[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3742686B2 - Horizontal vertical material - Google Patents

Horizontal vertical material Download PDF

Info

Publication number
JP3742686B2
JP3742686B2 JP10439796A JP10439796A JP3742686B2 JP 3742686 B2 JP3742686 B2 JP 3742686B2 JP 10439796 A JP10439796 A JP 10439796A JP 10439796 A JP10439796 A JP 10439796A JP 3742686 B2 JP3742686 B2 JP 3742686B2
Authority
JP
Japan
Prior art keywords
horizontal
vertical material
block
sound insulation
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10439796A
Other languages
Japanese (ja)
Other versions
JPH09295847A (en
Inventor
榮治 渕上
安喜 岩部
裕治 服部
Original Assignee
中部鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中部鋼鈑株式会社 filed Critical 中部鋼鈑株式会社
Priority to JP10439796A priority Critical patent/JP3742686B2/en
Publication of JPH09295847A publication Critical patent/JPH09295847A/en
Application granted granted Critical
Publication of JP3742686B2 publication Critical patent/JP3742686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は例えば水や土砂を堰き止める擁壁ブロック、遮音壁、建築物の壁等の垂直に設置され、あるいは河床ブロック、舗装ブロック、建築物の基礎等の水平に設置される水平垂直材料に関するものである。
【0002】
【従来の技術】
従来から例えば水や土砂を堰き止める擁壁ブロック、高速道路や新幹線等の鉄道等の遮音壁、河床ブロック、舗石等にはセメントに骨材として砕砂、海砂、川砂、ケイ砂等を混合したコンクリート成形物からなる水平垂直材料が使用されている。
【0003】
【発明が解決しようとする課題】
上記水平垂直材料は雨水、河川の水等に接触するために高い耐蝕性を要求され、また土砂圧、水圧あるいは地震等の地殻変動に耐えるために大重量かつ高強度を要求される。
しかしながら上記従来のコンクリート成形物の場合には耐蝕性、重量、強度、耐凍結融解性が不足しており、屡々水平垂直材料の浸蝕、破損等の不具合が起こるおそれがある。また骨材として砕砂や川砂等の天然資源は現在不足しており極めて深刻な状態となっている。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決するための手段として、セメント硬化物マトリクス内に、電気炉酸化スラグの溶融物を高速回転する羽根付きドラムに注入し、該溶融物を該羽根付きドラムによって破砕粒状化し、粒状化した該溶融物を水ミスト雰囲気中で急冷処理することによって製造された表面に微細な凹凸を有する略球状の電気炉酸化スラグ粒化物が細骨材(8) として分散しているコンクリート成形物からなる水平垂直材料(10,11,12,21,31,32,41,51,61)を提供するものである。
該コンクリート成形物には補強のために鉄筋が内在されてもよく、また水平垂直材料としては例えば擁壁ブロック、遮音壁、建築物躯体、河床ブロック、舗装ブロック等がある。
本発明を以下に詳細に説明する。
【0005】
〔電気炉酸化スラグ〕
本発明に言う電気炉酸化スラグは、通常Ca O10〜26重量%、Si O2 8〜22重量%、Mn O4〜7重量%、Mg O2〜8重量%、Fe O13〜32重量%、Fe23 9〜45重量%、Al23 4〜16重量%、Cr23 1〜4重量%程度含み、更に微量成分としてTi O2 0.25〜0.70重量%、P2 5 0.15〜0.50重量%、S0.005〜0.085重量%程度含み、安定な鉱物組成を得るためのFe を20〜45重量%程度含むものであり、天然骨材成分に含まれる粘土、有機不純物、塩分を全く含まず、不安定な遊離石灰、遊離マグネシアあるいは鉱物も殆ど含まない。
【0006】
〔細骨材の製造〕
上記電気炉酸化スラグを粒化して細骨材を製造するには、該電気炉酸化スラグの溶融物を高速回転する羽根付きドラムに注入し、該溶融物を該羽根付きドラムによって破砕粒状化し、粒状化した該溶融物を水ミスト雰囲気中で急冷処理する方法が採られる。該羽根付きドラムは複数個配置して複数段の破砕粒状化を行なってもよい。
このようにして得られる電気炉酸化スラグの粒化物は通常5mm以下の粒径を有し細骨材に分類され、粒径2.5mm以下のものは略球状であり、比重は3.3〜3.8の範囲にあり、表面にはひび割れ等の欠陥はなく、微細な凹凸を有しまた中空構造のものからなるかまたは中空構造のものを含んでいる。そして粒度分布はJIS−A5005コンクリート用砕砂の規格範囲にある。
【0007】
〔セメント〕
上記表面に微細な凹凸を有する略球状の電気炉酸化スラグ粒化物からなる細骨材が混合されるセメントには、例えばポルトランドセメント、アルミナセメント、フライアッシュセメント、高炉スラグセメント、シリカセメント等がある。
【0008】
〔細骨材の使用〕
上記表面に微細な凹凸を有する電気炉酸化スラグ粒化物からなる細骨材とセメントとの混合比率は通常従来の天然細骨材と同様であり、体積比率としてセメント100に対して300〜600程度の細骨材が混合される。上記セメント−細骨材混合物には川砂、海砂、ケイ砂、砕石、砕砂、パーライト、フライアッシュ、高炉スラグ等の他の骨材、セメント硬化調節剤、減水剤、増粘剤等が添加されてもよい。
上記セメント−細骨材混合物には通常水がセメント100重量部に対して25〜60重量部程度添加されてセメントスラリーあるいはセメント混練物とされ、該セメントスラリーあるいはセメント混練物は通常型枠内に流し込む注型成形あるいは押出成形等によってパイプ状、トラフ状あるいは桝状に成形されたコンクリート成形物となる。該コンクリート成形物には補強のために鉄筋が挿入されてもよいが、この場合には型枠内に鉄筋を挿入した状態でセメントスラリーを流し込む。
【0009】
【発明の実施の形態】
〔実施例1〕(細骨材の製造)
図1に本発明の細骨材を製造する装置を示す。
即ち1500℃前後の電気炉酸化スラグ溶融物(1) を取鍋(2) からシューター(3) に移し、該シューター(3) から高速回転する羽根付きドラム(4,5) に注入する。該製鋼スラグ溶融物(1) は該羽根付きドラム(4,5) によって細破砕されて粒状化し、該電気炉酸化スラグ溶融物の粒化物(1A)は急冷チャンバー(6) 内にスプレー装置(7) からスプレーされる水ミストによって急冷される。そしてこのようにして得られた細骨材(8) は備蓄容器(9) 内に備蓄される。
該細骨材(8) は略球状の中空体であり、表面にはひび割れ等の欠陥はなく、微細な凹凸が有り、高硬度(ビッカース硬さで755、モース硬さで6程度)を有し耐摩耗性に優れており、真比重は3.84、絶乾比重は3.52、耐火度は1100℃で、透磁性、導電性、耐酸性、耐アルカリ性等にも優れている。
該細骨材(8) の粒度分布を図2に示す。図2において実線グラフは本発明の骨材(8) の粒度分布、点線グラフはJIS−A5005コンクリート用細骨材の規格範囲を示し、該細骨材(8) は該規格範囲内であることが認められる。
【0010】
〔実施例2〕
上記細骨材を用い下記の組成の配合物を混練調製した。
普通ポルトランドセメント 540kg/m3
細骨材(実施例1 ρ=3.79)1213 〃 (320リットル)
粗骨材(砕石) 916 〃
シリカヒューム 60 〃
高性能AE減水剤 12 〃
水 135 〃
上記配合物を練り置き時間30分で型枠に流し込み20秒後のスランプフロー値を求めた所31.5cmであった。
上記配合物を型枠に流し込んでφ10cm×20cmのブロックを成形し、成形後のブロックの圧縮強度を経日的に測定した結果を表1に示す。
【表1】

Figure 0003742686
【0011】
〔比較例1〕
細骨材として川砂を用いて下記の組成の配合物を混練調製した。
普通ポルトランドセメント 540kg/m3
細骨材(川砂 ρ=2.56) 819 〃 (320リットル)
粗骨材(砕石) 916 〃
シリカヒューム 60 〃
高性能AE減水剤 12 〃
水 135 〃
上記配合物を練り置き時間30分で型枠に流し込み20秒後のスランプフロー値を求めた所24.0cmであった。
上記配合物を型枠に流し込んで実施例2と同様なブロックを成形し、同様に該ブロックの圧縮強度を経日的に測定した結果を表2に示す。
【表2】
Figure 0003742686
【0012】
実施例2の表1と比較例1の表2を比較すると、実施例2の配合物によるブロックは比較例1の配合物(従来例)に比べて強度、特に初期強度に優れていることが認められた。またスランプフロー値から実施例2の配合物は比較例1の配合物(従来例)に比べて成形性に優れていることが認められた。
【0013】
〔耐蝕試験〕
実施例2と比較例1の配合物を夫々型枠に流し込んでφ10cm×20cmのブロックを成形し、各ブロックを28日間放置した上で5%塩酸水溶液に浸漬し、経時的に圧縮強度(N/mm2)を測定した。その結果を表3に示す。
【表3】
Figure 0003742686
表3をみると、実施例2の配合物のブロックは5%塩酸水溶液に浸漬しても圧縮強度の経時的な低下は少なく優れた耐蝕性を示すが、比較例1の配合物のブロックは実施例2のブロックよりも圧縮強度が低く、しかも5%塩酸水溶液に浸漬した場合強度の経時的な低下が大きいことが認められた。
【0014】
〔実施例3〕
上記本発明の細骨材を粒径5mm以下に篩別したものを使用して表4に示す混練物を作成した。
【表4】
Figure 0003742686
上記混練物を型枠に充填して図3および図4に示すような空洞遮音ブロック(10)を成形した。該遮音ブロック(10)の寸法は下記の通りである。
H:190mm,L:390mm,W:100mm,
A:25.5mm,B:80mm,C:24.5mm,D:24.5mm,
E:23mm,F:54mm,R:10mm,
該遮音ブロック(10)について、JIS−A1416の音響透過損失測定方法によって実験室における音響透過損失を測定した結果を表5に示す。
【0015】
【表5】
Figure 0003742686
【0016】
表5に示されるように本発明の細骨材を使用した遮音制振ブロックは、市販のブロックに比して低周波帯域から高周波帯域まで広い周波数範囲にわたってはるかに高い遮音効果を示す。
【0017】
〔応用例〕
実施例2の配合物を使用して注型成形によって各種成形物を成形した。
図5には断面L形の擁壁ブロック(11)が示され、該擁壁ブロック(11)は土砂Sの崩壊落下を堰き止める。該擁壁ブロック(11)としては図6に示すような断面逆T字形の擁壁ブロック(12)が提供されてもよい。該擁壁ブロック(11,12) は水を堰き止めるために使用されてもよい。
図7には遮音壁(21)が示される。該遮音壁(21)は図3および図4に示す遮音制振ブロック(10)をモルタル接着剤によって積重ねたものであり、該遮音壁(21)は例えば高速道路(22)あるいは新幹線等の鉄道の側端に設置され、自動車(23)の走行中の騒音を遮断する。本発明の細骨材は中空であるから、該遮音壁(21)は高強度、耐蝕性、大重量を有する上に、表5に示すように優れた遮音性を有する。
図8に示すのは建築物の躯体である壁(31)および床(32)であり、該壁(31)および該床(32)は実施例2の配合物を鉄筋(33,34) を挿入した型枠に注入硬化せしめることによって形成され、該壁(31)および該床(32)に囲まれた部屋(35,36) は該壁(31)および該床(32)によって効果的に遮音制振される。
図9には河床ブロック(41)が示される。該河床ブロック(41)は河川(42)の落差部(43)直下に設置される。
図10には護岸ブロック(51)が示される。該護岸ブロック(51)は河川や海(52)の岸壁(53)に設置される。
図11には舗石あるいはタイルである舗装ブロック(61)が示される。該舗装ブロック(61)は舗道(62)の舗装に使用されるが、本発明の細骨材を使用しているので透水性が良く、雨水等が溜まらないし、また細骨材の黒色によって天然のみかげ石調の外観が得られ、意匠性の高い舗装が得られる。
【0018】
上記用途以外、本発明の水平垂直材料は例えば道路のガードフェンス、駒止めブロック等種々な用途に使用される。
【0019】
【発明の効果】
本発明に用いられる細骨材は略球状であり表面に微細な凹凸を有し、コンクリートが該凹凸に食い込むアンカー効果によってコンクリートと極めて良好な密着性を有するので耐蝕性に優れ強度の高い水平垂直材料が得られる。
更に上記細骨材は略球状であるのでスラリーの流動性が良く、型枠に流し込む際の充填性に優れ、所定の形状の水平垂直材料が正確に得られまた巣穴等の欠陥の発生がない。そして上記細骨材を使用した水平垂直材料は大重量であるから制振効果を有し、かつ土砂圧、水圧、あるいは地殻変動に耐え、水に浸漬された場合でも浮力に耐える。また更に上記細骨材は中空であるから、該細骨材を使用した水平垂直材料は優れた遮音効果を示す。
本発明の細骨材は製鋼過程で発生する産業廃棄物である電気炉酸化スラグから得られるので、資源的に問題はなく、かつ電気炉酸化スラグを有効利用することが出来る。
【図面の簡単な説明】
【図1】骨材製造装置の説明図
【図2】骨材の粒度分布を示すグラフ
【図3】遮音制振ブロックの斜視図
【図4】図3におけるA−A断面図
図5〜図11は本発明の応用例を示すものである。
【図5】L形擁壁ブロックの設置状態部分斜視図
【図6】逆T字形擁壁ブロックの斜視図
【図7】遮音壁使用状態の説明断面図
【図8】建築物躯体部分断面図
【図9】河床ブロックの設置状態の部分斜視図
【図10】護岸ブロックの設置状態説明断面図
【図11】舗装ブロックの設置状態の部分斜視図
【符号の説明】
8 細骨材
10 遮音ブロック(水平垂直材料)
11,12 擁壁ブロック(水平垂直材料)
21 遮音壁(水平垂直材料)
31 建築物の壁(水平垂直材料)
32 建築物の床(水平垂直材料)
41 河床ブロック(水平垂直材料)
51 護岸ブロック(水平垂直材料)
61 舗装ブロック(水平垂直材料)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a horizontal and vertical material that is installed vertically such as a retaining wall block, a sound insulation wall, a building wall, etc., for blocking water and earth and sand, or installed horizontally such as a riverbed block, a pavement block, a building foundation, etc. It is.
[0002]
[Prior art]
Conventionally, for example, retaining wall blocks that block water and earth and sand, sound insulation walls of railways such as highways and Shinkansen, river bed blocks, paving stones, etc., concrete mixed with crushed sand, sea sand, river sand, quartz sand, etc. as cement Horizontal and vertical materials made of molded products are used.
[0003]
[Problems to be solved by the invention]
The horizontal and vertical materials are required to have high corrosion resistance in order to come into contact with rainwater, river water, and the like, and are required to have a large weight and high strength in order to withstand crustal deformation such as earth and sand pressure, water pressure, or earthquake.
However, in the case of the above-mentioned conventional concrete molding, the corrosion resistance, weight, strength and freeze-thaw resistance are insufficient, and there is a possibility that troubles such as erosion and breakage of horizontal and vertical materials often occur. In addition, natural resources such as crushed sand and river sand are currently scarce as aggregates, which is extremely serious.
[0004]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, the present invention injects a melt of an electric furnace oxidation slag into a cemented hardened matrix into a bladed drum rotating at high speed, and crushes and granulates the melt by the bladed drum. Concrete in which a substantially spherical electric furnace oxidation slag granulated product having fine irregularities on the surface produced by quenching the granulated melt in a water mist atmosphere is dispersed as fine aggregate (8) The present invention provides horizontal and vertical materials (10, 11, 12, 21, 31, 32, 41, 51, 61) made of molded products.
Reinforcing bars may be included in the concrete molding for reinforcement, and examples of the horizontal and vertical materials include a retaining wall block, a sound insulation wall, a building frame, a river bed block, and a paving block.
The present invention is described in detail below.
[0005]
[Electric furnace oxidation slag]
Electric furnace oxidation slag referred to in the present invention is usually Ca O10~26 wt%, Si O 2 8 to 22 wt%, Mn O4~7 wt%, Mg O2~8 wt%, Fe O13~32 wt%, Fe 2 O 3 9-45 wt%, Al 2 O 3 4 to 16 wt%, Cr 2 O 3 containing about 1 to 4 wt%, further Ti O 2 .25-.70 wt% as a minor component, P 2 O 5 0.15 to 0.50% by weight, S 0.005 to 0.085% by weight, Fe containing 20 to 45% by weight for obtaining a stable mineral composition, included in natural aggregate components It contains no clay, organic impurities or salt, and contains almost no unstable free lime, free magnesia or minerals.
[0006]
[Manufacture of fine aggregate]
In order to produce the fine aggregate by granulating the electric furnace oxidation slag, the melt of the electric furnace oxidation slag is poured into a bladed drum rotating at high speed, and the melt is crushed and granulated by the bladed drum, A method of quenching the granulated melt in a water mist atmosphere is employed. A plurality of bladed drums may be arranged to perform a plurality of stages of crushing and granulating.
The granulated product of the electric furnace oxidation slag thus obtained usually has a particle size of 5 mm or less and is classified as a fine aggregate, and those having a particle size of 2.5 mm or less are substantially spherical and have a specific gravity of 3.3 to 3.3. It is in the range of 3.8, has no defects such as cracks on the surface, has fine irregularities, and consists of a hollow structure or includes a hollow structure. The particle size distribution is in the standard range of crushed sand for JIS-A5005 concrete.
[0007]
〔cement〕
Examples of the cement mixed with the fine aggregate made of roughly spherical electric furnace oxidized slag granulated material having fine irregularities on the surface include Portland cement, alumina cement, fly ash cement, blast furnace slag cement, silica cement and the like. .
[0008]
[Use of fine aggregate]
The mixing ratio of fine aggregate made of electric furnace oxidized slag granulated material having fine irregularities on the surface and cement is usually the same as that of conventional natural fine aggregate, and the volume ratio is about 300 to 600 with respect to cement 100. Of fine aggregate. Other aggregates such as river sand, sea sand, quartz sand, crushed stone, crushed sand, perlite, fly ash, blast furnace slag, cement hardening regulator, water reducing agent, thickener, etc. are added to the above cement-fine aggregate mixture. May be.
The cement-fine aggregate mixture is usually added with 25 to 60 parts by weight of water with respect to 100 parts by weight of cement to form a cement slurry or cement kneaded product. The cement slurry or cement kneaded product is usually placed in a mold. A concrete molded product formed into a pipe shape, a trough shape, or a bowl shape by casting or extrusion molding. In the concrete molding, reinforcing bars may be inserted for reinforcement. In this case, cement slurry is poured in a state where the reinforcing bars are inserted into the mold.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1] (Production of fine aggregate)
FIG. 1 shows an apparatus for producing the fine aggregate of the present invention.
That is, the electric furnace oxidation slag melt (1) at around 1500 ° C. is transferred from the pan (2) to the shooter (3), and injected from the shooter (3) into the bladed drum (4, 5) rotating at high speed. The steelmaking slag melt (1) is crushed and granulated by the bladed drum (4, 5), and the granulated product (1A) of the electric furnace oxidation slag melt is sprayed into a quenching chamber (6) ( 7) Quenched by water mist sprayed from. The fine aggregate (8) thus obtained is stored in the storage container (9).
The fine aggregate (8) is a substantially spherical hollow body, has no defects such as cracks on the surface, has fine irregularities, and has high hardness (Vickers hardness of about 755, Mohs hardness of about 6). It has excellent abrasion resistance, true specific gravity of 3.84, absolute dry specific gravity of 3.52, fire resistance of 1100 ° C., and excellent permeability, conductivity, acid resistance, alkali resistance and the like.
The particle size distribution of the fine aggregate (8) is shown in FIG. In FIG. 2, the solid line graph shows the particle size distribution of the aggregate (8) of the present invention, the dotted line graph shows the standard range of the fine aggregate for JIS-A5005 concrete, and the fine aggregate (8) is within the standard range. Is recognized.
[0010]
[Example 2]
A compound having the following composition was kneaded and prepared using the fine aggregate.
Normal Portland cement 540kg / m 3
Fine aggregate (Example 1 ρ = 3.79) 1213 〃 (320 liters)
Coarse aggregate (crushed stone) 916 〃
Silica fume 60 〃
High performance AE water reducing agent 12 〃
Water 135 〃
The blend was poured into the mold for 30 minutes, and the slump flow value after 20 seconds was 31.5 cm.
Table 1 shows the results of casting the above blend into a mold to form a block of φ10 cm × 20 cm and measuring the compressive strength of the block after molding over time.
[Table 1]
Figure 0003742686
[0011]
[Comparative Example 1]
A blend of the following composition was kneaded and prepared using river sand as fine aggregate.
Normal Portland cement 540kg / m 3
Fine aggregate (river sand ρ = 2.56) 819 〃 (320 liters)
Coarse aggregate (crushed stone) 916 〃
Silica fume 60 〃
High performance AE water reducing agent 12 〃
Water 135 〃
The blend was poured into the mold for 30 minutes and the slump flow value after 20 seconds was determined to be 24.0 cm.
Table 2 shows the results of casting the above blend into a mold to form a block similar to Example 2 and measuring the compressive strength of the block over time.
[Table 2]
Figure 0003742686
[0012]
Comparing Table 1 of Example 2 and Table 2 of Comparative Example 1, the block made of the formulation of Example 2 is superior in strength, particularly the initial strength, to the formulation of Comparative Example 1 (conventional example). Admitted. Further, from the slump flow value, it was confirmed that the formulation of Example 2 was excellent in moldability as compared with the formulation of Comparative Example 1 (conventional example).
[0013]
[Corrosion resistance test]
Each of the blends of Example 2 and Comparative Example 1 was poured into a mold to form blocks of φ10 cm × 20 cm, each block was allowed to stand for 28 days, immersed in a 5% aqueous hydrochloric acid solution, and the compressive strength (N / mm 2 ) was measured. The results are shown in Table 3.
[Table 3]
Figure 0003742686
As shown in Table 3, the block of the formulation of Example 2 shows excellent corrosion resistance with little decrease in compressive strength over time even when immersed in a 5% aqueous hydrochloric acid solution. It was confirmed that the compressive strength was lower than that of the block of Example 2 and that the strength was decreased with time when immersed in a 5% hydrochloric acid aqueous solution.
[0014]
Example 3
The kneaded material shown in Table 4 was prepared using the fine aggregate of the present invention sieved to a particle size of 5 mm or less.
[Table 4]
Figure 0003742686
The kneaded product was filled into a mold to form a hollow sound insulation block (10) as shown in FIGS. The dimensions of the sound insulation block (10) are as follows.
H: 190mm, L: 390mm, W: 100mm,
A: 25.5 mm, B: 80 mm, C: 24.5 mm, D: 24.5 mm,
E: 23 mm, F: 54 mm, R: 10 mm,
Table 5 shows the results of measuring the sound transmission loss in the laboratory for the sound insulation block (10) by the sound transmission loss measuring method of JIS-A1416.
[0015]
[Table 5]
Figure 0003742686
[0016]
As shown in Table 5, the sound insulation damping block using the fine aggregate of the present invention shows a much higher sound insulation effect over a wide frequency range from a low frequency band to a high frequency band as compared with a commercially available block.
[0017]
[Application example]
Various moldings were molded by cast molding using the formulation of Example 2.
FIG. 5 shows a retaining wall block (11) having an L-shaped cross section, and the retaining wall block (11) blocks the fall and fall of the earth and sand S. As the retaining wall block (11), a retaining wall block (12) having an inverted T-shaped cross section as shown in FIG. 6 may be provided. The retaining wall block (11, 12) may be used to block water.
FIG. 7 shows a sound insulation wall (21). The sound insulation wall (21) is obtained by stacking the sound insulation damping blocks (10) shown in FIGS. 3 and 4 with a mortar adhesive. The sound insulation wall (21) is, for example, a highway (22) or a railway side such as a Shinkansen. Installed at the end to block the noise while the car (23) is running. Since the fine aggregate of the present invention is hollow, the sound insulation wall (21) has high strength, corrosion resistance, large weight and excellent sound insulation as shown in Table 5.
FIG. 8 shows a wall (31) and a floor (32), which are buildings of a building, and the wall (31) and the floor (32) are made from the composition of Example 2 with a reinforcing bar (33, 34). A room (35, 36) formed by pouring and hardening the inserted formwork and surrounded by the wall (31) and the floor (32) is effectively separated by the wall (31) and the floor (32). Sound insulation is controlled.
FIG. 9 shows the river bed block (41). The river bed block (41) is installed immediately below the head (43) of the river (42).
FIG. 10 shows a revetment block (51). The revetment block (51) is installed on a quay (53) of a river or the sea (52).
FIG. 11 shows a paving block (61) which is a paving stone or a tile. The pavement block (61) is used for pavement of the pavement (62), but since it uses the fine aggregate of the present invention, it has good water permeability, does not collect rainwater, etc. A granite-like appearance can be obtained, and a pavement with high design can be obtained.
[0018]
In addition to the above applications, the horizontal and vertical materials of the present invention are used for various applications such as road guard fences and block stop blocks.
[0019]
【The invention's effect】
The fine aggregate used in the present invention is substantially spherical and has fine irregularities on the surface, and the concrete has very good adhesion to the concrete due to the anchor effect that bites into the irregularities, so it has excellent corrosion resistance and high strength A material is obtained.
Furthermore, since the fine aggregate is substantially spherical, the slurry has good fluidity, excellent filling properties when poured into a mold, and a horizontal and vertical material of a predetermined shape can be obtained accurately, and defects such as burrows are generated. Absent. The horizontal and vertical materials using the fine aggregates have a large weight and thus have a vibration damping effect, and withstand landslide pressure, water pressure, or crustal movement, and withstand buoyancy even when immersed in water. Furthermore, since the fine aggregate is hollow, a horizontal and vertical material using the fine aggregate exhibits an excellent sound insulation effect.
Since the fine aggregate of the present invention is obtained from electric furnace oxidation slag, which is an industrial waste generated in the steelmaking process, there is no problem in terms of resources and the electric furnace oxidation slag can be used effectively.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an aggregate manufacturing apparatus. FIG. 2 is a graph showing the particle size distribution of aggregate. FIG. 3 is a perspective view of a sound insulation damping block. Reference numeral 11 shows an application example of the present invention.
[Fig. 5] Perspective view of the installation state of the L-shaped retaining wall block [Fig. 6] Perspective view of the inverted T-shaped retaining wall block [Fig. 7] Cross sectional view for explaining the state of use of the sound insulation wall [Fig. [Fig. 9] Partial perspective view of riverbed block installation state [Fig. 10] Cross-sectional view of installation state of revetment block [Fig. 11] Partial perspective view of installation state of pavement block [Explanation of symbols]
8 Fine aggregate
10 Sound insulation block (horizontal and vertical material)
11,12 Retaining wall block (horizontal and vertical material)
21 Sound insulation wall (horizontal and vertical material)
31 Building walls (horizontal and vertical materials)
32 Building floor (horizontal and vertical material)
41 Riverbed block (horizontal and vertical material)
51 Seawall block (horizontal and vertical material)
61 Pavement block (horizontal and vertical material)

Claims (9)

セメント硬化物マトリクス内に、電気炉酸化スラグの溶融物を高速回転する羽根付きドラムに注入し、該溶融物を該羽根付きドラムによって破砕粒状化し、粒状化した該溶融物を水ミスト雰囲気中で急冷処理することによって製造された表面に微細な凹凸を有する略球状の電気炉酸化スラグ粒化物が細骨材として分散しているコンクリート成形物からなることを特徴とする水平垂直材料The electric furnace oxidation slag melt is injected into a hardened cement matrix and is injected into a bladed drum rotating at high speed. The melt is crushed and granulated by the bladed drum, and the granulated melt is put in a water mist atmosphere. A horizontal and vertical material comprising a concrete molded product in which a roughly spherical electric furnace oxidized slag granulated product having fine irregularities on the surface produced by quenching treatment is dispersed as fine aggregate 該コンクリート成形物には鉄筋が内在されている請求項1に記載の水平垂直材料The horizontal and vertical material according to claim 1, wherein the concrete molding contains a reinforcing bar. 該水平垂直材料は擁壁ブロックである請求項1または2に記載の水平垂直材料The horizontal and vertical material according to claim 1 or 2, wherein the horizontal and vertical material is a retaining wall block. 該水平垂直材料は遮音制振材料である請求項1または2に記載の水平垂直材料The horizontal / vertical material according to claim 1 or 2, wherein the horizontal / vertical material is a sound insulation damping material. 該遮音制振材料は遮音壁である請求項4に記載の水平垂直材料5. The horizontal and vertical material according to claim 4, wherein the sound insulation damping material is a sound insulation wall. 該遮音制振材料は建築物の躯体である請求項4に記載の水平垂直材料The horizontal and vertical material according to claim 4, wherein the sound insulation damping material is a building frame. 該遮音制振材料は建築物の基礎である請求項4に記載の水平垂直材料The horizontal and vertical material according to claim 4, wherein the sound insulation damping material is a foundation of a building. 該水平垂直材料は河床ブロックである請求項1または2に記載の水平垂直材料The horizontal and vertical material according to claim 1, wherein the horizontal and vertical material is a river bed block. 該水平垂直材料は舗装ブロックである請求項1または2に記載の水平垂直材料The horizontal and vertical material according to claim 1 or 2, wherein the horizontal and vertical material is a paving block.
JP10439796A 1996-03-06 1996-03-29 Horizontal vertical material Expired - Fee Related JP3742686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10439796A JP3742686B2 (en) 1996-03-06 1996-03-29 Horizontal vertical material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-79594 1996-03-06
JP7959496 1996-03-06
JP10439796A JP3742686B2 (en) 1996-03-06 1996-03-29 Horizontal vertical material

Publications (2)

Publication Number Publication Date
JPH09295847A JPH09295847A (en) 1997-11-18
JP3742686B2 true JP3742686B2 (en) 2006-02-08

Family

ID=26420612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10439796A Expired - Fee Related JP3742686B2 (en) 1996-03-06 1996-03-29 Horizontal vertical material

Country Status (1)

Country Link
JP (1) JP3742686B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011266A (en) * 2001-07-04 2003-01-15 Hoshino Sansho:Kk Laminated plate
JP4689999B2 (en) * 2003-10-01 2011-06-01 日本エンバイロケミカルズ株式会社 Curable termite control composition
JP5535094B2 (en) * 2011-01-11 2014-07-02 株式会社星野産商 Magnetic sensor

Also Published As

Publication number Publication date
JPH09295847A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
US6616752B1 (en) Lightweight concrete
EP1561733A1 (en) Construction material based upon a sludge or sludged waste material
WO2008013694A2 (en) Slag concrete manufactured aggregate
JP3499898B2 (en) Concrete moldings with improved acid resistance
CN110981299A (en) High-performance geopolymer concrete and preparation method thereof
KR100515116B1 (en) Concrete composition for pavement of bridge surface and bridge pavement method using the same
CN111268963A (en) Road inspection well and manufacturing process and construction method thereof
JP3742686B2 (en) Horizontal vertical material
JP5041656B2 (en) High specific gravity concrete, manufacturing method thereof, high specific gravity concrete molded body for wave countermeasures and high specific gravity concrete molded body for radiation shielding
CN109704690A (en) A kind of concrete and its construction method inhibiting frozen swell and melt settlement
JP3575499B2 (en) Ceramic fine aggregate for concrete
JPH07300358A (en) Hydraulic grout material for paving and grout
CN105803942B (en) Concrete roughening method
JPH10167793A (en) Water-permeable concrete material for site fabrication and site fabrication of water-permeable concrete
CN107445551A (en) A kind of integral type sound barrier column and preparation method thereof
JP3751068B2 (en) Underwater block
JP3751067B2 (en) Pipe line material
JP2003306361A (en) Strength improving agent for cement hardened body and cement hardened body obtained by blending the strength improving agent
WO2007054960A2 (en) A method of production for metallic iron concrete hardener and cement concrete made therefrom
JP2000044317A (en) Construction of concrete structure and concrete therefor
CN115010435A (en) Concrete, construction method and landfill leachate treatment system
JP6602228B2 (en) Method for producing concrete for slip foam method and slip foam method
JP2001342052A (en) Acid resistant concrete
Bustillo Revuelta et al. Special Concrete
Mitra et al. Workability & Strength Tests on Self-Compacting Concrete for M3O Grade with Silica Fume as Partial Replacement of Cement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees