで、種々の温度、圧力の流体を流す流路を備えた第1接合板21、第2接合板22を用いて熱交換器を製造することができる。   In addition, since the joints in the vicinity of the flow paths 23 and 24 through which fluids having different temperatures and pressures are required have different strengths, the first joint of each joint is made according to the strength required for the joints. A heat exchanger can be manufactured using the 1st joining board 21 and the 2nd joining board 22 provided with the flow path which flows the fluid of various temperature and pressure by selecting it as an attachment joining or a diffusion joining.

その他、本実施形態における熱交換器の製造方法においても、第1接合板21と第2接合板22の接合を、ろう付け接合、拡散接合、HIP接合処理の少なくとも2種類を組み合わせて実施し、ろう付け接合、拡散接合部は低加圧力で接合を実施するので、前記第1の実施形態の効果(1)〜(3)と同様な効果を奏する。   In addition, also in the manufacturing method of the heat exchanger in the present embodiment, the bonding of the first bonding plate 21 and the second bonding plate 22 is performed by combining at least two kinds of brazing bonding, diffusion bonding, and HIP bonding processing, Since the brazing joint and the diffusion joint portion are joined with a low pressure, the same effects as the effects (1) to (3) of the first embodiment can be obtained.

[C]第3の実施形態(図3)
図3は、本発明に係る熱交換器の製造方法における第3の実施形態を一部切欠いて示す製造工程図である。
[C] Third embodiment (FIG. 3)
FIG. 3 is a manufacturing process diagram showing a third embodiment of the heat exchanger manufacturing method according to the present invention with a part cut away.

この第3の実施形態における熱交換器の製造方法は、表面に流路43が形成された第1接合板41と、表面に流路44が形成された第2接合板42とを、交互に複数枚(図3では簡略して、第1接合板41と第2接合板42とを1枚づつ図示)接合して熱交換器を製造するものである。このうち、第1接合板41の流路43を除く表面である接合面46と、第2接合板42の裏面である接合面49とは、後述の如く設置されたろう材45を用いてろう付け接合された後、HIP接合処理されて接合される。尚、第2接合板42の流路44を除く表面である接合面47と、第1接合板41の裏面である接合面48との接合については特に限定されず、ろう付け接合、拡散接合、HIP接合処理を2種類以上を組み合わせてもよく、または単独で実施してもよい。   The manufacturing method of the heat exchanger according to the third embodiment alternately includes a first bonding plate 41 having a flow path 43 formed on the surface and a second bonding plate 42 having a flow path 44 formed on the surface. A heat exchanger is manufactured by joining a plurality of sheets (in FIG. 3, for simplicity, the first joining plate 41 and the second joining plate 42 are shown one by one). Among these, the joining surface 46 which is the surface excluding the flow path 43 of the first joining plate 41 and the joining surface 49 which is the back surface of the second joining plate 42 are brazed using a brazing material 45 which will be described later. After being joined, HIP joining is performed and joined. In addition, it does not specifically limit about joining of the joining surface 47 which is the surface except the flow path 44 of the 2nd joining board 42, and the joining surface 48 which is the back surface of the 1st joining board 41, brazing joining, diffusion joining, Two or more types of HIP bonding processes may be combined, or may be performed alone.

ここで、上記第1接合板41及び第2接合板42は純銅製である。また、上記ろう材45は、純銅のろう付けに適する共晶銀ろうが用いられる。また、このろう材45は、図3(A)に示すように、ろう付け接合時に第1接合板41の接合面46における縁近傍、即ちこの接合面46において、流路43の両側及び第1接合板41の端面50付近に設置される。このろう材45は、シート状のものであってもよく、ペーストを塗布して形成してもよく、或いはコールドスプレーなどのように、ろう材粉末を高速噴射してコーティング法により形成してもよい。   Here, the first joining plate 41 and the second joining plate 42 are made of pure copper. Further, as the brazing material 45, eutectic silver brazing suitable for brazing pure copper is used. In addition, as shown in FIG. 3 (A), the brazing material 45 is near the edge of the joint surface 46 of the first joint plate 41 at the time of brazing, that is, at the joint surface 46, It is installed near the end face 50 of the joining plate 41. The brazing material 45 may be in the form of a sheet, may be formed by applying a paste, or may be formed by coating at a high speed by spraying a brazing material powder, such as cold spray. Good.

上述のろう付け接合は、第1接合板41の接合面46上に上記ろう材45を上述の如く設置し、このろう材45上に第2接合板42の接合面49を重ね合わせ、真空炉内で例えば約850℃に5分間程度を保持して、第1接合板41と第2接合板42とをろう付け接合する。このろう付け接合により第1接合板41の接合面46と第2接合板42の接合面49との間にろう付け接合部51が形成される(図3(B))。このろう付け接合では、ろう材45が流路43に流入して当該流路43を閉塞しないようにろう材量が必要最少量に減少されているので、上記ろう付け接合部51においては、ろう材45が設置された部分は好適にろう付け接合されるが、この設置部分から離れた箇所ではろう材量が不足してボイド52が生じやすい。このボイド52内は、ろう付け接合が真空炉内で実施されているので、真空となっている。   In the brazing and joining described above, the brazing material 45 is placed on the joining surface 46 of the first joining plate 41 as described above, and the joining surface 49 of the second joining plate 42 is overlapped on the brazing material 45 to form a vacuum furnace. The first joining plate 41 and the second joining plate 42 are brazed and joined, for example, at about 850 ° C. for about 5 minutes. By this brazing and joining, a brazing joint 51 is formed between the joining surface 46 of the first joining plate 41 and the joining surface 49 of the second joining plate 42 (FIG. 3B). In this brazing joint, the amount of brazing material is reduced to the minimum necessary amount so that the brazing material 45 does not flow into the flow path 43 and block the flow path 43. The portion where the material 45 is installed is preferably brazed and joined, but the amount of the brazing material is insufficient at a location away from this installation portion, and the void 52 is likely to occur. The void 52 is in a vacuum because brazing and bonding are performed in a vacuum furnace.

このろう付け接合部51により接合された第1接合板41と第2接合板42との接合体を、次にHIP接合処理する。上記ろう付け接合部51は、第1接合板41の接合面46における縁近傍がろう材45によりシールされているため、HIP接合処理において接合部位の周囲を溶接等によりシール処理する必要がない。従って、HIP接合処理は、ろう付け接合部51にて接合された第1接合板41及び第2接合板42の接合体を、そのままHIP炉内に収容し、ろう材45が溶融しない温度、例えば約700℃に30分間程度保持しつつ、ガスにより約100MPaの等方圧力を作用して実施する。   The joined body of the first joining plate 41 and the second joining plate 42 joined by the brazing joining portion 51 is then subjected to HIP joining processing. In the brazed joint portion 51, the vicinity of the edge of the joint surface 46 of the first joint plate 41 is sealed with the brazing material 45, so that it is not necessary to seal the periphery of the joint portion by welding or the like in the HIP joining process. Therefore, in the HIP joining process, the joined body of the first joining plate 41 and the second joining plate 42 joined at the brazing joint portion 51 is accommodated in the HIP furnace as it is, and a temperature at which the brazing material 45 does not melt, for example, While maintaining at about 700 ° C. for about 30 minutes, an isotropic pressure of about 100 MPa is applied by gas.

このHIP接合処理により、図3(C)に示すように、第1接合板41の接合面46と第2接合板42の接合面49との間にHIP接合部53が形成される。このHIP接合部53には、ろう付け接合部51に残存したボイド52や未接合部などの欠陥が消失して、第1接合板41と第2接合板42とを冶金的に一体化でき、従って、これらの第1接合板41と第2接合板42の接合性が向上する。   By this HIP bonding process, as shown in FIG. 3C, a HIP bonding portion 53 is formed between the bonding surface 46 of the first bonding plate 41 and the bonding surface 49 of the second bonding plate 42. In the HIP joint portion 53, defects such as voids 52 and unjoined portions remaining in the brazed joint portion 51 disappear, and the first joint plate 41 and the second joint plate 42 can be integrated metallurgically. Therefore, the bondability between the first bonding plate 41 and the second bonding plate 42 is improved.

ここで、本実施形態において拡散接合を省略した理由を述べる。本実施形態の第1接合板41及び第2接合板42は、熱伝導性に優れた純銅が使用され、この純銅は軟質材料である。また、この純銅への濡れ性が良好な共晶銀ろうが、ろう材45として使用されているので、ろう付け接合部51の厚さは数10μm以下となっている。これらのことから、ろう付け接合後、拡散接合をせずに直接HIP接合処理を実施しても、ろう付け接合部51内のボイド52や未接合部を十分に消失させることができるからである。   Here, the reason why the diffusion bonding is omitted in this embodiment will be described. The first bonding plate 41 and the second bonding plate 42 of the present embodiment use pure copper having excellent thermal conductivity, and this pure copper is a soft material. Further, since the eutectic silver solder having good wettability to pure copper is used as the brazing material 45, the thickness of the brazed joint portion 51 is several tens of μm or less. From these things, it is because the void 52 in a brazing junction part 51 and an unjoined part can fully be lose | disappeared even if it implements a HIP joining process directly without carrying out diffusion bonding after brazing joining. .

以上のように構成されたことから、上記実施形態によれば、次の効果(5)及び(6)等を奏する。   With the configuration as described above, the following effects (5) and (6) are obtained according to the above embodiment.

(5)第1接合板41における接合面46の縁近傍にろう材45が設置されて、第1接合板41と第2接合板42とがろう付け接合されたことから、必要最少量のろう材45を用いることで、流路43の閉塞を確実に防止でき、流路欠陥のない熱交換器を製造できる。   (5) Since the brazing material 45 is installed in the vicinity of the edge of the joining surface 46 in the first joining plate 41 and the first joining plate 41 and the second joining plate 42 are brazed and joined, the necessary minimum amount of brazing By using the material 45, blockage of the flow path 43 can be reliably prevented, and a heat exchanger free from flow path defects can be manufactured.

(6)第1接合板41における接合面46の縁近傍にろう材45が設置されてろう付け接合されるので、ろう付け接合部51のシール性が高まり、シール性に優れた熱交換器を製造できると共に、HIP接合処理において、接合部位周囲のシール処理を省略して熱交換器を製造できる。   (6) Since the brazing material 45 is installed in the vicinity of the edge of the joint surface 46 in the first joint plate 41 and brazed, the sealability of the brazed joint portion 51 is enhanced, and a heat exchanger excellent in sealability is obtained. In addition to being able to be manufactured, in the HIP bonding process, a heat exchanger can be manufactured by omitting the sealing process around the bonding site.

その他、本実施形態における熱交換器の製造方法においても、第1接合板41と第2接合板42との接合をろう付け接合とHIP接合処理とを組み合わせて実施し、ろう付け接合時には低加圧力で接合を実施することから、前記第1の実施形態の効果(1)及び(2)と同様な効果を奏する。   In addition, also in the manufacturing method of the heat exchanger in this embodiment, the joining of the first joining plate 41 and the second joining plate 42 is performed in combination with brazing joining and HIP joining treatment, and at the time of brazing joining, a low addition is performed. Since the joining is performed with pressure, the same effects as the effects (1) and (2) of the first embodiment can be obtained.

[D]第4の実施形態(図4)
図4は、本発明に係る熱交換器の製造方法における第4の実施形態を一部切欠いて示す製造工程図である。
[D] Fourth embodiment (FIG. 4)
FIG. 4 is a manufacturing process diagram showing a fourth embodiment of the heat exchanger manufacturing method according to the present invention with a part cut away.

この第4の実施形態における熱交換器の製造方法は、表面に流路63が形成された第1接合板61と、表面に流路64が形成された第2接合板62とを交互に複数枚、例えば5枚ずつ合計10枚接合して、熱交換器を製造するものである。このうち、第1接合板61の流路63を除く表面である接合面66と、第2接合板62の裏面である接合面69とは、拡散接合、HIP接合処理を順次実施して接合する。尚、第2接合板62の流路64を除く表面である接合面67と、第1接合板61の裏面である接合面68との接合については特に限定しないが、接合面66と接合面69の接合の場合と同様に実施するのが好ましい。   The manufacturing method of the heat exchanger according to the fourth embodiment includes a plurality of first joining plates 61 having channels 63 formed on the surface and second joining plates 62 having channels 64 formed on the surface alternately. A total of 10 pieces, for example, 5 pieces are joined together to manufacture a heat exchanger. Among these, the joining surface 66 which is the surface excluding the flow path 63 of the first joining plate 61 and the joining surface 69 which is the back surface of the second joining plate 62 are joined by sequentially performing diffusion joining and HIP joining processing. . Note that the bonding of the bonding surface 67 that is the surface of the second bonding plate 62 excluding the flow path 64 and the bonding surface 68 that is the back surface of the first bonding plate 61 is not particularly limited, but the bonding surface 66 and the bonding surface 69 are not limited. It is preferable to carry out in the same manner as in the case of joining.

ここで、第1接合板61及び第2接合板62の接合により製造される熱交換器が高温高圧ガスを流すものである場合には、上記第1接合板61及び第2接合板62は高強度が要求されるので、例えば酸化物分散強化型の鉄系合金が用いられる。また、同様の理由から、第1接合板61と第2接合板62との接合部にも高強度が要求されるため、これらの第1接合板61と第2接合板62との接合にはろう付け接合が採用されず、最初の接合として拡散接合が実施される。また、上記第1接合板61及び第2接合板62は、種々の形状のものが用いられるが、本実施形態では、例えば一辺が約200mmの正方形状で、厚さが約2mmの板材が用いられる。   Here, when the heat exchanger manufactured by joining the first joining plate 61 and the second joining plate 62 flows high-temperature high-pressure gas, the first joining plate 61 and the second joining plate 62 are high. Since strength is required, for example, an oxide dispersion strengthened iron-based alloy is used. For the same reason, a high strength is also required for the joint portion between the first joint plate 61 and the second joint plate 62, so that the joint between the first joint plate 61 and the second joint plate 62 is required. Brazing bonding is not employed, and diffusion bonding is performed as the first bonding. The first joining plate 61 and the second joining plate 62 have various shapes. In this embodiment, for example, a plate having a square shape with a side of about 200 mm and a thickness of about 2 mm is used. It is done.

上述の拡散接合は、第1接合板61と第2接合板62とを重ね合わせ、真空雰囲気下でホットプレスを用い、例えば約1000℃で30分間程度加熱しつつ、接合面66、67、68、69に対し垂直な一軸方向に約30MPaの等方圧力を作用して実施する。この拡散接合により、図4(A)に示すように、対向する第1接合板61の接合面66と第2接合板62の接合面69との間に拡散接合部70が形成される。第1接合板61と第2接合板62とが比較的大面積であることから、上記拡散接合部70にはボイド(もしくは未接合部)72が残存し易い。拡散接合が真空雰囲気下で実施されるので、上記ボイド内は真空となっている。   In the above-described diffusion bonding, the first bonding plate 61 and the second bonding plate 62 are overlapped and heated using a hot press in a vacuum atmosphere, for example, at about 1000 ° C. for about 30 minutes while bonding surfaces 66, 67, 68. , 69 is applied by applying an isotropic pressure of about 30 MPa in a uniaxial direction perpendicular to 69. By this diffusion bonding, as shown in FIG. 4A, a diffusion bonding portion 70 is formed between the bonding surface 66 of the first bonding plate 61 and the bonding surface 69 of the second bonding plate 62 facing each other. Since the first bonding plate 61 and the second bonding plate 62 have a relatively large area, voids (or unbonded portions) 72 are likely to remain in the diffusion bonding portion 70. Since the diffusion bonding is performed in a vacuum atmosphere, the void is evacuated.

その後、拡散接合部70により接合された第1接合板61及び第2接合板62の接合体をHIP炉に収容し、例えば約1000℃で60分間程度加熱しつつ、ガスによる約100MPaの等方圧力を作用してHIP接合処理を実施する。このHIP接合処理により、図4(B)に示すように、第1接合板61の接合面66と第2接合板62の接合面69との間にHIP接合部71が形成される。このHIP接合部71では、拡散接合部70に残存したボイド72等の欠陥が消失して、第1接合板61と第2接合板62とを冶金的に一体化でき、従って、これらの第1接合板61と第2接合板62との接合性が向上する。   Thereafter, the joined body of the first joining plate 61 and the second joining plate 62 joined by the diffusion joining portion 70 is accommodated in a HIP furnace, and is heated at about 1000 ° C. for about 60 minutes, and isotropically about 100 MPa by gas. The HIP bonding process is performed by applying pressure. By this HIP bonding process, as shown in FIG. 4B, a HIP bonding portion 71 is formed between the bonding surface 66 of the first bonding plate 61 and the bonding surface 69 of the second bonding plate 62. In this HIP joint portion 71, defects such as voids 72 remaining in the diffusion joint portion 70 disappear, and the first joint plate 61 and the second joint plate 62 can be integrated metallurgically. Bondability between the bonding plate 61 and the second bonding plate 62 is improved.

また、上記HIP接合処理においても、第1接合板61の流路63、第2接合板62の流路64は、内部にガスが満たされるので、高い加圧力によっても変形することがない。更に、拡散接合部70はシール性が良好に確保されているので、HIP接合処理の実施に際し、接合部位を溶接等でシール処理する必要がなく、拡散接合後直ちにHIP接合処理を実施することができる。   Also in the HIP bonding process, the flow path 63 of the first bonding plate 61 and the flow path 64 of the second bonding plate 62 are filled with gas, so that they are not deformed by a high pressure. Furthermore, since the diffusion bonding part 70 has a good sealing property, it is not necessary to seal the bonding part by welding or the like when performing the HIP bonding process, and the HIP bonding process can be performed immediately after the diffusion bonding. it can.

上記拡散接合部70のシール性を更に高める方法として、例えば次の二つがある。   For example, there are the following two methods for further improving the sealing performance of the diffusion bonding portion 70.

一つは、第1接合板61の接合面66と第2接合板62の接合面69に、図5に示すような凹凸模様73を、例えば機械加工またはエッチング加工等によって形成し、これらの凹凸模様73を交差させるようにして、上記接合面66と接合面69とを押し当て拡散接合する方法である。上記凹凸模様73は、凹部及び凸部のそれぞれが直線状に延在して形成されている。   One is to form a concavo-convex pattern 73 as shown in FIG. 5 on the joint surface 66 of the first joint plate 61 and the joint surface 69 of the second joint plate 62 by, for example, machining or etching. In this method, the bonding surface 66 and the bonding surface 69 are pressed and diffused and bonded so that the pattern 73 intersects. The concavo-convex pattern 73 is formed such that each of the concave portion and the convex portion extends linearly.

接合面66と接合面69の各凹凸模様73が平行となるように配置して拡散接合を実施すると、拡散接合部70に発生するボイド72は、凹凸模様73の方向に延びた形態になりやすく、第1接合板61、第2接合板62において、凹凸模様73の延在方向に対向する一対の端面74に露出して、拡散接合部70のシール性が低下してしまう。この状態でHIP接合処理を実施しても、HIP接合処理の使用ガスがボイド72の内部に露出部から侵入して、このボイド72を加圧により消失させることができない。   When diffusion bonding is performed by arranging the concave and convex patterns 73 of the bonding surface 66 and the bonding surface 69 in parallel, the void 72 generated in the diffusion bonding portion 70 tends to extend in the direction of the concave and convex pattern 73. In the first bonding plate 61 and the second bonding plate 62, the pair of end faces 74 that are opposed to the extending direction of the concavo-convex pattern 73 are exposed, and the sealing performance of the diffusion bonding portion 70 is degraded. Even if the HIP bonding process is performed in this state, the gas used for the HIP bonding process penetrates into the void 72 from the exposed portion, and the void 72 cannot be lost by pressurization.

これに対し、第1接合板61の接合面66と第2接合板62の接合面69とを拡散接合させる際に、これらの接合面66と接合面69のそれぞれの凹凸模様73を互いに交差させた場合には、交差した各接合部分は押し潰されることで互いに接近し、各接合部分に生ずるボイド72の露出部分を閉塞するので、ボイド72の形態は閉じたものになり易い。この結果、拡散接合部70のシール性が高まり、その後のHIP接合処理により上記ボイド72を確実に消失させることが可能となる。   On the other hand, when the bonding surface 66 of the first bonding plate 61 and the bonding surface 69 of the second bonding plate 62 are diffusion bonded, the respective uneven patterns 73 of the bonding surface 66 and the bonding surface 69 are made to intersect each other. In this case, the crossed joint portions are crushed and approach each other, and the exposed portions of the voids 72 generated in the joint portions are closed. Therefore, the shape of the void 72 tends to be closed. As a result, the sealing property of the diffusion bonding portion 70 is improved, and the void 72 can be surely eliminated by the subsequent HIP bonding process.

拡散接合部70のシール性を更に高める他の方法は、拡散接合時に、第1接合板61の接合面66と第2接合板62の接合面69との間にインサート材(不図示)を介装させる方法である。この場合、インサート材の使用量を低減つつ、且つ拡散接合部70のシール性を高めるために、当該インサート材を第1接合板61の接合面66における縁近傍、つまり当該接合面66において、流路63の両側及び第1接合板61の端面74付近に設置する(図3(A)参照)。このようにインサート材を設置することで、第1接合板61と第2接合板62との拡散接合部70のシール性を向上させ、その後のHIP接合処理において、拡散接合部70内のボイド72を確実に消失させることが可能となる。   Another method for further improving the sealing performance of the diffusion bonding portion 70 is to insert an insert material (not shown) between the bonding surface 66 of the first bonding plate 61 and the bonding surface 69 of the second bonding plate 62 at the time of diffusion bonding. It is a method of wearing. In this case, in order to reduce the amount of the insert material used and to improve the sealing performance of the diffusion bonding portion 70, the insert material is flown near the edge of the bonding surface 66 of the first bonding plate 61, that is, in the bonding surface 66. It installs in the both sides of the path | route 63 and the end surface 74 vicinity of the 1st joining board 61 (refer FIG. 3 (A)). By installing the insert material in this manner, the sealing performance of the diffusion bonding portion 70 between the first bonding plate 61 and the second bonding plate 62 is improved, and the void 72 in the diffusion bonding portion 70 is obtained in the subsequent HIP bonding processing. Can be reliably eliminated.

なお、上記インサート材は、第1接合板61の接合面62にシート状のものを設置してもよく、ペースト状のものの塗布してもよく、或いはインサート材の粉末を高速噴射させてコーティング法により形成してもよい。   In addition, the said insert material may install a sheet-like thing on the joining surface 62 of the 1st joining board 61, may apply | coat a paste-like thing, or it is a coating method by spraying the powder of insert material at high speed. May be formed.

以上のように構成されたことから、上記実施形態によれば、次の効果(7)〜(9)等を奏する。   With the configuration as described above, the following effects (7) to (9) and the like are achieved according to the above embodiment.

(7)第1接合板61の接合面66と第2接合板62の接合面69とを拡散接合して、シール性の良好な拡散接合部70を形成した後にHIP接合処理を実施して、上記接合面66と接合面69とを接合している。第1接合板61及び第2接合板62が高強度材料から構成されている場合、拡散接合のみで上記接合面66と接合面69とを接合しようとすると、高い加圧力が必要となるので、第1接合板61の流路63及び第2接合板62の流路64等を変形させる恐れがある。しかし、拡散接合を低加圧力で実施し、その後、流路63及び流路64等を変形させる恐れがないHIP接合処理を高い加圧力で実施して、拡散接合部70内の残存ボイド72等を消失させるので、流路の寸法精度を確保しつつ、接合面66と接合面69、ひいては第1接合板61と第2接合板62とを確実に接合させた熱交換器を製造することができる。   (7) Diffusion bonding of the bonding surface 66 of the first bonding plate 61 and the bonding surface 69 of the second bonding plate 62 to form a diffusion bonding portion 70 with good sealing performance, and then performing a HIP bonding process, The joint surface 66 and the joint surface 69 are joined. When the first joining plate 61 and the second joining plate 62 are made of a high-strength material, a high pressure is required when joining the joining surface 66 and the joining surface 69 only by diffusion joining. There is a possibility that the flow path 63 of the first bonding plate 61, the flow path 64 of the second bonding plate 62, and the like may be deformed. However, diffusion bonding is performed with a low applied pressure, and then a HIP bonding process that does not cause deformation of the flow path 63 and the flow path 64 is performed with a high applied pressure. Therefore, it is possible to manufacture a heat exchanger in which the joining surface 66 and the joining surface 69, and thus the first joining plate 61 and the second joining plate 62 are reliably joined, while ensuring the dimensional accuracy of the flow path. it can.

(8)第1接合板61の接合面66と第2接合板62の接合面69とに凹凸模様73を形成し、これらを互いに交差させた状態で接合面66と接合面69とを拡散接合させた場合には、拡散接合部70に生ずるボイド72を閉塞させたものとすることができるので、当該拡散接合部70のシール性が優れたものとなる。従って、その後に実施するHIP接合処理によって上記ボイド72等を確実に消失させることができるので、接合面66と接合面69、ひいては第1接合板61と第2接合板62とを確実に接合させた熱交換器を製造することができる。   (8) The concave / convex pattern 73 is formed on the joint surface 66 of the first joint plate 61 and the joint surface 69 of the second joint plate 62, and the joint surface 66 and the joint surface 69 are diffusion-bonded in a state where they are crossed with each other. In this case, since the void 72 generated in the diffusion bonding portion 70 can be closed, the sealing performance of the diffusion bonding portion 70 is excellent. Therefore, since the void 72 and the like can be surely disappeared by the HIP bonding process performed thereafter, the bonding surface 66 and the bonding surface 69, and thus the first bonding plate 61 and the second bonding plate 62 are reliably bonded. Heat exchangers can be manufactured.

(9)第1接合板61の接合面66と第2接合板62の接合面69との間にインサート材を介装して拡散接合させた場合にも、拡散接合部70のシール性を高めることができる。特に、インサート材を接合面66の縁近傍に設置することで、インサート材の使用量を低減しつつ、拡散接合部70のシール性を高めることができる。   (9) Even when an insert material is interposed between the joining surface 66 of the first joining plate 61 and the joining surface 69 of the second joining plate 62, the sealing performance of the diffusion joining portion 70 is improved. be able to. In particular, by installing the insert material in the vicinity of the edge of the bonding surface 66, the sealing property of the diffusion bonding portion 70 can be improved while reducing the amount of the insert material used.

その他、本実施形態においても、HIP接合処理の前に第1接合板61の接合面66と第2接合板62の接合面69との間にシール性の良好な拡散接合部70が形成されているので、前記第1の実施形態の効果(3)と同様な効果を奏する。   In addition, also in the present embodiment, the diffusion bonding portion 70 having a good sealing property is formed between the bonding surface 66 of the first bonding plate 61 and the bonding surface 69 of the second bonding plate 62 before the HIP bonding process. Therefore, the same effect as the effect (3) of the first embodiment can be obtained.

[E]第5の実施形態(図6)
図6は、本発明に係る熱交換器の製造方法における第5の実施形態の接合板を一部切欠いて示す分解側面図である。この第5の実施形態において、前記第4の実施形態と同様な部分は、同一の符号を付すことにより説明を省略する。
[E] Fifth embodiment (FIG. 6)
FIG. 6 is an exploded side view showing a part of the joining plate of the fifth embodiment in the method for manufacturing a heat exchanger according to the present invention. In the fifth embodiment, the same parts as those in the fourth embodiment are denoted by the same reference numerals and the description thereof is omitted.

この第5の実施形態においても、前記第4の実施形態と同様に、第1接合板61の接合面66と第2接合板62の接合面69とを拡散接合した後、HIP接合処理を実施して、複数枚の接合板61及び接合板62から熱交換器を製造する。但し、この第5の実施形態においては、拡散接合を実施する第1接合板61の接合面66と第2接合板62の接合面69のうち、接合面66の縁近傍に凸部80が形成されている。つまり、この凸部80は、第1接合板61の接合面66において、流路63の両側及び第1接合板61の端面74付近に形成されている。   Also in the fifth embodiment, similarly to the fourth embodiment, after the bonding surface 66 of the first bonding plate 61 and the bonding surface 69 of the second bonding plate 62 are diffusion bonded, the HIP bonding process is performed. Then, a heat exchanger is manufactured from the plurality of joining plates 61 and joining plates 62. However, in the fifth embodiment, the convex portion 80 is formed in the vicinity of the edge of the joint surface 66 of the joint surface 66 of the first joint plate 61 and the joint surface 69 of the second joint plate 62 that perform diffusion joining. Has been. That is, the convex portions 80 are formed on both sides of the flow path 63 and in the vicinity of the end surface 74 of the first bonding plate 61 on the bonding surface 66 of the first bonding plate 61.

上記凸部80は、第1接合板61を機械加工することによって形成してもよく、或いは第1接合板61において凸部80以外の部分を化学的にエッチング加工し減肉させて形成してもよい。または、第1接合板61の接合面66に、この第1接合板61と同一材質の粉末を高速噴射させるコールドスプレー等のコーティング法を用いて、上記凸部80を形成してもよい。この凸部80は、例えば幅が約0.5〜1.0mmで、高さが約0.1〜0.5mmに形成される。   The convex portion 80 may be formed by machining the first bonding plate 61, or may be formed by chemically etching and reducing the thickness of the first bonding plate 61 other than the convex portion 80. Also good. Alternatively, the convex portion 80 may be formed on the bonding surface 66 of the first bonding plate 61 by using a coating method such as cold spray in which powder of the same material as the first bonding plate 61 is sprayed at high speed. For example, the convex portion 80 has a width of about 0.5 to 1.0 mm and a height of about 0.1 to 0.5 mm.

上記凸部80を備えた第1接合板61の接合面66と、第2接合板62の接合面69とを拡散接合すると、凸部80が接合面69に押し当てられて拡散接合される。従って、この拡散接合によって接合面66、69間に形成される図示しない拡散接合部は、シール性、特に凸部80が設置された部分のシール性が高いものとなる。   When the bonding surface 66 of the first bonding plate 61 having the convex portion 80 and the bonding surface 69 of the second bonding plate 62 are diffusion bonded, the convex portion 80 is pressed against the bonding surface 69 to be diffusion bonded. Accordingly, a diffusion bonding portion (not shown) formed between the bonding surfaces 66 and 69 by this diffusion bonding has a high sealing performance, particularly a sealing performance of a portion where the convex portion 80 is installed.

また、第1接合板61における接合面66の片側の幅Wが例えば約10mmであり、凸部80の幅Mが例えば0.5mmのときには、第1接合板61の凸部80が第2接合板62の接合面69に当接する面積は、上記接合面66が上記接合面69に当接する面積に比べて1/10となる。従って、上記凸部80が上記接合面69に拡散接合する場合には、上記接合面66が上記接合面69に直接拡散接合する場合に比べて、第1接合板61及び第2接合板62に作用する荷重(加圧力)が1/10となる。この結果、第1接合板61の流路63及び第2接合板62の流路64の変形を抑制することが可能となる。   Further, when the width W on one side of the joining surface 66 in the first joining plate 61 is, for example, about 10 mm and the width M of the projecting portion 80 is, for example, 0.5 mm, the projecting portion 80 of the first joining plate 61 is second joined. The area of the plate 62 that contacts the bonding surface 69 is 1/10 of the area of the bonding surface 66 that contacts the bonding surface 69. Accordingly, when the convex portion 80 is diffusion bonded to the bonding surface 69, the first bonding plate 61 and the second bonding plate 62 are compared with the case where the bonding surface 66 is directly diffusion bonded to the bonding surface 69. The acting load (pressing force) is 1/10. As a result, it is possible to suppress deformation of the flow path 63 of the first bonding plate 61 and the flow path 64 of the second bonding plate 62.

上述のようにして拡散接合された第1接合板61及び第2接合板62を次にHIP接合処理する。このHIP接合処理によって、第1接合板61の接合面66と第2接合板62の接合面69との間で、上記拡散接合部が図示しないHIP接合部となる。上記拡散接合部のシール性が良好であることから、HIP接合処理では、拡散接合部内のボイド(不図示)等が確実に消失して、第1接合板61の接合面66と第2接合板62の接合面69との接合性が向上する。   The first bonding plate 61 and the second bonding plate 62 that have been diffusion bonded as described above are then subjected to HIP bonding processing. By this HIP bonding process, the diffusion bonding portion becomes a HIP bonding portion (not shown) between the bonding surface 66 of the first bonding plate 61 and the bonding surface 69 of the second bonding plate 62. Since the sealing property of the diffusion bonding portion is good, in the HIP bonding process, voids (not shown) in the diffusion bonding portion are surely lost, and the bonding surface 66 and the second bonding plate of the first bonding plate 61 are lost. The joining property with the joining surface 69 of 62 is improved.

以上のように構成されたことから、上記実施形態によれば、次の効果(10)及び(11)等を奏する。   With the configuration as described above, the following effects (10) and (11) are obtained according to the above embodiment.

(10)対向する第1接合板61の接合面66と第2接合板62の接合面69とのうち、例えば接合面66の縁近傍に凸部80を形成し、この凸部80を接合面69に押し当てることで拡散接合を実施し、その後、第1接合板61及び第2接合板62にHIP接合処理を実施して熱交換器を製造する。このように接合面66に凸部80が形成されているため、上記拡散接合において形成される拡散接合部のシール性を高めることができる。この結果、HIP接合処理により接合面66と接合面69との接合、ひいては第1接合板61と第2接合板62との接合を確実化でき、接合性の良好な熱交換器を製造できる。   (10) Of the joint surface 66 of the first joint plate 61 and the joint surface 69 of the second joint plate 62 facing each other, for example, a convex portion 80 is formed in the vicinity of the edge of the joint surface 66, and this convex portion 80 is joined to the joint surface. Then, diffusion bonding is performed by pressing against 69, and then HIP bonding processing is performed on the first bonding plate 61 and the second bonding plate 62 to manufacture a heat exchanger. Thus, since the convex part 80 is formed in the joining surface 66, the sealing performance of the diffusion joining part formed in the said diffusion joining can be improved. As a result, the bonding between the bonding surface 66 and the bonding surface 69 and the bonding between the first bonding plate 61 and the second bonding plate 62 can be ensured by the HIP bonding process, and a heat exchanger with good bonding properties can be manufactured.

(11)第1接合板61の接合面66に形成された凸部80が第2接合板62の接合面69に押し当てられて拡散接合が実施されるので、この拡散接合を低荷重(低加圧力)で実施でき、第1接合板61の流路63及び第2接合板62の流路64の変形を抑制できる。また、HIP接合処理においては、流路63及び流路64は、HIP接合処理の使用ガスで満たされるので、高加圧力が作用しても変形が抑制される。これらの結果、流路等の寸法精度が良好な熱交換器を製造できる。   (11) Since the convex portion 80 formed on the joining surface 66 of the first joining plate 61 is pressed against the joining surface 69 of the second joining plate 62 and diffusion joining is performed, this diffusion joining is performed with a low load (low And the deformation of the flow path 63 of the first bonding plate 61 and the flow path 64 of the second bonding plate 62 can be suppressed. Further, in the HIP bonding process, the flow path 63 and the flow path 64 are filled with the gas used for the HIP bonding process, so that deformation is suppressed even when a high pressure is applied. As a result, it is possible to manufacture a heat exchanger with good dimensional accuracy such as a flow path.

その他、本実施形態においても、HIP接合処理の前に、第1接合板61の接合面66と第2接合板62の接合面69との間にシール性の良好な拡散接合部が形成されるので、前記第1の実施形態の効果(3)と同様な効果を奏する。   In addition, also in the present embodiment, a diffusion bonded portion having a good sealing property is formed between the bonding surface 66 of the first bonding plate 61 and the bonding surface 69 of the second bonding plate 62 before the HIP bonding process. Therefore, the same effect as the effect (3) of the first embodiment can be obtained.

[F]第6の実施形態(図7)
図7は、本発明に係る熱交換器の製造方法における第6の実施形態を一部切欠いて示す製造工程図である。この第6の実施形態において、前記第4及び第5の実施形態と同様な部分は、同一の符号を付すことにより説明を省略する。
[F] Sixth embodiment (FIG. 7)
FIG. 7 is a manufacturing process diagram illustrating a sixth embodiment of the heat exchanger manufacturing method according to the present invention with a part cut away. In the sixth embodiment, the same parts as those in the fourth and fifth embodiments are denoted by the same reference numerals, and the description thereof is omitted.

この第6の実施形態が第5の実施形態と異なる点は、凸部80が尖鋭形状のエッジ状凸部85(図7(A))とされ、対向する第1接合板61の接合面66と第2接合板62の接合面69との拡散接合時に、図7(B)に示すように、上記エッジ状凸部85が接合面69に食い込んで接合される点である。従って、この拡散接合においては、より低い荷重(加圧力)で拡散接合を実施できると共に、この拡散接合により接合面66と接合面69との間に形成される拡散接合部86のシール性を向上させることができる。   The sixth embodiment is different from the fifth embodiment in that the convex portion 80 is a sharp edge-shaped convex portion 85 (FIG. 7A), and the joint surface 66 of the first joint plate 61 facing the convex portion 80. 7B, the edge-shaped convex portion 85 bites into the bonding surface 69 and is bonded at the time of diffusion bonding with the bonding surface 69 of the second bonding plate 62. As shown in FIG. Therefore, in this diffusion bonding, diffusion bonding can be performed with a lower load (pressure), and the sealing performance of the diffusion bonding portion 86 formed between the bonding surface 66 and the bonding surface 69 is improved by this diffusion bonding. Can be made.

ここで、上記エッジ状凸部85も、前記凸部80と同様にして機械加工、エッチング加工またはコーティング法により形成される。   Here, the edge-shaped convex portion 85 is also formed by machining, etching, or coating in the same manner as the convex portion 80.

以上のように構成されたことから、上記実施形態によれば、次の効果(12)及び(13)等を奏する。   With the configuration described above, the following effects (12) and (13) are obtained according to the above embodiment.

(12)対向する第1接合板61の接合面66と第2接合板62の接合面69とのうち、例えば接合面66の縁近傍にエッジ状凸部85を形成し、このエッジ状凸部85を接合面69に食い込ませることで拡散接合を実施し、その後、第1接合板61及び第2接合板62にHIP接合処理を実施して熱交換器を製造する。このように接合面66にエッジ状凸部85が形成され、このエッジ状凸部85が接合面66に食い込んで拡散接合が実施されるため、上記拡散接合において形成される拡散接合部のシール性をより一層高めることができる。この結果、HIP接合処理により接合面66と接合面69との接合、ひいては第1接合板61と第2接合板62との接合を確実化でき、接合性の良好な熱交換器を製造できる。   (12) Of the joint surface 66 of the first joint plate 61 and the joint surface 69 of the second joint plate 62 facing each other, for example, an edge-shaped convex portion 85 is formed in the vicinity of the edge of the joint surface 66, and this edge-shaped convex portion The diffusion bonding is performed by causing 85 to penetrate into the bonding surface 69, and then the HIP bonding process is performed on the first bonding plate 61 and the second bonding plate 62 to manufacture the heat exchanger. As described above, the edge-shaped convex portion 85 is formed on the joint surface 66, and the edge-shaped convex portion 85 bites into the joint surface 66 and diffusion bonding is performed. Therefore, the sealing property of the diffusion joint portion formed in the diffusion bonding is described above. Can be further increased. As a result, the bonding between the bonding surface 66 and the bonding surface 69 and the bonding between the first bonding plate 61 and the second bonding plate 62 can be ensured by the HIP bonding process, and a heat exchanger with good bonding properties can be manufactured.

(13)第1接合板61の接合面66に形成されたエッジ状凸部85が第2接合板62の接合面69に食い込んで拡散接合が実施されるので、この拡散接合をより低荷重(低加圧力)で実施でき、第1接合板61の流路63及び第2接合板62の流路64の変形を更に抑制できる。また、HIP接合処理においては、流路63及び流路64は、HIP接合処理の使用ガスで満たされるので、高加圧力が作用しても変形が抑制される。これらの結果、流路等の寸法精度が良好な熱交換器を製造できる。   (13) Since the edge-shaped convex portion 85 formed on the joining surface 66 of the first joining plate 61 bites into the joining surface 69 of the second joining plate 62 and diffusion joining is performed, this diffusion joining is performed at a lower load ( The deformation of the flow path 63 of the first bonding plate 61 and the flow path 64 of the second bonding plate 62 can be further suppressed. Further, in the HIP bonding process, the flow path 63 and the flow path 64 are filled with the gas used for the HIP bonding process, so that deformation is suppressed even when a high pressure is applied. As a result, it is possible to manufacture a heat exchanger with good dimensional accuracy such as a flow path.

その他、本実施形態においても、HIP接合処理の前に、第1接合板61の接合面66と第2接合板62の接合面69との間にシール性の良好な拡散接合部が形成されるので、前記第1の実施形態の効果(3)と同様な効果を奏する。   In addition, also in the present embodiment, a diffusion bonded portion having a good sealing property is formed between the bonding surface 66 of the first bonding plate 61 and the bonding surface 69 of the second bonding plate 62 before the HIP bonding process. Therefore, the same effect as the effect (3) of the first embodiment can be obtained.

本発明に係る熱交換器の製造方法における第1の実施形態を一部切欠いて示す製造工程図。The manufacturing process figure which partially cuts and shows 1st Embodiment in the manufacturing method of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の製造方法における第2の実施形態を一部切欠いて示す製造工程図。The manufacturing process figure which partially cuts and shows 2nd Embodiment in the manufacturing method of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の製造方法における第3の実施形態を一部切欠いて示す製造工程図。The manufacturing process figure which partially cuts and shows 3rd Embodiment in the manufacturing method of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の製造方法における第4の実施形態を一部切欠いて示す製造工程図。The manufacturing process figure which partially cuts and shows 4th Embodiment in the manufacturing method of the heat exchanger which concerns on this invention. 図4における接合面の凹凸模様を示す図。The figure which shows the uneven | corrugated pattern of the joint surface in FIG. 本発明に係る熱交換器の製造方法における第5の実施形態の接合板を一部切欠いて示す分解側面図。The decomposition | disassembly side view which partially cuts and shows the joining board of 5th Embodiment in the manufacturing method of the heat exchanger which concerns on this invention. 本発明に係る熱交換器の製造方法における第6の実施形態を一部切欠いて示す製造工程図。The manufacturing process figure which partially cuts and shows 6th Embodiment in the manufacturing method of the heat exchanger which concerns on this invention.

符号の説明Explanation of symbols

1 第1接合板、
2 第2接合板
3、4 流路
5 ろう材
6、7、8、9 接合面
10 ろう付け接合部
11 拡散接合部
12 HIP接合部
21 第1接合板
22 第2接合板
23、24 流路
26、27、28、29 接合面
30 ろう付け接合部
31、33 拡散接合部
32 HIP接合部
41 第1接合板
42 第2接合板
43、44 流路
45 ろう材
46、47、48、49 接合面
51 ろう付け接合部
53 HIP接合部
61 第1接合板
62 第2接合板
63、64 流路
66、67、68、69 接合面
70 拡散接合部
71 HIP接合部
73 凹凸模様
80 凸部
85 エッジ状凸部
1 1st joining board,
2 Second bonding plate 3, 4 Flow path 5 Brazing material 6, 7, 8, 9 Bonding surface 10 Brazing bonding part 11 Diffusion bonding part 12 HIP bonding part 21 First bonding plate 22 Second bonding plate 23, 24 Flow path 26, 27, 28, 29 Joint surface 30 Brazed joint portion 31, 33 Diffusion joint portion 32 HIP joint portion 41 First joint plate 42 Second joint plate 43, 44 Channel 45 Brazing material 46, 47, 48, 49 Joint Surface 51 Brazed joint portion 53 HIP joint portion 61 First joint plate 62 Second joint plate 63, 64 Channels 66, 67, 68, 69 Joint surface 70 Diffusion joint portion 71 HIP joint portion 73 Uneven pattern 80 Convex portion 85 Edge Convex

Claims (10)

流路が形成された複数枚の接合板を接合して熱交換器を製造する熱交換器の製造方法において、
上記接合板をろう材を用いて接合するろう付け接合と、上記接合板を加圧機により一軸方向に加圧することによって接合する拡散接合と、上記接合板をガスによる等方圧力の加圧により接合する高温等方加圧接合処理とを、少なくとも2種類組み合わせることで複数枚の上記接合板を接合することを特徴とする熱交換器の製造方法。
In the heat exchanger manufacturing method for manufacturing a heat exchanger by bonding a plurality of bonding plates in which flow paths are formed,
Brazing joining for joining the joining plate using a brazing material, diffusion joining for joining the joining plate by uniaxially pressing the joining plate with a pressurizing machine, and joining the joining plate by applying an isotropic pressure with gas. A method of manufacturing a heat exchanger, wherein a plurality of the above-mentioned joining plates are joined by combining at least two types of high temperature isotropic pressure joining processes.
前記複数枚の接合板をそれぞれ接合する複数の接合部のうち、一の接合部と他の接合部とで、ろう付け接合、拡散接合、高温等方加圧接合処理の組合せ種類を異ならせることを特徴とする請求項1に記載の熱交換器の製造方法。 Among the plurality of joints that respectively join the plurality of joint plates, the combination type of brazing joint, diffusion joining, and high temperature isotropic pressure joining treatment is different between one joint and the other joint. The manufacturing method of the heat exchanger of Claim 1 characterized by these. 前記接合板における接合面の縁近傍にろう材を配置してろう付け接合を実施することを特徴とする請求項1または2に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 1, wherein brazing is performed by arranging a brazing material in the vicinity of the edge of the joining surface of the joining plate. 前記接合板の接合面に凹凸模様が形成され、対向する上記接合板の上記接合面を、上記凹凸模様を交差させて押し当てることにより拡散接合を実施することを特徴とする請求項1または2に記載の熱交換器の製造方法。 3. A concavo-convex pattern is formed on the bonding surface of the bonding plate, and diffusion bonding is performed by pressing the bonding surface of the bonding plate facing each other while crossing the concavo-convex pattern. The manufacturing method of the heat exchanger as described in 1 .. 前記接合板における接合面の縁近傍にインサート材を配置して拡散接合を実施することを特徴とする請求項1または2に記載の熱交換器の製造方法。 The heat exchanger manufacturing method according to claim 1 or 2, wherein diffusion bonding is performed by disposing an insert material in the vicinity of an edge of a bonding surface of the bonding plate. 対向する前記接合板の両接合面間に配置されるろう材またはインサート材を、これらのろう材またはインサート材の粉体を噴射することにより形成することを特徴とする請求項1、2、3または5に記載の熱交換器の製造方法。 The brazing material or insert material disposed between both joint surfaces of the opposing joining plates is formed by injecting powder of these brazing material or insert material. Or the manufacturing method of the heat exchanger of 5. 対向する前記接合板の両接合面のうち、一方の接合面の縁近傍に凸部を形成し、この凸部を他方の接合面に押し当てることにより拡散接合を実施することを特徴とする請求項1または2に記載の熱交換器の製造方法。 A convex portion is formed in the vicinity of an edge of one of the joint surfaces of the opposing joint plates, and diffusion bonding is performed by pressing the convex portion against the other joint surface. Item 3. A method for producing a heat exchanger according to Item 1 or 2. 前記凸部は尖鋭形状のエッジ状凸部であり、このエッジ状凸部を他方の接合面に押し当て食い込ませることにより拡散接合を実施することを特徴とする請求項7に記載の熱交換器の製造方法。 The heat exchanger according to claim 7, wherein the convex portion is a sharp edge-shaped convex portion, and diffusion bonding is performed by pressing the edge-shaped convex portion against the other joint surface. Manufacturing method. 前記凸部またはエッジ状凸部を、接合材の接合面をエッチング加工することにより、または上記接合材と同一材質の粉体を噴射することにより形成することを特徴とする請求項7または8に記載の熱交換器の製造方法。 The said convex part or edge-shaped convex part is formed by etching the joint surface of a joining material, or spraying the powder of the same material as the said joining material, The Claim 7 or 8 characterized by the above-mentioned. The manufacturing method of the heat exchanger of description. 流路が形成された複数枚の接合板を接合して製造された熱交換器において、
上記接合板をろう材を用いて接合するろう付け接合と、上記接合板を加圧機により一軸方向に加圧することによって接合する拡散接合と、上記接合板をガスによる等方圧力の加圧により接合する高温等方加圧接合処理とが、少なくとも2種類組み合わされて複数枚の上記接合板が接合され構成されたことを特徴とする熱交換器。
In a heat exchanger manufactured by joining a plurality of joining plates formed with flow paths,
Brazing joining for joining the joining plate using a brazing material, diffusion joining for joining the joining plate by uniaxially pressing the joining plate with a pressurizing machine, and joining the joining plate by applying an isotropic pressure with gas. A heat exchanger characterized in that at least two types of high-temperature isotropic pressure bonding processes are combined to bond a plurality of the above-mentioned bonding plates.
JP2006212116A 2006-08-03 2006-08-03 Heat exchanger and its manufacturing method Pending JP2008039255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006212116A JP2008039255A (en) 2006-08-03 2006-08-03 Heat exchanger and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006212116A JP2008039255A (en) 2006-08-03 2006-08-03 Heat exchanger and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008039255A true JP2008039255A (en) 2008-02-21

Family

ID=39174473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006212116A Pending JP2008039255A (en) 2006-08-03 2006-08-03 Heat exchanger and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008039255A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291793A (en) * 2008-06-02 2009-12-17 Kuroki Kogyosho:Kk Method for producing structure
FR2936179A1 (en) * 2008-09-23 2010-03-26 Commissariat Energie Atomique METHOD FOR MANUFACTURING A HEAT EXCHANGER SYSTEM, PREFERABLY OF THE EXCHANGER / REACTOR TYPE
WO2010147170A1 (en) * 2009-06-18 2010-12-23 昭和電工株式会社 Brazing method for heat exchanger
WO2011062118A1 (en) * 2009-11-19 2011-05-26 三菱電機株式会社 Plate-type heat exchanger and heat pump device
JP2012052800A (en) * 2011-11-09 2012-03-15 Mitsubishi Electric Corp Plate type heat exchanger and heat pump device
JP2013503750A (en) * 2009-09-07 2013-02-04 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for making a module having a hollow area, preferably a hollow area for circulation of fluids
JP2013505835A (en) * 2009-09-25 2013-02-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for manufacturing a module with a hollow region by hot isostatic pressing
JP2013220427A (en) * 2012-04-13 2013-10-28 Showa Denko Kk Method for manufacturing aluminum material for brazing
JP2014200824A (en) * 2013-04-05 2014-10-27 富士電機株式会社 Pressure-jointing method using static fluid pressure, and pressure-jointing device for use in the method
WO2015086915A1 (en) * 2013-12-12 2015-06-18 Societe Technique Pour L'energie Atomique Method for welding an assembly including a plurality of plates, by means of diffusion and subsequent hot isostatic compression
JP2016517950A (en) * 2013-05-10 2016-06-20 コミッサリア タ レネルジー アトミク エ オ エネルジー オルタネイティヴ Method of making a heat exchanger module having at least two fluid flow circuits
WO2020105658A1 (en) * 2018-11-22 2020-05-28 住友精密工業株式会社 Diffusion-bonded heat exchanger

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291793A (en) * 2008-06-02 2009-12-17 Kuroki Kogyosho:Kk Method for producing structure
US8468697B2 (en) 2008-09-23 2013-06-25 Commissariat a l'Energie Atomique et aux Energiest Alternatives Method for producing a heat exchanger system, preferably of the exchanger/reactor type
FR2936179A1 (en) * 2008-09-23 2010-03-26 Commissariat Energie Atomique METHOD FOR MANUFACTURING A HEAT EXCHANGER SYSTEM, PREFERABLY OF THE EXCHANGER / REACTOR TYPE
WO2010034692A1 (en) * 2008-09-23 2010-04-01 Commissariat A L'energie Atomique Method for making a heat exchanger system, preferably of the exchanger/reactor type
WO2010147170A1 (en) * 2009-06-18 2010-12-23 昭和電工株式会社 Brazing method for heat exchanger
JP2013503750A (en) * 2009-09-07 2013-02-04 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for making a module having a hollow area, preferably a hollow area for circulation of fluids
US9289847B2 (en) 2009-09-07 2016-03-22 Commissariat à l'énergie atomique et aux énergies alternatives Method for manufacturing a module with a hollow region, preferably for fluid circulation
EP2475493B1 (en) * 2009-09-07 2015-05-13 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Verfahren zur herstellung eines moduls mit einem hohlraum, insbesondere für einen flüssigkeitkreislauf
JP2013505835A (en) * 2009-09-25 2013-02-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for manufacturing a module with a hollow region by hot isostatic pressing
CN102667391A (en) * 2009-11-19 2012-09-12 三菱电机株式会社 Plate-type heat exchanger and heat pump device
JP2011106764A (en) * 2009-11-19 2011-06-02 Mitsubishi Electric Corp Plate type heat exchanger and heat pump device
WO2011062118A1 (en) * 2009-11-19 2011-05-26 三菱電機株式会社 Plate-type heat exchanger and heat pump device
EP2503277B1 (en) 2009-11-19 2019-09-04 Mitsubishi Electric Corporation Plate-type heat exchanger and heat pump device
CN102667391B (en) * 2009-11-19 2016-03-02 三菱电机株式会社 Heat-exchangers of the plate type and heat pump assembly
JP2012052800A (en) * 2011-11-09 2012-03-15 Mitsubishi Electric Corp Plate type heat exchanger and heat pump device
JP2013220427A (en) * 2012-04-13 2013-10-28 Showa Denko Kk Method for manufacturing aluminum material for brazing
JP2014200824A (en) * 2013-04-05 2014-10-27 富士電機株式会社 Pressure-jointing method using static fluid pressure, and pressure-jointing device for use in the method
JP2016517950A (en) * 2013-05-10 2016-06-20 コミッサリア タ レネルジー アトミク エ オ エネルジー オルタネイティヴ Method of making a heat exchanger module having at least two fluid flow circuits
US10399191B2 (en) 2013-05-10 2019-09-03 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for producing a heat exchanger module having at least two fluid flow circuits
WO2015086915A1 (en) * 2013-12-12 2015-06-18 Societe Technique Pour L'energie Atomique Method for welding an assembly including a plurality of plates, by means of diffusion and subsequent hot isostatic compression
WO2020105658A1 (en) * 2018-11-22 2020-05-28 住友精密工業株式会社 Diffusion-bonded heat exchanger
JPWO2020105658A1 (en) * 2018-11-22 2021-09-30 住友精密工業株式会社 Diffusion junction heat exchanger
EP3885691A4 (en) * 2018-11-22 2021-12-22 Sumitomo Precision Products Co., Ltd. DIFFUSION-BONDED HEAT EXCHANGER
JP7110390B2 (en) 2018-11-22 2022-08-01 住友精密工業株式会社 Diffusion bonded heat exchanger
US12092401B2 (en) 2018-11-22 2024-09-17 Sumitomo Precision Products Co., Ltd Diffusion bonding heat exchanger

Similar Documents

Publication Publication Date Title
JP2008039255A (en) Heat exchanger and its manufacturing method
JP5788069B1 (en) Flat type heat pipe
CN211903865U (en) Vapor chamber
JP2010169379A (en) Method of manufacturing thermal transport device, and thermal transport device
JP6603728B2 (en) Method for manufacturing plate heat exchanger
CA2542746C (en) A plate heat exchanger
JP2009291793A (en) Method for producing structure
JP7275699B2 (en) LAMINATED PRODUCT AND METHOD FOR MANUFACTURING LAMINATED BODY
CN108716871B (en) Heat dissipating element and manufacturing method thereof
WO2021009806A1 (en) Brazing jig and multilayer refrigerant distributor produced using same
JP5717590B2 (en) Ion source electrode and manufacturing method thereof
JP2010043812A (en) Manufacturing method of heat exchanger, and the heat exchanger
KR20180127925A (en) Heat transfer plate for vacuum unit and method for manufacturing the same
TWI661172B (en) Heat dissipation component and manufacturing method thereof
Paloniitty et al. Laminated manifold for digital hydraulics–principles, challenges and benefits
KR102779175B1 (en) process of manufacturing
TWI640741B (en) Titanium plate heat exchanger and the method of producing the same
JP2015102318A (en) Plate laminate
JP2006320931A (en) Brazing method and brazing product
JP2006297450A (en) COMPOSITE MATERIAL, PLATE TYPE HEAT EXCHANGER AND COMPOSITE BRAZING METHOD
US9126282B2 (en) Method for a fluid-tight connection of two components for producing a fluid-tight cooling unit
JP7282009B2 (en) Welding device and manufacturing method of joining member
TWI677664B (en) Method of manufacturing heat dissipation unit
JP2001330390A (en) Heat exchanger for high pressure
JP2016088773A (en) Joined body