[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002188943A - Two-sensor type flowmeter - Google Patents

Two-sensor type flowmeter

Info

Publication number
JP2002188943A
JP2002188943A JP2000386549A JP2000386549A JP2002188943A JP 2002188943 A JP2002188943 A JP 2002188943A JP 2000386549 A JP2000386549 A JP 2000386549A JP 2000386549 A JP2000386549 A JP 2000386549A JP 2002188943 A JP2002188943 A JP 2002188943A
Authority
JP
Japan
Prior art keywords
voltage
sensor
thermal
flow meter
pitot tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000386549A
Other languages
Japanese (ja)
Other versions
JP3637278B2 (en
Inventor
Kokei Kyo
宏慶 許
鵬飛 ▲ハオ▼
Hohi Hao
Taikyo Yo
岱強 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMC Corp
Original Assignee
SMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMC Corp filed Critical SMC Corp
Priority to JP2000386549A priority Critical patent/JP3637278B2/en
Priority to CNB011433450A priority patent/CN1165751C/en
Publication of JP2002188943A publication Critical patent/JP2002188943A/en
Application granted granted Critical
Publication of JP3637278B2 publication Critical patent/JP3637278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To enlarge a measuring range with high measurement accuracy, by combining another measuring means capable of measuring a large flow with a thermal flowmeter. SOLUTION: In this two-sensor type flowmeter, a thermal sensor 16 of the thermal flowmeter and a Pitot's tube 20 are disposed in a fluid passage 13. The flow rate in the range from a low velocity region to a medium velocity set value is measured by the thermal flowmeter and the measurement result is displayed on a display 29, and the flow rate in the range from the medium velocity set value to a high velocity region is measured by a flowmeter using the Pitot's tube 20 and the measurement result is displayed on the display 29. The display of the measurement result measured by the thermal flowmeter and the display of the measurement result measured by the flowmeter using the Pitot's tube 20 are switched automatically based on the medium velocity set value (change-over set voltage).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱式流量計とピト
ー管を用いた流量計とを組み合わせた2センサ式流量計
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-sensor type flowmeter in which a thermal flowmeter and a flowmeter using a pitot tube are combined.

【0002】[0002]

【従来の技術】熱式流量計は、わずかな流れを測定する
ことができ、測定精度が高くまた小形で取付が簡単であ
るため、各種の分野で多用されている。熱式流量計は、
流量測定用抵抗体と温度補償用抵抗体との温度差が、流
体通路内の流量に関係なく、常に一定に保たれるよう
に、流量測定用抵抗体が通電制御されるようになってい
る。そして、流体通路内の流量が少ないときには流量測
定用抵抗体に低圧の電流が流れ、流量が多いときには流
量測定用抵抗体に高圧の電流が流れ、その単調増加関数
から流量を測定している。
2. Description of the Related Art A thermal flow meter can be used in various fields because it can measure a small flow, has a high measuring accuracy, is compact and easy to mount. Thermal flow meter
The flow rate measuring resistor is controlled so that the temperature difference between the flow rate measuring resistor and the temperature compensating resistor is always kept constant irrespective of the flow rate in the fluid passage. . When the flow rate in the fluid passage is small, a low-voltage current flows through the flow rate measuring resistor, and when the flow rate is large, a high-pressure current flows through the flow rate measuring resistor. The flow rate is measured from a monotonically increasing function.

【0003】[0003]

【発明が解決しようとする課題】熱式流量計の流量測定
用抵抗体に流す電圧には限界があり、流量が多くなる
(流速が速くなる)と熱式流量計の出力が飽和するの
で、測定範囲を大流量域まで広げることは困難である。
本発明は、熱式流量計に大流量を測定可能な他の測定手
段を組み合わせて、高い測定精度で測定範囲を拡大する
ことを課題とする。
There is a limit to the voltage applied to the flow rate measuring resistor of the thermal type flow meter, and the output of the thermal type flow meter becomes saturated as the flow rate increases (the flow velocity increases). It is difficult to extend the measurement range to a large flow area.
An object of the present invention is to expand a measurement range with high measurement accuracy by combining a thermal flow meter with another measuring means capable of measuring a large flow rate.

【0004】[0004]

【課題を解決するための手段】本発明は、前記課題を達
成するために、流体通路に熱式流量計の熱式センサ及び
ピトー管が配設され、低速域から中速設定値の流量は熱
式流量計で測定されて測定結果がディスプレーに表示さ
れ、中速設定値から高速域の流量はピトー管を用いた流
量計で測定されて測定結果がディスプレーに表示される
2センサ式流量計を第1構成とする。本発明は、流体通
路に熱式流量計の熱式センサ及びピトー管が配設され、
熱式センサの電圧信号の電圧値が下限設定電圧を超えか
つ(熱式センサの)切換設定電圧以下のときは、熱式流
量計で測定された測定結果がディスプレーに表示され、
ピトー管を用いた流量計の圧力センサの電圧信号の電圧
値が上限設定電圧以下で(圧力センサの)切換設定電圧
を超えるときは、ピトー管を用いた流量計で測定された
測定結果がディスプレーに表示される2センサ式流量計
を第2構成とする。本発明は、第2構成において、熱式
センサの電圧信号の電圧値が(熱式センサの)切換設定
電圧を超えるときは、熱式センサの電圧信号の増幅率を
下げるともにピトー管を用いた流量計の圧力センサの電
圧信号の増幅率を上げ、ピトー管を用いた流量計の圧力
センサの電圧信号の電圧値が(圧力センサの)切換設定
電圧以下のときは、ピトー管を用いた流量計の圧力セン
サの電圧信号の増幅率を下げるとともに熱式センサの電
圧信号の増幅率を上げることを第3構成とする。本発明
は、第2構成及び第3構成において、熱式センサの電圧
信号の電圧値が(熱式センサの)下限設定電圧以下のと
き及びピトー管を用いた流量計の圧力センサの電圧信号
の電圧値が(圧力センサの)上限設定電圧を超えるとき
は、ディスプレーにエラー表示がされることを第4構成
とする。
According to the present invention, in order to achieve the above object, a thermal sensor and a pitot tube of a thermal type flow meter are disposed in a fluid passage, and a flow rate from a low speed range to a medium speed set value is set. Two-sensor flow meter that measures with a thermal flow meter and displays the measurement result on the display, and the flow rate from the medium speed setting value to the high speed range is measured with a flow meter using a pitot tube and the measurement result is displayed on the display Is a first configuration. In the present invention, a thermal sensor and a pitot tube of a thermal flow meter are disposed in the fluid passage,
When the voltage value of the voltage signal of the thermal sensor exceeds the lower limit set voltage and is equal to or lower than the switching set voltage (of the thermal sensor), the measurement result measured by the thermal flow meter is displayed on the display,
When the voltage value of the voltage signal of the pressure sensor of the flowmeter using the pitot tube is less than the upper limit set voltage and exceeds the switching set voltage (of the pressure sensor), the measurement result measured by the flowmeter using the pitot tube is displayed. Is a second configuration. In the second configuration, when the voltage value of the voltage signal of the thermal sensor exceeds the switching set voltage (of the thermal sensor), the amplification factor of the voltage signal of the thermal sensor is reduced and the pitot tube is used. Increase the amplification rate of the voltage signal of the pressure sensor of the flow meter. If the voltage value of the voltage signal of the pressure sensor of the flow meter using the pitot tube is equal to or less than the switching set voltage (of the pressure sensor), the flow rate using the pitot tube is increased. A third configuration is to lower the amplification factor of the voltage signal of the pressure sensor of the meter and increase the amplification factor of the voltage signal of the thermal sensor. According to the present invention, when the voltage value of the voltage signal of the thermal sensor is equal to or lower than the lower limit set voltage (of the thermal sensor) and the voltage signal of the pressure sensor of the flowmeter using the pitot tube in the second configuration and the third configuration, When the voltage value exceeds the upper limit set voltage (of the pressure sensor), an error display is displayed on the display as a fourth configuration.

【0005】[0005]

【発明の実施の形態】図1,図2は本発明の実施の形態
を示す。図1(a) において、2センサ式流量計10は、管
11の上部にケース12が配設された外形をしている。管11
の流体通路13の中心線上には、熱式流量計の流量測定用
抵抗体16・温度補償用抵抗体17及びピトー管20の鼻管21
(図1(b) 参照)が配設され、流体通路13の流体は入口
部14から出口部15に向かって流れるように設定されてい
る。流量測定用抵抗体16及び温度補償用抵抗体17は、支
持柱により支持され、それらは制御回路18に接続されて
いる。熱式流量計では制御回路18において、流量測定用
抵抗体(熱式センサ)16に流れる電圧信号から流量を計
算するようにされている。
FIG. 1 and FIG. 2 show an embodiment of the present invention. In FIG. 1 (a), a two-sensor type flow meter 10 is
It has an outer shape in which a case 12 is arranged on the upper part of 11. Tube 11
On the center line of the fluid passage 13, a flow measuring resistor 16, a temperature compensating resistor 17 of a thermal flow meter and a nasal tube 21 of a pitot tube 20 are provided.
(See FIG. 1B), and the fluid in the fluid passage 13 is set to flow from the inlet 14 toward the outlet 15. The flow rate measuring resistor 16 and the temperature compensating resistor 17 are supported by support columns, and they are connected to a control circuit 18. In the thermal flow meter, the control circuit 18 calculates the flow rate from a voltage signal flowing through the flow rate measuring resistor (thermal sensor) 16.

【0006】図1に示すように、標準形のピトー管20に
は直角に交差した鼻管21と元管22とがあり、鼻管21の中
心線は流体通路13の中心線と正しく一致して配置され、
元管22は管11の支持具23に挿通され支持されている。ピ
トー管20は先端部(図1(b)では左端部)及び基端部
(図1(b) では下端部)以外は二重管になっており、内
側管の内部が全圧通路であり、内側管と外側管との間の
部分が静圧通路である。鼻管21の先端には全圧測定孔24
が形成され、全圧測定孔24は全圧通路を介して全圧検出
器26に連通されている。鼻管21の側部には静圧測定孔25
が形成され、静圧測定孔25は静圧通路を介して静圧検出
器27に連通されている。ピトー管20を用いた流量計で
は、全圧検出器26によって全圧P0 が検出され、静圧検
出器27によって静圧Pが検出され、制御回路18におい
て、圧力の差(P0 −P)から流速が求められる。
[0006] As shown in FIG. 1, the standard form of the Pitot tube 20 has a nose tube 21 and Motokan 22 crossed at right angles, the center line of the nose tube 21 correctly coincides with the center line of the fluid passage 13 Placed
The main pipe 22 is inserted into and supported by the support 23 of the pipe 11. The pitot tube 20 is a double tube except for the distal end (the left end in FIG. 1 (b)) and the proximal end (the lower end in FIG. 1 (b)), and the inside of the inner tube is a full pressure passage. The portion between the inner pipe and the outer pipe is a static pressure passage. Total pressure measurement hole 24 at the tip of nasal duct 21
Is formed, and the total pressure measurement hole 24 is communicated with the total pressure detector 26 via the total pressure passage. Static pressure measurement hole 25 on the side of the nasal duct 21
Are formed, and the static pressure measurement hole 25 is connected to a static pressure detector 27 via a static pressure passage. In the flowmeter using a pitot tube 20, is detected total pressure P 0 by the total pressure detector 26, it is detected static pressure P by the electrostatic pressure detector 27, the control circuit 18, the difference between the pressure (P 0 -P ) Is used to determine the flow velocity.

【0007】ピトー管を用いた流量計は、低速域で発生
する差圧が微小であるため、差圧の検出が困難である
が、中速域から高速域の流量の測定には適している。そ
こで、本発明では、低速域の流量から中速設定値(8.
6m/s)の流量(260L/min(ANR))を熱
式流量計で測定し、中速設定値の流量から高速域の流量
をピトー管を用いた流量計で測定することを基本として
いる。
A flow meter using a pitot tube has a small differential pressure generated in a low-speed range, so that it is difficult to detect the differential pressure. However, it is suitable for measuring a flow rate in a medium to high-speed range. . Therefore, in the present invention, the medium speed setting value (8.
The flow rate (260 L / min (ANR)) of 6 m / s) is measured by a thermal flow meter, and the flow rate in a high-speed range from the flow rate of a medium speed set value is measured by a flow meter using a pitot tube. .

【0008】図2によって、2センサ式流量計の実施の
形態の機能を説明する。プログラムがスタートすると、
ステップS1で初期値の設定を行い、ステップS2で熱
式流量計の熱式センサ(流量測定用抵抗体16)の電圧信
号を読み取る。ステップS3において、熱式センサの電
圧信号はA/D変換され増幅され、続いてステップS4
において制御回路18で熱式センサの電圧信号から流量が
計算され、計算結果がケース12の上面のディスプレイ29
(図1(a) 参照)に表示される。
Referring to FIG. 2, the function of the embodiment of the two-sensor type flow meter will be described. When the program is started,
In step S1, an initial value is set, and in step S2, a voltage signal of a thermal sensor (flow measurement resistor 16) of the thermal flow meter is read. In step S3, the voltage signal of the thermal sensor is A / D converted and amplified, and then, in step S4
In the control circuit 18, the flow rate is calculated from the voltage signal of the thermal sensor, and the calculation result is displayed on the display 29 on the upper surface of the case 12.
(See FIG. 1A).

【0009】ステップS5において、熱式センサの電圧
信号の電圧値が(熱式センサの)下限設定電圧(実験装
置では0.05V。このとき、流量が10L/min
(ANR),流速が0.33m/s)を超えるか否かの
判定が行われる。ステップS5で熱式センサの電圧信号
の電圧値が下限設定電圧を超えない(下限設定電圧以下
である)と判定された場合は、流量が少なすぎて正確な
測定ができないので、ステップS6でディスプレイ29に
エラー表示をし、ステップS2に戻る。
In step S5, the voltage value of the voltage signal of the thermal sensor is set to the lower limit set voltage (of the thermal sensor) (0.05 V in the experimental apparatus. At this time, the flow rate is 10 L / min).
(ANR), it is determined whether the flow velocity exceeds 0.33 m / s). If it is determined in step S5 that the voltage value of the voltage signal of the thermal sensor does not exceed the lower limit set voltage (below the lower limit set voltage), the flow rate is too small to perform an accurate measurement. An error message is displayed at 29 and the process returns to step S2.

【0010】ステップS5で熱式センサの電圧信号の電
圧値が下限設定電圧を超えると判定されたときは、ステ
ップS7で熱式センサの電圧信号の電圧値が熱式センサ
の切換設定電圧(実験装置では5V。このとき、流量が
260L/min(ANR),流速(中速設定値)が
8.6m/s)を超えるか否かの判定が行われる。熱式
センサの電圧信号の電圧値が熱式センサの切換設定電圧
を超えると、熱式センサの出力が飽和する。ステップS
7で熱式センサの電圧信号の電圧値が熱式センサの切換
設定電圧を超えない(切換設定電圧以下である)と判定
されたときは、熱式センサの測定範囲内にあるので、デ
ィスプレイ29に流量が継続して表示され(エラー表示は
されない)、ステップS2に戻る。
If it is determined in step S5 that the voltage value of the voltage signal of the thermal sensor exceeds the lower limit set voltage, the voltage value of the voltage signal of the thermal sensor is changed to the switching set voltage of the thermal sensor (experimental) in step S7. In the apparatus, 5 V. At this time, it is determined whether or not the flow rate exceeds 260 L / min (ANR) and the flow rate (medium speed set value) exceeds 8.6 m / s). When the voltage value of the voltage signal of the thermal sensor exceeds the switching set voltage of the thermal sensor, the output of the thermal sensor is saturated. Step S
If it is determined in step 7 that the voltage value of the voltage signal of the thermal sensor does not exceed the switching set voltage of the thermal sensor (it is equal to or less than the switching set voltage), it is within the measurement range of the thermal sensor, and the display 29 Is displayed continuously (no error is displayed), and the process returns to step S2.

【0011】ステップS7で熱式センサの電圧信号の電
圧値が熱式センサの切換設定電圧を超えると判定された
ときは、ステップS8で、熱式センサの電圧信号の増幅
率を下げ、ピトー管20を用いた流量計の圧力センサの電
圧信号の増幅率を上げ、ステップS9へ進む。この操作
により、熱式センサの流量をディスプレイに表示するこ
とが不能となり、ピトー管を用いた流量計の流量をディ
スプレイに表示することとなる。
When it is determined in step S7 that the voltage value of the voltage signal of the thermal sensor exceeds the switching set voltage of the thermal sensor, in step S8, the amplification factor of the voltage signal of the thermal sensor is reduced, The amplification factor of the voltage signal of the pressure sensor of the flow meter using 20 is increased, and the process proceeds to step S9. This operation makes it impossible to display the flow rate of the thermal sensor on the display, and displays the flow rate of the flow meter using the pitot tube on the display.

【0012】ステップS9でピトー管を用いた流量計の
圧力センサ(全圧検出器26・静圧検出器27)の電圧信号
を読み取る。ステップS10でこの電圧信号はA/D変
換され増幅され、続いてステップS11において制御回
路18でこの電圧信号から流量が計算され、計算結果がデ
ィスプレイ29に表示される。
In step S9, the voltage signals of the pressure sensors (total pressure detector 26 and static pressure detector 27) of the flow meter using the pitot tube are read. In step S10, the voltage signal is A / D converted and amplified. Subsequently, in step S11, the flow rate is calculated from the voltage signal by the control circuit 18 and the calculation result is displayed on the display 29.

【0013】ステップS12において、ピトー管を用い
た流量計の圧力センサの電圧信号の電圧値が(圧力セン
サの)上限設定電圧(実験の装置では5V、流量が10
00L/min(ANR),流速が32.9m/s)を
超えるか否かの判定が行われ、ピトー管を用いた流量計
の圧力センサの電圧信号の電圧値が上限設定電圧を超え
ると判定された場合は、流量が大すぎて正確な測定がで
きない。ステップS12でピトー管を用いた流量計の圧
力センサの電圧信号の電圧値が上限設定電圧を超えると
判定されたときは、ステップS13でディスプレイ29に
エラー表示をし、ステップS9に戻る。
In step S12, the voltage value of the voltage signal of the pressure sensor of the flow meter using the pitot tube is set to the upper limit setting voltage (of the pressure sensor) (5 V in the experimental apparatus, and the flow rate is 10 V).
It is determined whether or not the flow rate exceeds 00 L / min (ANR) and the flow velocity is 32.9 m / s). It is determined that the voltage value of the voltage signal of the pressure sensor of the flowmeter using the pitot tube exceeds the upper limit set voltage. In this case, the flow rate is too large to measure accurately. When it is determined in step S12 that the voltage value of the voltage signal of the pressure sensor of the flow meter using the pitot tube exceeds the upper limit set voltage, an error is displayed on the display 29 in step S13, and the process returns to step S9.

【0014】ステップS12でピトー管を用いた流量計
の圧力センサの電圧信号の電圧値が上限設定電圧を超え
ない(上限設定電圧以下である)と判定されたときは、
ステップS14でピトー管を用いた流量計の圧力センサ
の電圧信号の電圧値が圧力センサの切換設定電圧(実験
装置では0.05V。このとき、流量が260L/mi
n(ANR),流速(中速設定値)が8.6m/s)を
超えるか否かの判定が行われる。ステップS14でピト
ー管を用いた流量計の圧力センサの電圧信号の電圧値が
圧力センサの切換設定電圧を超えると判定されたとき
は、ピトー管を用いた流量計の測定範囲内にあるので、
ディスプレイ29に流量が継続して表示され(エラー表示
はされていない)、ステップS9に戻る。
If it is determined in step S12 that the voltage value of the voltage signal of the pressure sensor of the flow meter using the pitot tube does not exceed the upper limit set voltage (below the upper limit set voltage),
In step S14, the voltage value of the voltage signal of the pressure sensor of the flow meter using the pitot tube is set to the switching setting voltage of the pressure sensor (0.05 V in the experimental apparatus. At this time, the flow rate is 260 L / mi.
It is determined whether or not n (ANR) and the flow velocity (medium speed setting value) exceed 8.6 m / s). When it is determined in step S14 that the voltage value of the voltage signal of the pressure sensor of the flowmeter using the pitot tube exceeds the switching set voltage of the pressure sensor, it is within the measurement range of the flowmeter using the pitot tube.
The flow rate is continuously displayed on the display 29 (no error is displayed), and the process returns to step S9.

【0015】ステップS14でピトー管を用いた流量計
の圧力センサの電圧信号の電圧値が圧力センサの切換設
定電圧を超えない(切換設定電圧以下である)と判定さ
れたときは、ステップS15でピトー管20を用いた流量
計の圧力センサの電圧信号の増幅率を下げ、熱式センサ
の電圧信号の増幅率を上げ、ステップS2へ進む。この
操作により、ピトー管を用いた流量計の流量をディスプ
レイに表示することが不能となり、熱式センサの流量を
ディスプレイに表示することとなる。
If it is determined in step S14 that the voltage value of the voltage signal of the pressure sensor of the flow meter using the pitot tube does not exceed the switching set voltage of the pressure sensor (is not more than the set switching voltage), in step S15. The amplification factor of the voltage signal of the pressure sensor of the flow meter using the pitot tube 20 is reduced, the amplification factor of the voltage signal of the thermal sensor is increased, and the process proceeds to step S2. By this operation, it becomes impossible to display the flow rate of the flow meter using the pitot tube on the display, and the flow rate of the thermal sensor is displayed on the display.

【0016】[0016]

【発明の効果】本発明においては、低速域から中速設定
値の流量は熱式流量計で測定されて測定結果がディスプ
レーに表示され、中速設定値から高速域の流量はピトー
管を用いた流量計で測定されて測定結果がディスプレー
に表示される。低速域から中速域の流量の測定を得意と
する熱式流量計と、中速域から高速域の流量を測定でき
るピトー管を用いた流量計とを組み合わせたので、高い
測定精度で測定範囲を拡大することができる。そして、
本発明では、熱式流量計で測定された測定結果の表示
と、ピトー管を用いた流量計で測定された測定結果の表
示とが、切換設定電圧を基準として自動的に切り換えら
れる。
According to the present invention, the flow rate from the low speed range to the middle speed setting value is measured by a thermal flow meter, and the measurement result is displayed on a display. The flow rate from the middle speed setting value to the high speed range uses a pitot tube. The measured value is displayed on the display and the measurement result is displayed on the display. Combines a thermal flow meter that is good at measuring flow rates from low to medium speeds, and a flow meter that uses a pitot tube that can measure flow rates from medium to high speeds. Can be expanded. And
In the present invention, the display of the measurement result measured by the thermal flow meter and the display of the measurement result measured by the flow meter using the pitot tube are automatically switched based on the switching set voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a) は本発明の2センサ式流量計の実施の
形態の説明図であり、図1(b)は本発明の実施の形態に
用いられるピトー管の説明図である。
FIG. 1 (a) is an explanatory diagram of an embodiment of a two-sensor type flow meter of the present invention, and FIG. 1 (b) is an explanatory diagram of a pitot tube used in the embodiment of the present invention. .

【図2】本発明の2センサ式流量計の実施の機能を示す
フローチャートである。
FIG. 2 is a flowchart showing functions of a two-sensor type flow meter according to the present invention.

【符号の説明】[Explanation of symbols]

10 2センサ式流量計 13 流体通路 16 熱式センサ(流量測定用抵抗体) 20 ピトー管 26・27 圧力センサ 29 ディスプレィ 10 Two-sensor flow meter 13 Fluid passage 16 Thermal sensor (resistor for flow measurement) 20 Pitot tube 26/27 Pressure sensor 29 Display

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楊 岱強 中華人民共和国北京100084 清▲華▼大学 エスエムシー清▲華▼大学▲気▼▲動▼ 技▲術▼中心内 Fターム(参考) 2F030 CA10 CD13 CE02 CE27 2F035 EA04  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yang Taiqiang Beijing 100084 China PR China ▼ University SMC Qing ▲ Hua ▼ University ▲ Qi ▲ ▲ Move ▼ Technique ▲ Technique ▼ F-term (reference) 2F030 CA10 CD13 CE02 CE27 2F035 EA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流体通路に熱式流量計の熱式センサ及び
ピトー管が配設され、低速域から中速設定値の流量は熱
式流量計で測定されて測定結果がディスプレーに表示さ
れ、中速設定値から高速域の流量はピトー管を用いた流
量計で測定されて測定結果がディスプレーに表示される
2センサ式流量計。
1. A thermal sensor and a pitot tube of a thermal flow meter are disposed in a fluid passage, and a flow from a low speed range to a medium speed set value is measured by the thermal flow meter, and a measurement result is displayed on a display. A two-sensor type flow meter that measures the flow rate from the medium speed setting value to the high speed range with a flow meter using a pitot tube and displays the measurement result on a display.
【請求項2】 流体通路に熱式流量計の熱式センサ及び
ピトー管が配設され、熱式センサの電圧信号の電圧値が
下限設定電圧を超えかつ切換設定電圧以下のときは、熱
式流量計で測定された測定結果がディスプレーに表示さ
れ、ピトー管を用いた流量計の圧力センサの電圧信号の
電圧値が上限設定電圧以下で切換設定電圧を超えるとき
は、ピトー管を用いた流量計で測定された測定結果がデ
ィスプレーに表示される2センサ式流量計。
2. A thermal sensor and a pitot tube of a thermal flow meter are disposed in a fluid passage, and when a voltage value of a voltage signal of the thermal sensor exceeds a lower limit set voltage and is equal to or lower than a switching set voltage, a thermal type sensor is provided. When the measurement result measured by the flow meter is displayed on the display, and the voltage value of the voltage signal of the pressure sensor of the flow meter using the pitot tube is less than the upper limit set voltage and exceeds the switching set voltage, the flow rate using the pitot tube is used. A two-sensor type flow meter that displays the measurement results measured by the meter on the display.
【請求項3】 熱式センサの電圧信号の電圧値が切換設
定電圧を超えるときは、熱式センサの電圧信号の増幅率
を下げるともにピトー管を用いた流量計の圧力センサの
電圧信号の増幅率を上げ、ピトー管を用いた流量計の圧
力センサの電圧信号の電圧値が切換設定電圧以下のとき
は、ピトー管を用いた流量計の圧力センサの電圧信号の
増幅率を下げるとともに熱式センサの電圧信号の増幅率
を上げる請求項2記載の2センサ式流量計。
3. When the voltage value of the voltage signal of the thermal sensor exceeds the switching set voltage, the amplification factor of the voltage signal of the thermal sensor is reduced, and the voltage signal of the pressure sensor of the flow meter using the pitot tube is amplified. When the voltage value of the voltage signal of the pressure sensor of the flowmeter using the pitot tube is lower than the switching set voltage, the amplification rate of the voltage signal of the pressure sensor of the flowmeter using the pitot tube is reduced and the thermal type is increased. 3. The two-sensor flow meter according to claim 2, wherein the amplification factor of the voltage signal of the sensor is increased.
【請求項4】 熱式センサの電圧信号の電圧値が下限設
定電圧以下のとき及びピトー管を用いた流量計の圧力セ
ンサの電圧信号の電圧値が上限設定電圧を超えるとき
は、ディスプレーにエラー表示がされる請求項2又は3
記載の2センサ式流量計。
4. An error is displayed on the display when the voltage value of the voltage signal of the thermal sensor is lower than the lower limit set voltage or when the voltage value of the voltage signal of the pressure sensor of the flow meter using the pitot tube exceeds the upper limit set voltage. 4. A display is provided.
The two-sensor type flow meter according to claim 1.
JP2000386549A 2000-12-20 2000-12-20 2-sensor flow meter Expired - Fee Related JP3637278B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000386549A JP3637278B2 (en) 2000-12-20 2000-12-20 2-sensor flow meter
CNB011433450A CN1165751C (en) 2000-12-20 2001-12-20 Double sensor type flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000386549A JP3637278B2 (en) 2000-12-20 2000-12-20 2-sensor flow meter

Publications (2)

Publication Number Publication Date
JP2002188943A true JP2002188943A (en) 2002-07-05
JP3637278B2 JP3637278B2 (en) 2005-04-13

Family

ID=18853624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000386549A Expired - Fee Related JP3637278B2 (en) 2000-12-20 2000-12-20 2-sensor flow meter

Country Status (2)

Country Link
JP (1) JP3637278B2 (en)
CN (1) CN1165751C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007037394A1 (en) * 2007-08-08 2009-02-12 Endress + Hauser Flowtec Ag Flow meter for a medium through a pipeline measures pressure at a diaphragm reducing the pipe cross section, and the difference between two temperature sensors
JP2011528104A (en) * 2008-07-17 2011-11-10 メムシック セミコンダクター(ウーシー)カンパニー リミテッド Compound gas flow measuring method and apparatus
WO2016053589A1 (en) * 2014-09-30 2016-04-07 Dieterich Standard, Inc. Compound flow measurement probe with an extended measurement range

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1904812B1 (en) * 2005-07-14 2014-12-03 systec Controls Mess- und Regeltechnik GmbH Ram pressure probe
CN101769936B (en) * 2009-01-07 2011-12-21 中国科学院电子学研究所 Minisize wind speed sensor integrating traction theory with hot wire theory
CN102937458A (en) * 2011-08-15 2013-02-20 中国科学院工程热物理研究所 Steady-state entropy probe
US9557744B2 (en) 2012-01-20 2017-01-31 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
SG11201606712XA (en) * 2014-02-13 2016-09-29 Mks Instr Inc System for and method of providing pressure insensitive self verifying mass flow controller
DE102015122224A1 (en) * 2015-12-18 2017-06-22 Endress+Hauser Flowtec Ag Flowmeter
CN107677332A (en) * 2017-02-22 2018-02-09 上海安钧电子科技有限公司 It is a kind of that the new method for expanding flow measurement range is balanced using hot type
CN107655530A (en) * 2017-02-22 2018-02-02 上海安钧电子科技有限公司 Hot type V cone flow meters
CN112827033B (en) * 2020-12-29 2023-01-10 北京谊安医疗系统股份有限公司 Integrated display and control system of electronic flowmeter of anesthesia machine
CN113340365B (en) * 2021-05-25 2022-02-18 南京禹通自动化科技有限公司 Thermal flowmeter and flow measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007037394A1 (en) * 2007-08-08 2009-02-12 Endress + Hauser Flowtec Ag Flow meter for a medium through a pipeline measures pressure at a diaphragm reducing the pipe cross section, and the difference between two temperature sensors
JP2011528104A (en) * 2008-07-17 2011-11-10 メムシック セミコンダクター(ウーシー)カンパニー リミテッド Compound gas flow measuring method and apparatus
WO2016053589A1 (en) * 2014-09-30 2016-04-07 Dieterich Standard, Inc. Compound flow measurement probe with an extended measurement range
EP3201573A1 (en) * 2014-09-30 2017-08-09 Dieterich Standard, Inc. Compound flow measurement probe with an extended measurement range
JP2017530364A (en) * 2014-09-30 2017-10-12 ディーテリヒ・スタンダード・インコーポレーテッド Integrated flow measurement probe with extended measurement range
US9804011B2 (en) 2014-09-30 2017-10-31 Dieterich Standard, Inc. Flow measurement probe with pitot tube and thermal flow measurement

Also Published As

Publication number Publication date
CN1360201A (en) 2002-07-24
JP3637278B2 (en) 2005-04-13
CN1165751C (en) 2004-09-08

Similar Documents

Publication Publication Date Title
JP2002188943A (en) Two-sensor type flowmeter
JP5425902B2 (en) Compound gas flow measuring method and apparatus
JP4949039B2 (en) Flow rate detector
JPH0464020A (en) Flowmeter
CN102645248B (en) Self-correction heat type-precession vortex combined type gas flow measurement method
JPH04155220A (en) Liquid flowmeter
JPH09218062A (en) Variable sectional area venturi type flow meter
JPH10170320A (en) Flowmeter
JP2003028692A (en) Method and apparatus for measuring quantity of flow
CN209247080U (en) The throttling set of built-in high-precision sensor
CN202836646U (en) Thermal vortex composite flow measuring device with bypass bridge circuit
CN115597674A (en) MEMS double-sensor type flowmeter
CN1028560C (en) Pressure-measuring probe
JPH0227220A (en) Differential pressure type steam flowmeter
JPH09222346A (en) Flow rate measuring device utilizing duct reinforcement
CN201004184Y (en) Traffic measurement control device
JP2000250633A (en) Fluid mass flow rate controller
KR0179837B1 (en) Semiconductor fabricating apparatus
JPS6016572B2 (en) Sodium purity monitoring device
JPS59131116A (en) Air blower
JP2001241980A (en) Flowmeter
JPS5814210A (en) Flow rate controller
TWM628991U (en) Bidirectional display structure of differential pressure flowmeter
JPS6140489A (en) Flow measuring method of pump
JP3015912U (en) Micro flow rate measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050107

R150 Certificate of patent or registration of utility model

Ref document number: 3637278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees