JP3637278B2 - 2-sensor flow meter - Google Patents
2-sensor flow meter Download PDFInfo
- Publication number
- JP3637278B2 JP3637278B2 JP2000386549A JP2000386549A JP3637278B2 JP 3637278 B2 JP3637278 B2 JP 3637278B2 JP 2000386549 A JP2000386549 A JP 2000386549A JP 2000386549 A JP2000386549 A JP 2000386549A JP 3637278 B2 JP3637278 B2 JP 3637278B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- flow meter
- sensor
- voltage signal
- pitot tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、熱式流量計とピトー管を用いた流量計とを組み合わせた2センサ式流量計に関する。
【0002】
【従来の技術】
熱式流量計は、わずかな流れを測定することができ、測定精度が高くまた小形で取付が簡単であるため、各種の分野で多用されている。熱式流量計は、流量測定用抵抗体と温度補償用抵抗体との温度差が、流体通路内の流量に関係なく、常に一定に保たれるように、流量測定用抵抗体が通電制御されるようになっている。そして、流体通路内の流量が少ないときには流量測定用抵抗体に低圧の電流が流れ、流量が多いときには流量測定用抵抗体に高圧の電流が流れ、その単調増加関数から流量を測定している。
【0003】
【発明が解決しようとする課題】
熱式流量計の流量測定用抵抗体に流す電圧には限界があり、流量が多くなる(流速が速くなる)と熱式流量計の出力が飽和するので、測定範囲を大流量域まで広げることは困難である。
本発明は、熱式流量計に大流量を測定可能な他の測定手段を組み合わせて、高い測定精度で測定範囲を拡大することを課題とする。
【0004】
【課題を解決するための手段】
本発明は、流体通路に熱式流量計の熱式センサ及びピトー管が配設され、熱式センサの電圧信号の電圧値が下限設定電圧を超えかつ(熱式センサの)切換設定電圧以下のときは、熱式流量計で測定された測定結果がディスプレーに表示され、ピトー管を用いた流量計の圧力センサの電圧信号の電圧値が上限設定電圧以下で(圧力センサの)切換設定電圧を超えるときは、ピトー管を用いた流量計で測定された測定結果がディスプレーに表示され、熱式センサの電圧信号の電圧値が(熱式センサの)切換設定電圧を超えるときは、熱式センサの電圧信号の増幅率を下げるともにピトー管を用いた流量計の圧力センサの電圧信号の増幅率を上げ、ピトー管を用いた流量計の圧力センサの電圧信号の電圧値が(圧力センサの)切換設定電圧以下のときは、ピトー管を用いた流量計の圧力センサの電圧信号の増幅率を下げるとともに熱式センサの電圧信号の増幅率を上げることを第1構成とする。 本発明は、第1構成において、熱式センサの電圧信号の電圧値が(熱式センサの)下限設定電圧以下のとき及びピトー管を用いた流量計の圧力センサの電圧信号の電圧値が(圧力センサの)上限設定電圧を超えるときは、ディスプレーにエラー表示がされることを第2構成とする。
【0005】
【発明の実施の形態】
図1,図2は本発明の実施の形態を示す。図1(a) において、2センサ式流量計10は、管11の上部にケース12が配設された外形をしている。管11の流体通路13の中心線上には、熱式流量計の流量測定用抵抗体16・温度補償用抵抗体17及びピトー管20の鼻管21(図1(b) 参照)が配設され、流体通路13の流体は入口部14から出口部15に向かって流れるように設定されている。流量測定用抵抗体16及び温度補償用抵抗体17は、支持柱により支持され、それらは制御回路18に接続されている。熱式流量計では制御回路18において、流量測定用抵抗体(熱式センサ)16に流れる電圧信号から流量を計算するようにされている。
【0006】
図1に示すように、標準形のピトー管20には直角に交差した鼻管21と元管22とがあり、鼻管21の中心線は流体通路13の中心線と正しく一致して配置され、元管22は管11の支持具23に挿通され支持されている。ピトー管20は先端部(図1(b) では左端部)及び基端部(図1(b) では下端部)以外は二重管になっており、内側管の内部が全圧通路であり、内側管と外側管との間の部分が静圧通路である。鼻管21の先端には全圧測定孔24が形成され、全圧測定孔24は全圧通路を介して全圧検出器26に連通されている。鼻管21の側部には静圧測定孔25が形成され、静圧測定孔25は静圧通路を介して静圧検出器27に連通されている。ピトー管20を用いた流量計では、全圧検出器26によって全圧P0 が検出され、静圧検出器27によって静圧Pが検出され、制御回路18において、圧力の差(P0 −P)から流速が求められる。
【0007】
ピトー管を用いた流量計は、低速域で発生する差圧が微小であるため、差圧の検出が困難であるが、中速域から高速域の流量の測定には適している。そこで、本発明では、低速域の流量から中速設定値(8.6m/s)の流量(260L/min(ANR))を熱式流量計で測定し、中速設定値の流量から高速域の流量をピトー管を用いた流量計で測定することを基本としている。
【0008】
図2によって、2センサ式流量計の実施の形態の機能を説明する。プログラムがスタートすると、ステップS1で初期値の設定を行い、ステップS2で熱式流量計の熱式センサ(流量測定用抵抗体16)の電圧信号を読み取る。ステップS3において、熱式センサの電圧信号はA/D変換され増幅され、続いてステップS4において制御回路18で熱式センサの電圧信号から流量が計算され、計算結果がケース12の上面のディスプレイ29(図1(a) 参照)に表示される。
【0009】
ステップS5において、熱式センサの電圧信号の電圧値が(熱式センサの)下限設定電圧(実験装置では0.05V。このとき、流量が10L/min(ANR),流速が0.33m/s)を超えるか否かの判定が行われる。ステップS5で熱式センサの電圧信号の電圧値が下限設定電圧を超えない(下限設定電圧以下である)と判定された場合は、流量が少なすぎて正確な測定ができないので、ステップS6でディスプレイ29にエラー表示をし、ステップS2に戻る。
【0010】
ステップS5で熱式センサの電圧信号の電圧値が下限設定電圧を超えると判定されたときは、ステップS7で熱式センサの電圧信号の電圧値が熱式センサの切換設定電圧(実験装置では5V。このとき、流量が260L/min(ANR),流速(中速設定値)が8.6m/s)を超えるか否かの判定が行われる。熱式センサの電圧信号の電圧値が熱式センサの切換設定電圧を超えると、熱式センサの出力が飽和する。ステップS7で熱式センサの電圧信号の電圧値が熱式センサの切換設定電圧を超えない(切換設定電圧以下である)と判定されたときは、熱式センサの測定範囲内にあるので、ディスプレイ29に流量が継続して表示され(エラー表示はされない)、ステップS2に戻る。
【0011】
ステップS7で熱式センサの電圧信号の電圧値が熱式センサの切換設定電圧を超えると判定されたときは、ステップS8で、熱式センサの電圧信号の増幅率を下げ、ピトー管20を用いた流量計の圧力センサの電圧信号の増幅率を上げ、ステップS9へ進む。この操作により、熱式センサの流量をディスプレイに表示することが不能となり、ピトー管を用いた流量計の流量をディスプレイに表示することとなる。
【0012】
ステップS9でピトー管を用いた流量計の圧力センサ(全圧検出器26・静圧検出器27)の電圧信号を読み取る。ステップS10でこの電圧信号はA/D変換され増幅され、続いてステップS11において制御回路18でこの電圧信号から流量が計算され、計算結果がディスプレイ29に表示される。
【0013】
ステップS12において、ピトー管を用いた流量計の圧力センサの電圧信号の電圧値が(圧力センサの)上限設定電圧(実験の装置では5V、流量が1000L/min(ANR),流速が32.9m/s)を超えるか否かの判定が行われ、ピトー管を用いた流量計の圧力センサの電圧信号の電圧値が上限設定電圧を超えると判定された場合は、流量が大すぎて正確な測定ができない。ステップS12でピトー管を用いた流量計の圧力センサの電圧信号の電圧値が上限設定電圧を超えると判定されたときは、ステップS13でディスプレイ29にエラー表示をし、ステップS9に戻る。
【0014】
ステップS12でピトー管を用いた流量計の圧力センサの電圧信号の電圧値が上限設定電圧を超えない(上限設定電圧以下である)と判定されたときは、ステップS14でピトー管を用いた流量計の圧力センサの電圧信号の電圧値が圧力センサの切換設定電圧(実験装置では0.05V。このとき、流量が260L/min(ANR),流速(中速設定値)が8.6m/s)を超えるか否かの判定が行われる。ステップS14でピトー管を用いた流量計の圧力センサの電圧信号の電圧値が圧力センサの切換設定電圧を超えると判定されたときは、ピトー管を用いた流量計の測定範囲内にあるので、ディスプレイ29に流量が継続して表示され(エラー表示はされていない)、ステップS9に戻る。
【0015】
ステップS14でピトー管を用いた流量計の圧力センサの電圧信号の電圧値が圧力センサの切換設定電圧を超えない(切換設定電圧以下である)と判定されたときは、ステップS15でピトー管20を用いた流量計の圧力センサの電圧信号の増幅率を下げ、熱式センサの電圧信号の増幅率を上げ、ステップS2へ進む。この操作により、ピトー管を用いた流量計の流量をディスプレイに表示することが不能となり、熱式センサの流量をディスプレイに表示することとなる。
【0016】
【発明の効果】
本発明においては、下限設定電圧を越えかつ切換設定電圧以下のときは、流量が熱式流量計で測定されて測定結果がディスプレーに表示され、上限設定電圧以下で切換設定電圧を越えるときは、流量がピトー管を用いた流量計で測定されて測定結果がディスプレーに表示される。低速域から中速域(切換設定電圧以下のとき)の流量の測定を得意とする熱式流量計と、中速域から高速域(切換設定電圧を越えるとき)の流量を測定できるピトー管を用いた流量計とを組み合わせたので、高い測定精度で測定範囲を拡大することができる。そして、本発明では、熱式流量計で測定された測定結果の表示と、ピトー管を用いた流量計で測定された測定結果の表示とが、切換設定電圧を基準として自動的に切り換えられる。熱式センサの電圧信号の電圧値が切換設定電圧を超えるときは、熱式センサの電圧信号の増幅率を下げるともにピトー管を用いた流量計の圧力センサの電圧信号の増幅率を上げ、ピトー管を用いた流量計の圧力センサの電圧信号の電圧値が切換設定電圧以下のときは、ピトー管を用いた流量計の圧力センサの電圧信号の増幅率を下げるとともに熱式センサの電圧信号の増幅率を上げるので、熱式センサの出力端子とピトー管を用いた流量計の出力端子とを同時にディスプレー装置に接続することができ、回路構成が簡単になる。
【図面の簡単な説明】
【図1】図1(a) は本発明の2センサ式流量計の実施の形態の説明図であり、図1(b) は本発明の実施の形態に用いられるピトー管の説明図である。
【図2】本発明の2センサ式流量計の実施の機能を示すフローチャートである。
【符号の説明】
10 2センサ式流量計
13 流体通路
16 熱式センサ(流量測定用抵抗体)
20 ピトー管
26・27 圧力センサ
29 ディスプレィ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a two-sensor flow meter in which a thermal flow meter and a flow meter using a Pitot tube are combined.
[0002]
[Prior art]
Thermal flow meters can measure a slight flow, have high measurement accuracy, are small and easy to mount, and are therefore widely used in various fields. The thermal flow meter is controlled by energizing the flow measurement resistor so that the temperature difference between the flow measurement resistor and the temperature compensation resistor is always kept constant regardless of the flow rate in the fluid passage. It has become so. When the flow rate in the fluid passage is small, a low pressure current flows through the flow rate measuring resistor, and when the flow rate is large, a high voltage current flows through the flow rate measuring resistor, and the flow rate is measured from its monotonically increasing function.
[0003]
[Problems to be solved by the invention]
There is a limit to the voltage applied to the flow measurement resistor of the thermal flow meter, and if the flow rate increases (the flow velocity increases), the output of the thermal flow meter saturates, so the measurement range should be expanded to a large flow range. It is difficult.
An object of the present invention is to expand a measurement range with high measurement accuracy by combining a thermal flow meter with other measurement means capable of measuring a large flow rate.
[0004]
[Means for Solving the Problems]
In the present invention, a thermal sensor and a Pitot tube of a thermal flow meter are disposed in a fluid passage, and a voltage value of a voltage signal of the thermal sensor exceeds a lower limit setting voltage and is equal to or lower than a switching setting voltage (of the thermal sensor). When the measurement result measured by the thermal flow meter is displayed on the display, the voltage value of the voltage signal of the pressure sensor of the flow meter using the Pitot tube is below the upper limit set voltage, and the switching set voltage (of the pressure sensor) If it exceeds, the measurement result measured with a flow meter using a Pitot tube is displayed on the display. If the voltage value of the voltage signal of the thermal sensor exceeds the switching setting voltage (of the thermal sensor), the thermal sensor The voltage signal of the pressure sensor of the flow meter using the Pitot tube is increased, and the voltage value of the pressure signal of the flow meter using the Pitot tube is increased (of the pressure sensor) Below the switching set voltage Is to raise the amplification factor of the voltage signal of the thermal sensor with reducing the amplification factor of the voltage signal of the pressure sensor of the flow meter using the Pitot tube and the first configuration. In the first configuration , when the voltage value of the voltage signal of the thermal sensor is equal to or lower than the lower limit set voltage (of the thermal sensor) and the voltage value of the voltage signal of the pressure sensor of the flow meter using the Pitot tube is ( When the upper limit set voltage (of the pressure sensor) is exceeded, the second configuration is that an error is displayed on the display.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show an embodiment of the present invention. In FIG. 1A, a two-sensor
[0006]
As shown in FIG. 1, the
[0007]
A flow meter using a Pitot tube is difficult to detect the differential pressure because the differential pressure generated in the low speed range is very small, but is suitable for measuring the flow rate from the medium speed range to the high speed range. Therefore, in the present invention, the flow rate (260 L / min (ANR)) at the medium speed set value (8.6 m / s) is measured from the flow rate in the low speed range with a thermal flow meter, Is basically measured with a flowmeter using a Pitot tube.
[0008]
The function of the embodiment of the two-sensor type flow meter will be described with reference to FIG. When the program starts, the initial value is set in step S1, and the voltage signal of the thermal sensor (flow measurement resistor 16) of the thermal flow meter is read in step S2. In step S3, the voltage signal of the thermal sensor is A / D converted and amplified. Subsequently, in step S4, the flow rate is calculated from the voltage signal of the thermal sensor in the
[0009]
In step S5, the voltage value of the voltage signal of the thermal sensor is the lower limit setting voltage (of the thermal sensor) (0.05 V in the experimental apparatus. At this time, the flow rate is 10 L / min (ANR) and the flow rate is 0.33 m / s. ) Is determined. If it is determined in step S5 that the voltage value of the voltage signal of the thermal sensor does not exceed the lower limit set voltage (below the lower limit set voltage), the flow rate is too small to perform an accurate measurement. An error is displayed in 29, and the process returns to step S2.
[0010]
If it is determined in step S5 that the voltage value of the voltage signal of the thermal sensor exceeds the lower limit setting voltage, the voltage value of the voltage signal of the thermal sensor is changed to the switching setting voltage of the thermal sensor (5 V in the experimental apparatus) in step S7. At this time, it is determined whether or not the flow rate exceeds 260 L / min (ANR) and the flow velocity (medium speed set value) exceeds 8.6 m / s). When the voltage value of the voltage signal of the thermal sensor exceeds the switching setting voltage of the thermal sensor, the output of the thermal sensor is saturated. If it is determined in step S7 that the voltage value of the voltage signal of the thermal sensor does not exceed the switching setting voltage of the thermal sensor (below the switching setting voltage), it is within the measurement range of the thermal sensor, so the display The flow rate is continuously displayed in 29 (no error is displayed), and the process returns to step S2.
[0011]
When it is determined in step S7 that the voltage value of the voltage signal of the thermal sensor exceeds the switching setting voltage of the thermal sensor, in step S8, the amplification factor of the voltage signal of the thermal sensor is lowered and the
[0012]
In step S9, the voltage signal of the pressure sensor (
[0013]
In step S12, the voltage value of the voltage signal of the pressure sensor of the flow meter using the Pitot tube is the upper limit set voltage (of the pressure sensor) (5 V in the experimental apparatus, the flow rate is 1000 L / min (ANR), and the flow rate is 32.9 m. / S), and if it is determined that the voltage value of the voltage signal of the pressure sensor of the flow meter using the Pitot tube exceeds the upper limit set voltage, the flow rate is too large and accurate. Measurement is not possible. If it is determined in step S12 that the voltage value of the voltage signal of the pressure sensor of the flow meter using the Pitot tube exceeds the upper limit set voltage, an error is displayed on the
[0014]
When it is determined in step S12 that the voltage value of the voltage signal of the pressure sensor of the flowmeter using the Pitot tube does not exceed the upper limit set voltage (below the upper limit set voltage), the flow rate using the Pitot tube in step S14. The voltage value of the voltage signal of the pressure sensor of the meter is the switching setting voltage of the pressure sensor (0.05 V in the experimental apparatus. At this time, the flow rate is 260 L / min (ANR) and the flow rate (medium speed setting value) is 8.6 m / s. ) Is determined. When it is determined in step S14 that the voltage value of the voltage signal of the pressure sensor of the flow meter using the Pitot tube exceeds the switching setting voltage of the pressure sensor, it is within the measurement range of the flow meter using the Pitot tube. The flow rate is continuously displayed on the display 29 (no error is displayed), and the process returns to step S9.
[0015]
If it is determined in step S14 that the voltage value of the voltage signal of the pressure sensor of the flow meter using the Pitot tube does not exceed the switching setting voltage of the pressure sensor (below the switching setting voltage), the
[0016]
【The invention's effect】
In the present invention, when the lower limit set voltage is exceeded and the switching set voltage is less than or equal to, the flow rate is measured with a thermal flow meter and the measurement result is displayed on the display . The flow rate is measured with a flow meter using a Pitot tube, and the measurement result is displayed on the display. A thermal flow meter that excels at measuring the flow rate from the low speed range to the medium speed range (when the switching set voltage is below) and a Pitot tube that can measure the flow rate from the medium speed range to the high speed range (when the switching set voltage is exceeded) Since the flowmeter used is combined, the measurement range can be expanded with high measurement accuracy. In the present invention, the display of the measurement result measured with the thermal flow meter and the display of the measurement result measured with the flow meter using the Pitot tube are automatically switched based on the switching set voltage. When the voltage value of the voltage signal of the thermal sensor exceeds the switching set voltage, the amplification factor of the voltage signal of the flow meter using the Pitot tube is increased while the amplification factor of the voltage signal of the thermal sensor is lowered, and the Pitot When the voltage signal of the pressure sensor of the flow meter using a pipe is below the switching set voltage, the amplification factor of the voltage signal of the pressure sensor of the flow meter using the Pitot tube is lowered and the voltage signal of the thermal sensor is reduced. Since the amplification factor is increased, the output terminal of the thermal sensor and the output terminal of the flowmeter using the Pitot tube can be connected to the display device at the same time, and the circuit configuration is simplified.
[Brief description of the drawings]
FIG. 1 (a) is an explanatory diagram of an embodiment of a two-sensor type flow meter of the present invention, and FIG. 1 (b) is an explanatory diagram of a Pitot tube used in the embodiment of the present invention. .
FIG. 2 is a flowchart showing functions of an implementation of the two-sensor flow meter of the present invention.
[Explanation of symbols]
10 Two-sensor flow meter
13 Fluid passage
16 Thermal sensor (resistance element for flow rate measurement)
20 Pitot tube
26 ・ 27 Pressure sensor
29 Display
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000386549A JP3637278B2 (en) | 2000-12-20 | 2000-12-20 | 2-sensor flow meter |
CNB011433450A CN1165751C (en) | 2000-12-20 | 2001-12-20 | Double sensor type flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000386549A JP3637278B2 (en) | 2000-12-20 | 2000-12-20 | 2-sensor flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002188943A JP2002188943A (en) | 2002-07-05 |
JP3637278B2 true JP3637278B2 (en) | 2005-04-13 |
Family
ID=18853624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000386549A Expired - Fee Related JP3637278B2 (en) | 2000-12-20 | 2000-12-20 | 2-sensor flow meter |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3637278B2 (en) |
CN (1) | CN1165751C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017530364A (en) * | 2014-09-30 | 2017-10-12 | ディーテリヒ・スタンダード・インコーポレーテッド | Integrated flow measurement probe with extended measurement range |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101253394B (en) * | 2005-07-14 | 2012-01-25 | 西斯泰克控制测量及工程股份有限公司 | Stamping probe |
DE102007037394A1 (en) * | 2007-08-08 | 2009-02-12 | Endress + Hauser Flowtec Ag | Flow meter for a medium through a pipeline measures pressure at a diaphragm reducing the pipe cross section, and the difference between two temperature sensors |
CN101354273B (en) * | 2008-07-17 | 2010-07-07 | 美新半导体(无锡)有限公司 | Method and device for measuring compound type gas flow |
CN101769936B (en) * | 2009-01-07 | 2011-12-21 | 中国科学院电子学研究所 | Minisize wind speed sensor integrating traction theory with hot wire theory |
CN102937458A (en) * | 2011-08-15 | 2013-02-20 | 中国科学院工程热物理研究所 | Steady-state entropy probe |
US9557744B2 (en) | 2012-01-20 | 2017-01-31 | Mks Instruments, Inc. | System for and method of monitoring flow through mass flow controllers in real time |
KR102237868B1 (en) * | 2014-02-13 | 2021-04-12 | 엠케이에스 인스트루먼츠, 인코포레이티드 | System for and method of providing pressure insensitive self verifying mass flow controller |
DE102015122224A1 (en) | 2015-12-18 | 2017-06-22 | Endress+Hauser Flowtec Ag | Flowmeter |
CN107677332A (en) * | 2017-02-22 | 2018-02-09 | 上海安钧电子科技有限公司 | It is a kind of that the new method for expanding flow measurement range is balanced using hot type |
CN107655530A (en) * | 2017-02-22 | 2018-02-02 | 上海安钧电子科技有限公司 | Hot type V cone flow meters |
CN112827033B (en) * | 2020-12-29 | 2023-01-10 | 北京谊安医疗系统股份有限公司 | Integrated display and control system of electronic flowmeter of anesthesia machine |
CN113340365B (en) * | 2021-05-25 | 2022-02-18 | 南京禹通自动化科技有限公司 | Thermal flowmeter and flow measuring method |
-
2000
- 2000-12-20 JP JP2000386549A patent/JP3637278B2/en not_active Expired - Fee Related
-
2001
- 2001-12-20 CN CNB011433450A patent/CN1165751C/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017530364A (en) * | 2014-09-30 | 2017-10-12 | ディーテリヒ・スタンダード・インコーポレーテッド | Integrated flow measurement probe with extended measurement range |
Also Published As
Publication number | Publication date |
---|---|
CN1360201A (en) | 2002-07-24 |
JP2002188943A (en) | 2002-07-05 |
CN1165751C (en) | 2004-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3637278B2 (en) | 2-sensor flow meter | |
JP5209232B2 (en) | Thermal flow meter | |
JP4949039B2 (en) | Flow rate detector | |
CA2006962C (en) | Air gauge sensor | |
JP2787785B2 (en) | Flowmeter and flow measurement method | |
EP0715710B1 (en) | Differential current thermal mass flow transducer | |
US7201067B2 (en) | System and method for determining flow characteristics | |
US6917886B2 (en) | Microflow based differential pressure sensor | |
GB2173905A (en) | Fluid-flow monitoring apparatus | |
JP4955159B2 (en) | Flow rate measuring method and apparatus | |
JP3454265B2 (en) | Thermal flow sensor | |
JP2929356B2 (en) | Flowmeter | |
CN115597674A (en) | MEMS double-sensor type flowmeter | |
TW510963B (en) | Method and apparatus for digitalized multiple impulses fluid flow measuring system | |
KR0179837B1 (en) | Semiconductor fabricating apparatus | |
JPH0557624U (en) | Flowmeter | |
JP2633362B2 (en) | Gas flow meter | |
JPS5826346Y2 (en) | Karman vortex flow meter or current meter | |
JPH0547380Y2 (en) | ||
JPH0835874A (en) | Flowmeter | |
JP2008046143A (en) | Thermal fluid sensor and flow sensor | |
JPS62232527A (en) | Method and apparatus for measuring temperature | |
JPS59136619A (en) | Vortex flowmeter | |
JP2008292287A (en) | Flowmeter | |
JP2001296165A (en) | Flow rate measuring device and electronic flowmeter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3637278 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090114 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100114 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110114 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120114 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130114 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140114 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |