JP3627614B2 - Drainage pump - Google Patents
Drainage pump Download PDFInfo
- Publication number
- JP3627614B2 JP3627614B2 JP2000072448A JP2000072448A JP3627614B2 JP 3627614 B2 JP3627614 B2 JP 3627614B2 JP 2000072448 A JP2000072448 A JP 2000072448A JP 2000072448 A JP2000072448 A JP 2000072448A JP 3627614 B2 JP3627614 B2 JP 3627614B2
- Authority
- JP
- Japan
- Prior art keywords
- sprayed film
- bearing
- hardness
- nicr
- sprayed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 59
- 238000000576 coating method Methods 0.000 claims description 45
- 239000011248 coating agent Substances 0.000 claims description 42
- 239000011148 porous material Substances 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 90
- 229910001120 nichrome Inorganic materials 0.000 description 90
- 238000010438 heat treatment Methods 0.000 description 67
- 238000012360 testing method Methods 0.000 description 47
- 239000000463 material Substances 0.000 description 45
- 239000002245 particle Substances 0.000 description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 39
- 239000011230 binding agent Substances 0.000 description 32
- 239000004576 sand Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 24
- 230000008859 change Effects 0.000 description 22
- 230000007423 decrease Effects 0.000 description 22
- 230000007797 corrosion Effects 0.000 description 16
- 238000005260 corrosion Methods 0.000 description 16
- 239000007921 spray Substances 0.000 description 13
- 238000005507 spraying Methods 0.000 description 13
- 229910010271 silicon carbide Inorganic materials 0.000 description 12
- 229910021431 alpha silicon carbide Inorganic materials 0.000 description 11
- 238000010285 flame spraying Methods 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000005299 abrasion Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 238000007751 thermal spraying Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000008646 thermal stress Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003657 drainage water Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002360 explosive Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 206010070834 Sensitisation Diseases 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000008313 sensitization Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000006424 Flood reaction Methods 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- OFNHPGDEEMZPFG-UHFFFAOYSA-N phosphanylidynenickel Chemical compound [P].[Ni] OFNHPGDEEMZPFG-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
- Sliding-Contact Bearings (AREA)
- Coating By Spraying Or Casting (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は排水ポンプに係り、特に軸受部に清浄水を供給することなく運転するポンプに適した耐摩耗性と高い信頼性及び組立て性に優れた軸受装置、その軸受装置を用いた排水ポンプとその軸受部の製造方法に関するものである。
【0002】
【従来の技術】
近年の急激な都市化に伴い、降雨水量のほとんどが排水溝に流れ込むため排水が追いつかず、道路に溢れだす都市型洪水が増加する傾向にある。これに対処すべく排水ポンプシステムを装備した排水機場が設けられているが、排水機場の増加に伴い運転維持管理費が増大するという問題があり、自動運転による排水ポンプシステムが検討されている。この排水ポンプシステムの課題は高性能化、高信頼性化であり、現在、これらに対応する技術として、ポンプの無給水運転技術、大容量化、及び先行待機運転が検討されている。
【0003】
無給水運転技術とは、軸受、スリーブ間に清浄水を供給することなく運転するものである。清浄水の供給装置がないため、清浄水供給装置、清浄水供用センサー等の故障による誤動作がなく信頼性が高い。無給水運転技術を可能とするためには、排水に含まれる土砂が進入しても摩耗しない軸受装置が必要である。
【0004】
従来の無給水ポンプ用軸受装置には、耐摩耗性、耐食性に優れるタングステンカ−バイド(以下、WCと称する)製スリーブ(焼結体)とセラミックス製軸受(焼結体)との組合せが用いられてきた。WC製スリーブとセラミックス製軸受との組合せ構造に関しては、特開昭60−81517号公報、特開昭60−88215号公報に開示されている。
【0005】
一方、ポンプの大容量化は必然的に軸受の大口径化を必要とする。しかしながら、従来のWCスリーブとセラミックス軸受との組合せによる軸受装置のままでは、大口径の焼結体スリーブ、焼結体軸受が必要となる。しかしながら、焼結技術が十分に対応できない、さらに部品重量が大きくなり組立て作業が難しくなるという問題があった。そのため、セラミックスと同等の硬さを有する皮膜を被覆する硬質膜コーティング技術が広く検討されている。尚、硬質膜として溶射膜を利用した例として、WC溶射膜を被覆したスリーブとセラミックス軸受との組合せを用いた無給水排水ポンプが、「トライボロジスト」、第36巻、第2号の144頁から147頁に明示されている。
【0006】
多くの場合、排水ポンプ軸受部には硬質被膜として溶射膜が利用される。しかし、溶射膜は同組成の焼結体よりも硬度、強度の点で劣るため、溶射膜の硬度、強度を上げる方法が検討されている。例えば、50%Cr−50%Niからなるプラズマ溶射膜を、溶射した後、約700℃〜800℃の温度で約1〜100時間保持し、溶射膜の接着力と強度を高める技術が特開昭57−2872号公報に開示されている。又、ニッケル−リン(NiP)を主成分とし20〜80%のNiCrの溶射膜をFe系材料の上に形成し、600℃〜1000℃の温度で熱処理を行い、溶射膜の強度を高める方法が特開昭60−149762号公報に開示されている。
【0007】
先行待機運転とは、排水開始前に排水可能水位より低い水位状態で空転運転をすることであり、排水可能水位に達した時点で全力運転が可能で、急激な排水増加にすばやく対応できる。しかし、先行待機運転を行うには、軸受は短時間ながら摺動部に排水を含まない空転運転を行うため、軸受、スリーブ間の摩擦係数が極めて低く、ドライ摺動によっても損傷しないことが求められる。
【0008】
長時間の空転運転を行う先行待機運転と、無給水運転を両立する軸受はいまだ開発されておらず、空転運転時に軸受摺動部に外部より給水する方法が検討され、特開昭55−90718号公報に開示されている。
【0009】
【発明が解決しようとする課題】
土砂を含む水を排水するためには、軸受の耐摩耗性は不可欠である。無給水軸受の場合は軸受、スリーブを保護する清浄水の供給がないため、スラリーに対する耐摩耗性は特に重要である。土砂水に含まれる土砂粒子のほとんどが長石と石英であり、最高硬さがビッカース硬度(以下、Hvと称する)1000程度(石英)である。従って、軸受、スリーブに必要とされる硬度はHv1000以上である。
【0010】
WC,SiC,窒化珪素(以下、Si3N4と称する)の焼結体であれば、その硬度はWCがHv約1400,SiCが約2800、Si3N4が約1600といずれもHv1000以上であり、硬度の点では十分で耐摩耗性も優れている。しかし、焼結技術、組立て作業性、製造コストを考慮すると、スリーブ、軸受の全体をWC,SiC又はSi3N4の焼結体で製作するのには大きさに限界がある。そこで、上記のごとく焼結体に替わる硬質被膜を用いることが検討されている。摩耗量を考慮すれば、膜厚は数100μm以上必要であるため、硬質被膜の製法が限られる。排水ポンプ軸受部用の硬質被膜としては、比較的膜厚が得られ、高硬度の得られるWC,Cr3C2を主成分とする膜厚100〜200μm程度の溶射膜が広く用いられている。しかし、溶射法で形成したWC,Cr3C2を主成分とする溶射膜は、材質、形成法、条件にもよるが一般に焼結体に比べ硬度が低く、約Hv600〜1000程度である。
【0011】
従来の各種溶射膜の硬度と土砂水に対する耐摩耗性との関係を図21で説明する。図21は、実施例において説明する要素試験によって測定した摩耗率である。各種溶射膜はステンレス鋼(以下、SUSと称する)板の上に形成した各種溶射膜を回転側試験片に用い、固定側試験片にはα−SiCを用いた。その他の試験条件は、面圧が2kg/cm2、周速が0.5m/s、土砂水に含まれる珪砂濃度が9wt%である。尚、試験片形状や摺動方式などの詳細は、実施例に示した図19の試験条件と同様である。
【0012】
図21の横軸は溶射膜の断面ビッカース硬度であり、縦軸はWC−12%Co焼結体の摩耗率を基準として規格化した相対摩耗率である。溶射膜1、溶射膜2、溶射膜3は、高速フレーム溶射法及び爆発溶射法で作成した、WC、若しくはCr3C2を主成分とする従来の溶射膜である。図21に示すように、土砂水に対する耐摩耗性は、溶射膜の硬度に強く依存し、前述のごとくビッカース硬度で1000以上が良好である。図21の結果からは、現状の溶射膜では十分な硬度と土砂水に対する耐摩耗性が得られないことが分かる。
【0013】
一般に溶射とは、WC粒子、Cr3C2粒子のような硬質粒子だけを加熱して吹き付けるのではなく、結合材としてNi、Cr、Co等の金属粒子をまぜ同時に加熱して吹き付け、溶解した金属粒子によってWC粒子、Cr3C2粒子を連結して被膜を形成するものである。溶射膜の硬度が焼結体よりも低いのは、溶射膜中のWC粒子やCr3C2粒子の硬度が低いのではなく、WC粒子、Cr3C2粒子をつなぐ結合材に空孔等の欠陥があるため、或いは結合材とWC粒子、Cr3C2粒子との結合力が不十分なためである。
【0014】
WC粒子、Cr3C2粒子間の結合力を増すために、様々な溶射法の改善がなされている。例えば溶射粒子の速度を増した、可燃性ガスの燃焼エネルギを利用した高速フレーム溶射、可燃性ガスの爆発を利用した爆発溶射などが開発されており、従来のプラズマ溶射膜よりも溶射時の粒子速度を高め、より高硬度の溶射膜を形成することができる。しかしながら、これらの各溶射法による溶射膜でも土砂水に対する耐摩耗性は充分ではなく、その硬度が低いためであることが図18に示した要素試験で明らかとなっている。
【0015】
前記従来技術、特開昭60−81517号公報及び特開昭60−88215号公報に開示のセラミック軸受には、軸受、スリーブが大口径化することによって生じる、焼結技術の困難、信頼性の低下、重量増加による組立て性の低下についての検討が加えられていない。
【0016】
前記従来技術、WC溶射膜とセラミックス軸受(焼結体)との組合せを用いた無給水排水ポンプ(「トライボロジスト」、第36巻、第2号)については、WC、或いはCr3C2を主成分とする溶射膜の硬度、耐摩耗性、信頼性についての検討が加えられていない。
【0017】
前記従来技術、特開昭57−2872号公報及び特開昭60−149762号公報に開示の溶射膜の改質方法では、主な母材材料であるFe系材料と熱膨張率の近い材料、或いは加熱によって変質の無い材料に限られ、高硬度が得られるWC、或いはCr3C2を主成分とする溶射膜においては、加熱温度が高いため熱膨張差が大きくなる。その結果被膜が破断しそのままの利用は難しい。更に、ポンプ等の水中で使用する機器では、主材料はSUSに限定される。従って、前記従来技術に示した加熱による溶射膜の改質を適用した場合、加熱温度が下地のSUSの焼きなまし温度、もしくは粒界腐食に対する鋭敏化温度以上の高温となり、下地の硬度、耐食性が低下し、結果として信頼性が低くなるという問題がある。
【0018】
即ち、前記従来技術においてはFe系材料と熱膨張率差の大きいWCを主成分とする溶射膜の改質についての検討がなされていない。更に、下地材料の硬度、耐食性変化についての考慮がなされていない。
前記従来技術、特開昭55−90718号公報に開示されている、軸受摺動部に外部より給水する方法では、外部給水装置の誤動作によって排水機場の停止が発生し、緊急時に排水が停止する可能性があり、信頼性に問題があった。
【0019】
本発明は、前記従来技術に鑑みなされたものであり、排水ポンプシステムに適用可能な、耐摩耗性と組立て性に優れ、信頼性が高い軸受装置、その軸受装置を用いた排水ポンプと軸受装置の製造方法を提供することを目的とする。
【0020】
【課題を解決するための手段】
本発明の課題である軸受装置の摺動面に被覆した溶射膜の耐摩耗性を向上させるには、WC又はCr3C2を主成分とする溶射膜の溶射後に、熱応力によって溶射膜の接着力が低下せず、溶射膜が変質せず、更に下地のSUSの硬度が極端に低下しない、さらに粒界腐食に対する鋭敏化が生じない温度条件で加熱することにより達成される。
【0021】
本発明の課題は例えば、軸受及びこの軸受と摺動するスリ−ブとを備えた軸受装置に用いる軸受及びスリ−ブのいずれか一方若しくは両方の摺動面に次のような溶射膜を被覆することで解決される。被覆する溶射膜はWCを主成分としてNi、Cr又はCoのいずれか1つ若しくは複数を結合材とするもの又はCr3C2を主成分としてNiとCrを結合材とする溶射膜を被覆するものであって、溶射膜の表面に形成される20μm以上の大きさの空孔の密度が15個/mm2以下のものである。
【0022】
さらに、被覆された溶射膜は、被覆後300℃以上550℃以下の温度で1時間以上加熱され、被膜硬さがビッカース硬さで1000以上に改善され、土砂水に対する十分な耐摩耗性を発揮するものである。
【0023】
又溶射膜を被覆する軸受、スリ−ブの材質はFe系金属であれば良いが、望ましくはステンレス鋼が良い。
【0024】
又軸受又はスリ−ブのいずれか一方を上記の溶射膜を被覆したものとした場合、他方は摺動面にSiC若しくはSi3N4を配したものか、全体がSiC若しくはSi3N4からなるものでもよい。又、スリ−ブ若しくは軸受は2個以上に分割しても良い。
【0025】
軸受部材としては、所定形状に加工したステンレス鋼製軸受部材の摺動部にWCを主成分として結合材にNi、Cr又はCOのいずれか1つ若しくは複数を含む溶射膜又はCr3C2を主成分として結合材にNiとCrを含む溶射膜を形成した後、300℃以上550℃以下の温度で1時間以上加熱し、その後所定の寸法に仕上加工することにより製造する。
【0026】
一般に、WC、Cr3C2を主成分とする溶射膜を加熱すると、被膜の硬度を増す役割の歪が消失し硬度が低下すると言われていた。又、Fe系材料(本発明の実施例ではSUS403)を下地材料としその上に熱膨張率の小さいWC又はCr3C2を主成分とする溶射膜を被覆した場合、両者の熱膨張率差のため、膜形成後に加熱すると熱応力による被膜接着力の低下、更に加熱によるWC粒子又はCr3C2粒子の酸化が生じ溶射膜の特性が低下すると考えられてきた。このため、WC又はCr3C2を主成分とする溶射膜の、溶射後の加熱は望ましいとは考えられていなかった。しかし、加熱条件を選べば、溶射膜に悪影響を与えることなく硬度を増すことができる。例えば、300℃以上550℃以下の温度で1時間以上加熱しすることで溶射膜硬さが増し、土砂水に対して十分な耐摩耗性を示す。その機構及び検討結果の詳細は、実施例で説明する。
【0027】
溶射膜に空孔が存在すると、溶射膜自体の強度も減り、且つWC粒子、或いはCr3C2粒子間の結合力も低下するため、摺動中にWC粒子、或いはCr3C2粒子が脱落し、耐摩耗性を低下させる原因となる。しかし、空孔を消滅させるために膜形成後に高温で加熱すると、前述のごとく結合材粒子、WC粒子又はCr3C2粒子の酸化、溶射膜の接着力の低下、及び下他材料の硬度、耐食性低下が生じ、結果的には信頼性を低下させる原因となる。しかし本発明によれば、WC又はCr3C2溶射膜の酸化、熱応力による膜接着力の低下、及び下他材料の硬度、耐食性低下が生じないような低温度でも、温度及び加熱時間を適切に選定すれば溶射膜の空孔が減り、且つ空孔の大きさが小さくなり、溶射膜の硬度が増すことが明らかとなった。
【0028】
特に、本条件で加熱すると、結合材粒子、WC粒子又はCr3C2粒子の最大粒子径を超える20μm以上の大きな空孔が減少することが判明した。20μm以上の大きな空孔はWC粒子又はCr3C2粒子の脱落を生じさせる直接的な原因となる。従って20μm以上の大きな空孔の減少は、溶射膜の強度を向上させるように作用する。更に20μm以上の大きな空孔が減ると、被膜に延性が付与されて、衝撃に対する抵抗力が増し、被膜の破壊、剥離が減少し、被膜の信頼性が増す。
また、空孔は、溶射膜の腐食発生点となるため、空孔を減らすことによってWC粒子間が緻密になり、粒子間に生じる腐食が抑制され、排水に対する耐食性が増す。
また、本発明の排水ポンプを先行待機運転用として用いても無潤滑状態での運転も可能な軸受装置を用いているため十分な信頼性を有する。
【0029】
更に、スリーブ又は軸受を分割構造とすることにより、製作が容易となり特に大径のものにおいて効果が大きい。
【0030】
【発明の実施の形態】
本発明の実施例を図1〜図20を用いて説明する。
図1は本発明の一実施例の排水ポンプの構造を示す縦断面図である。通常、排水ポンプには、インペラ近くと、上部との2個所に軸受が設けられている。本実施例の軸受装置は、両方の軸受に適用できるものである。図1において、1は主軸、2は主軸に取り付けられているスリーブであり、3は軸受である。本実施例においては主軸1、スリ−ブ2及び軸受3ともにSUS403を用いた。
【0031】
又、本ポンプにはケーシングの排水吸込み口に、パイプが設置されており、一端はケーシングのリブに支持され、他端は排水機場の床に支持され、大気に開口している。
本ポンプでは排水水位が低い場合、ポンプ内圧と大気間に圧力差が生じ、上記パイプから空気が排水中に吸収される。その結果、流水量が減じ、排水面の渦の発生は加振力を生じ、ポンプ振動の一因となるため防がねばならない。パイプから空気を吸い込むことにより、渦の発生しやすい低水位でも渦の発生が防げるため、安定して排水することが可能である。
【0032】
更に、水位が十分高くなるとケーシング内外の圧力差は減じ、自然にパイプからの吸気は止まる。排水水位によるケーシング中の圧力変化を利用するため、外部からの制御を必要とせず、信頼性が高い。
又、大気側の開口端にバルブを設けることで、吸気量の制御及びこの機能の取消しも可能である。
【0033】
本実施例の軸受装置を、図2及び図3により説明する。
図2は図1に示した排水ポンプの上部に設置された軸受装置を示す拡大図、図3は図2の摺動部を更に拡大した断面図である。スリ−ブ及び軸受の製造方法はまず、SUS403でスリーブ基材8及び軸受基材10を機械加工により形成した後、焼き入れ、焼き戻し熱処理を行い、SUS403の硬度を高めておく。焼き戻し温度は約700℃とし、後の溶射膜の改質時にSUS403が焼き戻し脆性を生じないようにした。熱処理後、軸受3及びスリーブ基材8の摺動部分にWCを主成分としNiCrを結合材とする溶射膜11及び9を高速フレーム溶射で被覆した。溶射膜形成後、400℃に20時間加熱し保持する熱処理を施し、溶射膜の硬度を高めた。熱処理後、スリーブ及び軸受は内径、外径を所定寸法、面粗さに加工した。スリーブ2は回り止め4で主軸1に固定した。
【0034】
軸受3は軸受用バックメタル6に取付け、軸受用緩衝材5を介し固定部材7で固定した。又、軸受3には摺動部への土砂の浸入を防止する浸入防止部材12を取り付けた。
本実施例によれば、スリ−ブ基材としてSUS403を用いたため、主軸材料との熱膨張率が一致し熱応力の発生が防げるとともに、靭性が高いため表面に被覆した溶射膜を安定して保持できるスリ−ブとすることができる。
【0035】
又、WC溶射膜に熱処理を施し硬度を増加させてあるため耐摩耗性が増し、軸受装置の寿命、信頼性が増す。
尚、本実施例では、スリ−ブ及び軸受に形成する溶射膜の材質としてWCを主成分としNiCrを結合材とする溶射膜について説明したが、WCを主成分としCoを結合材とする溶射膜若しくはCr3C2を主成分としNiCrを結合材とする溶射膜を用いても同様の効果が得られた。
本実施例の排水ポンプは、軸受装置が無潤滑条件下、即ち無給水状態においても安定した摺動性能を発揮し、給水後の摺動においては更に良好な摺動を行うことができる。
又、本実施例の排水ポンプは軸受装置の摺動部への土砂の浸入を防止する浸入防止部材を配置したが、排水中に混入した土砂が摺動部に浸入しても、摺動部には十分な耐摩耗性を備えているため安定した運転ができる。
更に、無潤滑状態においても良好な摺動性能が得られることから、無潤滑と潤滑状態を繰り返す使用状況、即ち先行待機運転においても信頼性の高い運転ができる。
【0036】
図4は本発明の他の実施例を示すポンプ用軸受装置の縦断面図である。SUS403のスリーブ基材8の摺動面にはWCを主成分としCoを結合材とする溶射膜9を被覆した。又、スリ−ブ2と摺動する軸受13はSiCとした。スリ−ブ2は、溶射膜形成後400℃×20時間の熱処理を施し、溶射膜の硬度を高めた。その他の構造は図1乃至図3で説明した実施例のものと同じである。
本実施例によれば、軸受部の材質が均質で高硬度の焼結セラミックからなるため軸受装置の寿命、信頼性が増す。
尚、本実施例では、スリ−ブに形成する溶射膜の材質としてWCを主成分としNiCrを結合材とする溶射膜について説明したが、WCを主成分としCoを結合材とする溶射膜若しくはCr3C2を主成分としNiCrを結合材とする溶射膜を用いても同様の効果が得られた。
【0037】
図5は本発明の他の実施例を示すポンプ用軸受装置の縦断面図である。本実施例は、先行待機運転時に、軸受高さまで排水水位が達していない空転運転の場合に対応できる軸受構造である。なお、本図では全体構造を示すため、スリ−ブ2の詳細断面構造は図示していない。SUS403材製のスリーブ2の摺動面にはWCを主成分としNiCr結合材とする溶射膜を被覆し、溶射膜形成後400℃×20時間の熱処理を施し、溶射膜の硬度を高めた。又、スリ−ブ2と摺動する軸受13はSiCとし、バックメタル6に取付け、軸受用緩衝材5を介して、ケーシングから張り出した固定部材7’に固定した。さらに、固定部材7’にバッフルプレート17を固定した。また、主軸1に回転水槽18を固定した。回転水槽18中には水が貯水され、軸受高さまで排水水位が達していない空転運転でも、軸受摺動部には潤滑水が存在する構造である。なお、本構造では、回転水槽18中に土砂が溜りやすいため運転時に摺動部分に土砂が浸入する場合があるが、熱処理によって硬さを増したスリ−ブ摺動面の溶射膜11の耐摩耗性は十分であり運転に支障はない。
【0038】
図6,7は本発明の他の実施例を示すポンプ用軸受装置のスリ−ブ固定状況及び固定部の断面図である。本実施例では円周方向に4分割したスリ−ブを用いた。4分割したスリ−ブ2a,2b,2c及び2dはSUS403からなり軸受との摺動面にCr3C2を主成分としNiCrを結合材とする溶射膜を形成した後、400℃×20時間の熱処理を施したものである。このスリ−ブ部品2a,2b,2c,2dはそれぞれ主軸1に軸方向の2ケ所でボルト14により固定した。
その他の構造は図1乃至図3で説明した実施例のものと同じである。
【0039】
軸受部の製造及び組立方法を以下説明する。SUS403でスリーブ部品2a,2b,2c及び2dを作成し、上記軸受製造方法と同様の熱処理を施す。熱処理後、そのスリーブの摺動面にWCを主成分としNiCr若しくはCoを結合材とする溶射膜WCを高速フレーム溶射で形成する。溶射膜形成後、スリーブを400℃に加熱し約20時間保持する。熱処理後、主軸1に固定し所定の寸法に加工する。尚、主軸1への固定はボルトで十分であるが、接着剤を併用すれば、より信頼性は増す。
本実施例では、スリ−ブを分割構造としたため、溶射膜の形成作業が容易となるとともに分割したスリ−ブのそれぞれの重量が一体型のものに比べ約1/4となり、取扱が容易となる。
図8は本発明の他の実施例を示すポンプ用軸受装置の軸受の、一部断面を含む外観図である。本実施例は軸受の摺動部を分割した摺動部材19を配列、形成する構造のものである。摺動部材19は、SUS403製の基材10に、WCを主成分としNiCr若しくはCoを結合材とする溶射膜11を高速フレーム溶射で形成したものであり、溶射膜形成後400℃×20時間の熱処理を施し、溶射膜の硬度を高めた。摺動部材19は、緩衝材5を介してバックメタル6に取付け、軸受ケーシング20に配置する。摺動部材19は、固定治具21によって軸受ケーシング20に取り付けられているが、接着剤を併用すれば、より信頼性は増す。
本実施例では、軸受摺動部が分割構造となっているため、溶射膜の形成作業が容易となるとともに、各々の摺動部材19が緩衝材5を介して固定されているため、片当たりの防止に効果的である。
【0040】
従来、WCを主成分とする超硬材料で製作されていたスリーブが、本発明では、SUSを用いることができ、大幅な重量低下ができる。さらに超硬材料と異なり、基材がSUSの場合、ねじ穴加工が可能であるため、取扱が容易となる。特に、大径の場合スリーブの重量が増し、本発明が有効である。スリーブの重量低下に対する本発明の効果を図9にまとめる。図9は、スリーブの外径(以後Dと称する)とスリーブの重量(以後Wと称する)との相関を示す図である。スリーブ重量Wは、スリーブの外径Dによって変化するため、W/D2として、基準化する。本発明のスリーブではW/D2が大幅に低下し、0.05以下を示す。
【0041】
図10に別の実施例として本発明の軸受装置を水車用軸受として用いた水車の断面図を示す。図10において、22は水車用主軸、23はスリ−ブ回りどめ、24はWCを主成分としNiCrを結合材として27重量%加えた溶射膜(以下、WC−27%NiCr溶射膜と称する)を被覆した後熱処理を施したSUS403製スリ−ブ、25は熱処理済みCr3C2を主成分としNiCrを結合材として25%加えた溶射膜(以下、Cr3C2−25%NiCr溶射膜と称する)を被覆した後熱処理を施したSUS403製軸受、26はライナ−である。スリ−ブ及び軸受への溶射膜の被覆は高速フレーム溶射を用いて行った。熱処理済み溶射膜は、前記要素試験結果に示すように焼結体と同等の耐摩耗性を有する。且つ、大口径化が容易なため、水車に対してはコスト低減、軽量化に効果がある。
【0042】
上記実施例で用いた軸受の耐摩耗特性を調べるため、熱処理による溶射膜の硬度変化を要素試験で調べた。加熱による溶射膜の硬度変化は、加熱温度200℃〜600℃、加熱時間1〜30時間の範囲で調べた。溶射膜の硬度はマイクロビッカース硬度計で測定し、ビッカース硬度(以下、Hvと称する)で示した。下地の影響を避けるため、硬度は溶射膜の断面で測定し、荷重は300g一定とした。
【0043】
図11は上記測定結果の一部であり、WC−27%NiCr溶射膜を400℃で加熱したときの硬度変化を示す。横軸は加熱時間、横軸は溶射膜の硬度である。溶射膜は高速フレーム溶射で形成し、膜厚は表面研磨後で約100μm、下地はSUS403であり、溶射前に焼き入れ、約700℃での焼き戻しの熱処理を施してある。尚、硬度の測定値にはバラツキがあるため、10点の測定を行い、測定値中の最大、最小値をバラツキ範囲として線で示し、平均値を○で示した。
【0044】
図11に示すように溶射膜の硬度は時間と共に増加し10〜30時間で最高硬度に達し、その後バラツキはあるがほぼ一定となる。平均硬度の最高値はHv1014(最大値Hv1065、最小値Hv890)である。同様の条件で測定したWCを主成分としCoをバインダーとして12重量%加えた焼結体(以下WC−12%Co焼結体と称する)の硬度、平均値Hv1317(最大値Hv1404、最小値Hv1235)には達しないが、熱処理前の硬度の平均値Hv727(最大値Hv869、最小値Hv604)に比べ、平均値で約34%の増加となり著しく改善されている。
【0045】
図12は測定結果の一部であり、図11と同様WC−27%NiCr溶射膜を500℃で加熱したときの硬度変化を示す。尚、試料の形成方法、形状、硬度の測定方法は図11と全て同様である。溶射膜の硬度は約1.5時間の加熱でほぼ最高硬さに達する。平均硬度の最高値はHv1115(最大値Hv1139、最小値Hv1084)である。熱処理前の硬度に比べ平均値で約47%の増加であり、ほぼWC−12%Co焼結体に等しい。
【0046】
図13も測定結果の一部であり、WCを主成分としCoを結合材として12重量%加えた溶射膜(以下WC−12%Co溶射膜と称する)を400℃で加熱したときの硬度変化を示す。WC−12%Co溶射膜も、上記の図11及び12の各試料と同様の高速フレーム溶射で形成し、膜厚は表面研磨後で約100μm、下地は熱処理済みのSUS403である。試料の形状、硬度の測定方法も、上記図11及び12と同様である。WC−12%Co溶射膜の場合、硬度は時間と共に増加し10〜20時間で最高硬さに達し、25時間でわずかに低下する。最高硬度は、平均値でHv946(最大値Hv1149、最小値Hv792)である。熱処理前の硬度、平均値Hv584(最大値Hv652、最小値Hv490)に比べ、平均値で約62%の増加である。又、500℃で加熱した場合も、ほぼ、WC−27%NiCr溶射膜の場合と同様の硬度変化を示し、約1時間の加熱により最高硬度に達した。
【0047】
図14も測定結果の一部であり、Cr3C2−25%NiCr溶射膜を400℃で加熱したときの硬度変化を示す。Cr3C2−25%NiCr溶射膜も、上記の図11、12及び13の測定に用いた各試料と同様の高速フレーム溶射で形成し、膜厚は表面研磨後で約100μm、下地は熱処理済みのSUS403である。試料の形状、硬度の測定方法も、上記図11、12及び13と同様である。Cr3C2−25%NiCr溶射膜の場合、硬度は時間と共に徐々に増加する。加熱時間25時間における平均硬度の最高値はHv958(最大値Hv1043、最小値Hv905)である。熱処理前の硬度、平均値Hv791(最大値Hv817、最小値Hv744)に比べ、平均値で約21%の増加であり、WC−27%NiCr溶射膜、WC−12%Co溶射膜ほど顕著には増加しない。又、500℃で加熱した場合も、400℃加熱のように硬度は時間と共に徐々に増加するがその割合はより大きい。
【0048】
以上、WC−27%NiCr溶射膜、WC−12%Co溶射膜及びCr3C2−25%NiCr溶射膜は400〜500℃の加熱によって、その硬度が著しく改善され、ほぼWC−12%Coの焼結体の硬度に等しい値となる。400℃〜500℃の加熱によって、溶射膜中のWC粒子又はCr3C2粒子と結合材の結合力が増し、ほぼ焼結体に等しくなったと考えられる。
【0049】
加熱温度200℃〜600℃、加熱時間1〜30時間の範囲で調べた結果を以下にまとめる。加熱温度を300℃以下とすると溶射膜の硬度は増加するものの、その増加率は極めて小さく工業的には利用が難しい。従って、熱処理温度としては、300℃以上、望ましくは350℃以上が良い。しかし、ポンプに用いるFe系材料は、熱膨張率が約12〜17×10?6/℃であり、WC若しくはCr3C2系溶射膜は熱膨張率が約5〜7×10?6/℃であるため、加熱温度を高くし過ぎると溶射膜と下地との熱膨張率の差のため、熱応力が発生し被膜の接着力を低下させ、極端な場合、被膜の剥離を生じる。更に大気中で熱処理をする場合、溶射膜の酸化が生じ耐摩耗性を低下させる。従って、WC若しくはCr3C2系の溶射膜を用いるかぎり、熱処理温度は550℃以下、望ましくは500℃以下が良い。尚、溶射膜の加熱は酸化を防ぐためには不活性ガス中若しくは真空中での加熱が望ましい。
【0050】
図15に約200μmの厚さに溶射したWC−27%NiCr溶射膜を400℃で加熱したのち溶射膜を約100μmの厚さまで表面研磨し、さらに加熱を行い、再び鏡面状態まで研磨したときの金属組織写真の模式図を示す。最終的な膜厚は、約90μmである。(A)が未処理の溶射膜の写真、(B)が10時間加熱した溶射膜の写真、(C)が20時間加熱した溶射膜の写真であり、倍率は全て100倍である。
【0051】
エッチングをせずに観察しているため、WC粒子と結合材NiCrとの差は観察できず、全て白色の下地として観察される。点在して黒く見える部分が空孔である。(A)、(B)及び(C)を比較すると、熱処理時間とともに空孔数が減り、大きさも小さくなっている。試験に用いた試料はSUS403の板(26mm×26mm)の上に形成した溶射膜から切り分けたものであるため、空孔数の差は、溶射条件によって生じたのではなく、熱処理によって空孔が減少したものである。尚、WC−12%Co溶射膜又はCr3c2−25%NiCr溶射膜でも同様の現象が認められた。
【0052】
図16にWC−27%NiCr溶射膜を400℃で加熱したときの、加熱時間と表面に観察される20μm以上の大きさの空孔の密度の関係を示す。尚、表面の空孔の観察方法は、上記図15の方法と同様である。一方、WC−27%NiCr溶射膜の組織を走査型電子顕微鏡で観察したところ、WC粒子、及びNiCr結合材粒子の平均粒子径は約10μm程度であり、最大でも20μm以下である。従って、空孔も数μm以下であればWC粒子の脱落には影響が少ない。しかし、20μm以上になるとWC粒子の脱落を生じ、溶射膜の強度を低下させる直接的原因となる。そこで、今回の空孔の測定では、粒子径20μm以上のもののみを測定した。以後は、空孔と表記する場合、全て20μm以上の空孔のこととする。
【0053】
図16に示すように、加熱温度400℃の場合、15時間以上加熱すると空孔の数は急激に減少する。この空孔密度の変化は図7に示した硬度の変化と一致する。即ち、加熱による溶射膜の硬度の変化は、溶射膜中の空孔密度に起因するものと考えられる。
【0054】
図12と16に示した加熱時間による硬度変化と空孔密度変化とから、空孔密度と硬度との関係を求め、図17に示す。空孔密度が30個/mm2以下になると硬度が増加し始め、15個/mm2以下でポンプ軸受部に望ましい硬度となる。従って、ポンプ軸受部に配する溶射膜としては、表面に存在する20μm以上の大きさの空孔密度が、15個/mm2以下、望ましくは10個/mm2以下である。尚、WC−12%Co溶射膜、Cr3C2−25%NiCr溶射膜でも同様の現象が認められた。
【0055】
熱処理済み溶射膜を用いた軸受及びスリーブの、土砂水に対する耐摩耗性を調べるため以下の要素試験を行った。その方法と結果の一部を図18、19を用いて説明する。図18は試験片の形状と摺動方法を示す。(A)に示す回転側試験片15と(B)に示す固定側試験片16を土砂水を想定した、珪砂を含んだ水中に浸漬し、(C)に示すように回転側試験片を回転させ所定の面圧を負荷して摺動させる。所定時間の摺動後、両試料の摩耗量を測定した。摩耗量の測定は、回転側試験片15は試験前後の試験片厚さ、固定側試験片16では試験前後の表面形状を表面粗さ計で測定して求めた。検討した条件範囲は、面圧が1〜10kg/cm2、周速が約0.5〜5m/s、珪砂濃度が0.1〜10wt%である。尚、珪砂自体が摩耗される影響を減らすため3.6km摺動ごとに土砂水をかえ、更に両試験片の間に珪砂が噛み込みやすいように土砂水を替えるたび両試験片の間に珪砂をはさみ込み摺動試験を繰り返した。
【0056】
図19は、熱処理済み溶射膜の耐摩耗性を上記試験によって調べた結果の一部である。横軸は摺動距離、縦軸は回転側試験片の平均摩耗量である。固定側試験片はα−SiC、回転側試験片はWC−27%NiCr溶射膜であり、膜厚が約100μm、下地は焼入れ、焼戻し熱処理を施したSUS403である。溶射膜の熱処理条件は、図12の結果を参考にし400℃×20時間とした。比較材料として、WC−12%Co焼結体と未処理のWC−27%NiCr溶射膜を回転側試験片として同様の条件で試験した。その他の試験条件は面圧が2kg/cm2、周速が0.5m/s、珪砂濃度が9wt%である。
【0057】
図19において、−▲−で示す(1)のラインが本発明の軸受部材である熱処理済WC−27%NiCr溶射膜の摩耗量変化、−○−で示す(2)のラインが比較材料である従来の軸受部材であるWC−12%Co焼結体の摩耗量変化、−△−で示す(3)のラインが比較材料である未熱処理のWC−27%NiCr溶射膜の摩耗量変化である。未熱処理のWC−27%NiCr溶射膜の摩耗率は、WC−12%Co焼結体に比べて約3倍の値を示すのに対し、熱処理済WC−27%NiCr溶射膜はほぼ同等の摩耗率を示す。即ち、400℃×20時間の熱処理によって、WC−27%NiCr溶射膜の土砂水に対する摩耗量は約1/3に減少した。この摩耗量の低下は、図12に示した溶射膜の熱処理による硬度の増加に起因すると考えられる。図21で示した溶射膜の硬度と摩耗率との関係からも、上記熱処理済み溶射膜の耐摩耗性は妥当な値である。又、図19には示さないが、400℃×20時間の熱処理を施したWC−27%NiCr溶射膜とSi3N4との組み合わせも良好な耐摩耗性を示す。固定側試験片に用いたSi3N4はSiC以上に優れた耐摩耗性を示した。
【0058】
同様の試験によると、WC−12%Co溶射膜も同様の熱処理によって向上の効果を示す。しかしWC−12%Co溶射膜の場合、WC−27%NiCr溶射膜ほど硬度が増さないために、WC−12%Co焼結体や熱処理済みWC−27%NiCr溶射膜の耐摩耗性に及ばない。更に、結合材のCoがNiCrに比べ耐食性に劣るため、腐食による摩耗が生じる可能性がある。本条件の熱処理済WC−12%Co溶射膜では、表面の空孔密度が減るため、Co結合材でも腐食摩耗に対する耐摩耗性が向上する。しかし、それでも海水のような塩分を含む排水に対する耐食性は十分でない。従って、使用環境によってはWC−12%Co溶射膜を用いた軸受は用いることができない。
【0059】
同様の試験によると、Cr3C2−25%NiCr溶射膜も耐摩耗性が向上する。しかし、WC−27%NiCr溶射膜、WC−12%Co溶射膜ほど顕著な耐摩耗性の向上はない。これは、Cr3C2−25%NiCr溶射膜自体の硬度が本質的にWC−27%NiCr溶射膜、WC−12%Co溶射膜ほど高くないために、熱処理を施しても効果が小さいためである。
【0060】
上記図19の結果と、固定側と回転側の両試験片に熱処理済みWC−27%NiCr溶射膜を用いた場合及び回転側試験片に熱処理済みWC−27%NiCr溶射膜、固定側試験片に熱処理済みCr3C2−25%NiCr溶射膜を用いた場合の結果を合わせて、各々の摩耗率を図20にまとめて示す。
【0061】
図20は固定側と回転側両試験片の試験時間60時間における摩耗率を表示したものである。試験条件は図19の試験と同様である。尚、縦軸の相対摩耗率とは、WC−12%Co焼結体とα−SiCとの組合せである(A)の、回転側、固定側各々の試験片の摩耗率を基準1.0とし、各試料の摩耗率を相対値として示した値である。又、棒グラフにおいて、斜線の入っている側が回転側試験片の摩耗率であり、無い側が固定側試験片の摩耗率である。
【0062】
組合せ(A)は、WC−12%Co焼結体とα−SiCとの組合せであり、図19の曲線(2)の結果である。(B)は、図19の曲線(3)に示した未熱処理のWC−27%NiCr溶射膜とα−SiCとの組合せ結果である。(C)は、図19の曲線(1)に示した本発明の軸受部材である熱処理済みWC−27%NiCr溶射膜とα−SiCとの組合せ結果である。(D)は、本発明の軸受部材である熱処理済みWC−27%NiCr溶射膜と熱処理済みWC−27%NiCr溶射膜との組合せ結果、(E)は熱処理済みWC−27%NiCr溶射膜と熱処理済みCr3C2−25%NiCr溶射膜との組合せ結果である。尚、溶射膜の熱処理条件は、全て400℃×20時間である。
【0063】
図19で説明したように、(C)の組み合わせは、固定側、回転側の両試験片とも、組合せ(A)即ちWC−12%Co焼結体とα−SiCとの組合せとほぼ同等の耐摩耗性を示す。 固定側と回転側の両試験片に熱処理済みWC−27%NiCr溶射膜を用いた(D)の組合わせにおいても、回転側、固定側試験片はWC−12%Co焼結体とほぼ同等の耐摩耗性を示した。
【0064】
固定側試験片の熱処理済みWC−27%NiCr溶射膜は、α−SiC以上の優れた耐摩耗性を示した。α−SiCの硬度は平均値Hv2704(最大値Hv2874、最小値Hv2591)であり、熱処理済みWC−27%NiCr溶射膜よりもはるかに高い。それにもかかわらずWC−27%NiCr溶射膜がα−SiCよりも優れた耐摩耗性を示した原因は、両者の延性、すなわち破壊靱性の差によると考えられる。α−SiCの破壊靱性は約3.9(MN/m・√m)であり、熱処理済みWC−27%NiCr溶射膜の約13(MN/m・√m)に及ばない。熱処理済みWC−27%NiCr溶射膜の優れた破壊靱性が、硬度以上に耐摩耗性に影響し、上記の優れた耐摩耗性を示したものと考えられる。尚、上記破壊靱性は、ビッカース圧痕法によって測定したものである。
【0065】
回転側試験片に熱処理済みWC−27%NiCr溶射膜、固定側試験片に熱処理済みCr3C2−25%NiCr溶射膜を用いた(E)の組み合わせは、回転側試験片の相対摩耗率は(C)、(D)の組み合わせとほぼ同等の結果を示した。
【0066】
しかし、固定側試験片の熱処理済みCr3C2−25%NiCr溶射膜の摩耗率は、α−SCr3C2iCや熱処理済みWC−27%NiCr溶射膜より高い値を示した。これは、図14に示したように、熱処理を施してもCr3C2−25%NiCr溶射膜の硬度が大幅に増加しないためと考えられる。しかし、排水の温度が高い条件では、Cr3C2−25%NiCr溶射膜はWC−27%NiCr溶射膜と同等、或いはそれ以上の耐摩耗性を示した。これは、Cr3C2−25%NiCr溶射膜が高温での硬度低下が少ないためと考えられる。従って、使用環境によっては、熱処理済みWC−27%NiCr溶射膜と熱処理済みCr
3C2−25%NiCr溶射膜の組み合わせが良好となる。
【0067】
以上の結果を以下にまとめる。
熱処理済みWC−27%NiCr溶射膜をスリーブに用い、SiC若しくはSi3N4軸受と組み合わせた場合、良好な耐摩耗性、摺動特性が得られる。この場合、SiCやSi3N4は、圧縮応力を加えると強度が増すため、焼きばめによりバックメタルで支持する構造の軸受側に用いる方が良い。熱処理済みWC−27%NiCr溶射膜をスリーブ、軸受の両方に用いた場合、全般的に優れた耐摩耗性、摺動特性を示す。この場合、Coを結合材とするWC溶射膜でも同様に優れた耐摩耗性が得られるが、排水に塩分が含まれる場合、腐食のため使用は難しい。熱処理済みWC−27%NiCr溶射膜と熱処理済みCr3C2−25%NiCr溶射膜をスリーブ及び軸受に用いた場合、熱処理済みWC−27%NiCr溶射膜同しの組み合わせほど優れた耐摩耗性は得られない。しかし排水温度の高い場合は、より優れた特性を示す。この場合、スリーブ、軸受のどちらにWC−27%NiCr溶射膜を配しても良く、特性に対して影響はない。
【0068】
従って、本発明の軸受構造はスリーブ及び軸受の摺動面の耐摩耗性が軸受にWC−12%Co焼結体を用いたものとほぼ同等であり、且つスリーブ及び軸受の部品重量が少ないため組立て性が優れる。又、スリーブ及び軸受の靱性が高いため衝撃による破壊の発生がなく信頼性が高くなる。このため、本発明の軸受構造を用いた回転機械、例えばポンプ等は信頼性が高くなる。
【0069】
上記各実施例では、溶射膜形成法としては高速フレーム溶射を用いたが、爆発溶射、減圧プラズマ溶射、レーザ溶射、プラズマ溶射であってもよく、その製法に制限されるものではない。尚、熱処理前の硬度は高い方が望ましく、高硬度の溶射膜が形成できる高速フレーム溶射、爆発溶射が望ましい。
【0070】
又、上記各実施例ではスリ−ブ基材及び軸受基材の材料としてSUS403を用いたが、水中で使用できる材料であればよい。尚、WC又はCr3C2を主成分とする溶射膜の熱膨張率を考慮すれば、熱膨張率の大きいSUS304よりもSUS403の方が望ましい。また、加熱処理によるSUSの耐食性低下を考慮すれば、炭素含有率の少ないSUS304L、もしくはSUS316Lが望ましい。
【0071】
又、上記各実施例では結合材としてNiCrとCoを用い、その含有率は12wt%,25wt%,27wt%としたが、溶射膜として特性を満足するならば、その含有率を制限するものではない。
【0072】
【発明の効果】
本発明によれば、WC若しくはCr3C2を主成分とする溶射膜を所定条件で加熱することにより、WC粒子、Cr3C2粒子と結合材との結合力が増し、その結果溶射膜の空孔が減少して硬度が平均値で約50〜60%増加し、土砂水に対する耐摩耗性が熱処理前の約3倍に向上する。この特性はWC−12%Co等のセラミック焼結体とほぼ同等であり、WC−12%Co焼結体製スリーブ、軸受に替わり、金属表面に溶射膜を被覆したスリーブ、軸受を用いることができる。その結果、WC、SiC、Si3N4の焼結体では製作できなかった大口径の軸受、スリーブが製作できる。
【0073】
更に、口径にかかわらず、軸受、スリーブの重量が低減するために、組立て性が大幅に良くなる。又、靱性の低いWC、SiC、Si3N4の焼結体に替わり、ステンレスを基材として使用できるため、軸受、スリーブの信頼性が増す。従って、この軸受装置を用いるポンプの信頼性が増す。
【図面の簡単な説明】
【図1】本発明の実施例の排水ポンプ構造を示す断面図である。
【図2】本発明の実施例の軸受装置を示す一部断面斜視図である。
【図3】本発明の他の実施例の軸受装置の縦断面図である。
【図4】本発明の他の実施例の軸受装置の縦断面図である。
【図5】本発明の他の実施例の軸受装置の縦断面図である。
【図6】本発明の他の実施例のスリ−ブ構造を示す斜視図である。
【図7】図5のA−A断面図である。
【図8】本発明の他の実施例の軸受を示す一部断面斜視図である。
【図9】本発明の他の実施例のスリ−ブの外径Dと重量W/(外径D)2との相関を示す関係図である。
【図10】本発明の他の実施例の水車構造を示す断面図である。
【図11】WC−27%NiCr溶射膜の400℃加熱時の硬度変化を示す図である。
【図12】WC−27%NiCr溶射膜の500℃加熱時の硬度変化を示す図である。
【図13】WC−12%Co溶射膜の400℃加熱時の硬度変化を示す図である。
【図14】Cr3C2−25%NiCr溶射膜の400℃加熱時の硬度変化を示す図である。
【図15】WC−27%NiCr溶射膜の400℃加熱時の溶射膜の変化状況を示す金属組織写真の模式図である。
【図16】WC−27%NiCr溶射膜の400℃加熱時の溶射膜表面空孔密度と加熱時間との関係図である。
【図17】WC−27%NiCr溶射膜の400℃加熱時の溶射膜表面空孔密度と硬度との関係図である。
【図18】摩耗試験片形状と摺動方法を示す図である。
【図19】摩耗試験によるWC−12%Co焼結体、未熱処理WC−27%NiCr溶射膜と熱処理済みWC−27%NiCr溶射膜の摺動距離と摩耗量との関係図である。
【図20】熱処理済みWC−27%NiCr溶射膜、熱処理済みCr3C2−25%NiCr溶射膜を含む各種材料組合せの相対摩耗率比較図である。
【図21】従来の各溶射膜の硬度と土砂水に対するWC−12%Co焼結体を基準とした相対摩耗率を示す図である。
【符号の説明】
1…主軸、2…スリーブ、3…軸受、4…スリーブの回り止め、5…軸受用緩衝材、6…軸受用バックメタル、7,7’…固定部材、8…スリーブ基材、9,11…溶射膜、10…軸受基材、13…セラミック製軸受、14…分割スリーブ固定ボルト、15,16…摩耗試験片、17…バッフルプレート、18…回転水槽、19…摺動部材、20…軸受ケーシング、21…固定治具、22…水車用主軸、23…スリーブ回り止め、26…ライナー。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drainage pump, and in particular, a bearing device excellent in wear resistance, high reliability, and assemblability suitable for a pump that operates without supplying clean water to the bearing portion, and a drainage pump using the bearing device, The present invention relates to a method for manufacturing the bearing portion.
[0002]
[Prior art]
With the rapid urbanization in recent years, most of the rainwater flows into the drainage ditch, so the drainage cannot catch up and urban floods that overflow the road tend to increase. In order to cope with this, a drainage pump station equipped with a drainage pump system is provided, but there is a problem that the operation and maintenance costs increase with the increase of the drainage pump station, and a drainage pump system by automatic operation is being studied. The problems of this drainage pump system are high performance and high reliability. Currently, as technologies corresponding to these, non-water supply operation technology, large capacity and advance standby operation of the pump are being studied.
[0003]
The non-water supply operation technique is an operation without supplying clean water between the bearing and the sleeve. Since there is no clean water supply device, there is no malfunction due to failure of the clean water supply device, clean water service sensor, etc., and the reliability is high. In order to enable non-water supply operation technology, a bearing device that does not wear even when soil contained in drainage enters is necessary.
[0004]
A conventional bearing device for a non-water supply pump uses a combination of a sleeve (sintered body) made of tungsten carbide (hereinafter referred to as WC) and a ceramic bearing (sintered body), which has excellent wear resistance and corrosion resistance. Has been. The combined structure of the WC sleeve and the ceramic bearing is disclosed in Japanese Patent Application Laid-Open Nos. 60-81517 and 60-88215.
[0005]
On the other hand, increasing the capacity of the pump inevitably requires an increase in the diameter of the bearing. However, if the conventional bearing device is a combination of a WC sleeve and a ceramic bearing, a large-diameter sintered body sleeve and sintered body bearing are required. However, there has been a problem that the sintering technique cannot be adequately handled, the weight of the parts is increased, and the assembling work becomes difficult. Therefore, hard film coating techniques for coating a film having the same hardness as ceramics have been widely studied. As an example of using a thermal spray film as a hard film, a non-water supply and drainage pump using a combination of a sleeve coated with a WC thermal spray film and a ceramic bearing is “Tribologist,” Vol. 36, No. 2, page 144. To page 147.
[0006]
In many cases, a sprayed coating is used as a hard coating for the drainage pump bearing. However, since the sprayed film is inferior in hardness and strength to a sintered body having the same composition, methods for increasing the hardness and strength of the sprayed film have been studied. For example, there is disclosed a technique for increasing the adhesion and strength of a sprayed film by spraying a plasma sprayed film made of 50% Cr-50% Ni and then holding it at a temperature of about 700 ° C. to 800 ° C. for about 1 to 100 hours. This is disclosed in Japanese Patent Publication No. 57-2872. Also, a method of increasing the strength of the sprayed film by forming a 20-80% NiCr sprayed film mainly on nickel-phosphorus (NiP) on an Fe-based material and performing a heat treatment at a temperature of 600 ° C-1000 ° C. Is disclosed in JP-A-60-149762.
[0007]
The pre-standby operation is an idling operation at a water level lower than the drainable water level before the start of drainage, and full power operation is possible at the time when the drainable water level is reached, and a rapid increase in drainage can be handled quickly. However, in order to perform the preliminary standby operation, since the bearing performs an idling operation in which the sliding portion does not include drainage in a short time, the friction coefficient between the bearing and the sleeve is extremely low, and it is required that the bearing is not damaged even by dry sliding. It is done.
[0008]
Bearings that satisfy both the standby standby operation for a long idling operation and the non-water supply operation have not been developed yet, and a method for supplying water from the outside to the bearing sliding portion during the idling operation has been studied. It is disclosed in the gazette.
[0009]
[Problems to be solved by the invention]
In order to drain water containing earth and sand, the wear resistance of the bearing is indispensable. In the case of a non-water supply bearing, since there is no supply of clean water for protecting the bearing and the sleeve, the wear resistance against the slurry is particularly important. Most of the earth and sand particles contained in the earth and sand water are feldspar and quartz, and the maximum hardness is about Vickers hardness (hereinafter referred to as Hv) 1000 (quartz). Therefore, the hardness required for the bearing and the sleeve is Hv1000 or more.
[0010]
WC, SiC, silicon nitride (hereinafter referred to as Si 3 N 4 The hardness of WC is about 1400 for Hv, about 2800 for SiC, 3 N 4 Is about 1600 and Hv1000 or more, which is sufficient in terms of hardness and excellent in wear resistance. However, considering the sintering technology, assembly workability, and manufacturing cost, the entire sleeve and bearing are made of WC, SiC or Si. 3 N 4 There is a limit to the size of the sintered body. Therefore, it has been studied to use a hard coating instead of the sintered body as described above. Considering the amount of wear, the film thickness needs to be several hundreds of μm or more, so the method for producing the hard coating is limited. As a hard coating for drainage pump bearings, a relatively thick film can be obtained and WC and Cr can be obtained with high hardness. 3 C 2 Thermally sprayed films having a film thickness of about 100 to 200 μm mainly composed of bismuth are widely used. However, WC, Cr formed by spraying method 3 C 2 Although the thermal spray film which has as a main component depends on a material, a formation method, and conditions, generally hardness is low compared with a sintered compact and is about Hv600-1000.
[0011]
The relationship between the hardness of various conventional sprayed coatings and the abrasion resistance against soil water will be described with reference to FIG. FIG. 21 shows the wear rate measured by the element test described in the examples. As the various sprayed films, various sprayed films formed on a stainless steel (hereinafter referred to as SUS) plate were used for the rotation side test piece, and α-SiC was used for the fixed side test piece. Other test conditions include a surface pressure of 2 kg / cm 2 The peripheral speed is 0.5 m / s, and the concentration of silica sand contained in the earth and sand water is 9 wt%. The details of the test piece shape and the sliding method are the same as the test conditions of FIG. 19 shown in the embodiment.
[0012]
The horizontal axis in FIG. 21 is the cross-section Vickers hardness of the sprayed film, and the vertical axis is the relative wear rate normalized based on the wear rate of the WC-12% Co sintered body.
[0013]
In general, thermal spraying means WC particles, Cr 3 C 2 Rather than just heating and spraying hard particles such as particles, metal particles such as Ni, Cr, and Co are mixed and heated and sprayed simultaneously as a binder, and WC particles and Cr are melted by the dissolved metal particles. 3 C 2 The particles are connected to form a film. The hardness of the sprayed film is lower than that of the sintered body because the WC particles and Cr in the sprayed film 3 C 2 WC particles, Cr, not the particle hardness is low 3 C 2 Due to defects such as voids in the binder that connects the particles, or the binder and WC particles, Cr 3 C 2 This is because the bonding force with the particles is insufficient.
[0014]
WC particles, Cr 3 C 2 Various thermal spraying improvements have been made to increase the bond strength between the particles. For example, high-speed flame spraying using combustion energy of combustible gas with increased spray particle speed, and explosive spraying using explosion of combustible gas have been developed, and particles during spraying are more than conventional plasma sprayed films. It is possible to increase the speed and form a sprayed film with higher hardness. However, it is clear from the elemental test shown in FIG. 18 that the abrasion resistance against the earth and sand water is not sufficient even with the sprayed film by each of these spraying methods, and the hardness is low.
[0015]
The ceramic bearings disclosed in the above prior art, Japanese Patent Application Laid-Open Nos. 60-81517 and 60-88215 have difficulty in sintering technology and reliability due to the large diameter of the bearing and sleeve. No consideration has been given to the decrease in assembly performance due to a decrease or an increase in weight.
[0016]
For the conventional technology, a non-feed water drain pump ("Tribologist", Vol. 36, No. 2) using a combination of a WC sprayed film and a ceramic bearing (sintered body), WC or Cr 3 C 2 No study has been made on the hardness, wear resistance, and reliability of the thermal sprayed film mainly composed of.
[0017]
In the method for reforming a sprayed film disclosed in the above prior art, Japanese Patent Application Laid-Open No. 57-2872 and Japanese Patent Application Laid-Open No. 60-149762, a material having a thermal expansion coefficient close to that of an Fe-based material that is a main base material, Alternatively, it is limited to materials that do not change in quality by heating, and WC or Cr that can obtain high hardness 3 C 2 In the thermal sprayed film containing as a main component, since the heating temperature is high, the thermal expansion difference becomes large. As a result, the coating breaks and it is difficult to use it as it is. Furthermore, in equipment used underwater such as a pump, the main material is limited to SUS. Therefore, when the modification of the sprayed film by heating shown in the above prior art is applied, the heating temperature becomes higher than the annealing temperature of the underlying SUS or the sensitization temperature against intergranular corrosion, and the hardness and corrosion resistance of the underlying layer are lowered. As a result, there is a problem that reliability is lowered.
[0018]
That is, in the prior art, no study has been made on the modification of the sprayed film mainly composed of WC having a large difference in thermal expansion coefficient from the Fe-based material. Further, no consideration is given to changes in hardness and corrosion resistance of the base material.
In the method of supplying water to the bearing sliding portion from the outside, which is disclosed in the above-mentioned prior art, Japanese Patent Laid-Open No. 55-90718, the drainage station stops due to malfunction of the external water supply device, and the drainage stops in an emergency. There was a possibility that there was a problem in reliability.
[0019]
The present invention has been made in view of the above prior art, and is applicable to a drainage pump system. The bearing device is excellent in wear resistance and assembly, and has high reliability, and a drainage pump and a bearing device using the bearing device. It aims at providing the manufacturing method of.
[0020]
[Means for Solving the Problems]
In order to improve the wear resistance of the sprayed coating coated on the sliding surface of the bearing device which is the subject of the present invention, WC or Cr 3 C 2 After thermal spraying of the main component, the adhesive strength of the thermal sprayed film does not decrease due to thermal stress, the thermal sprayed film does not deteriorate, the hardness of the underlying SUS does not extremely decrease, and further sensitization to intergranular corrosion It is achieved by heating at a temperature condition that does not occur.
[0021]
An object of the present invention is, for example, to coat the following sprayed coating on one or both sliding surfaces of a bearing and a sleeve used in a bearing device including a bearing and a sleeve sliding with the bearing. It is solved by doing. The thermal spray coating to be coated has WC as a main component and one or more of Ni, Cr or Co as a binder, or Cr 3 C 2 Is coated with a sprayed film containing Ni and Cr as a main component, and the density of pores having a size of 20 μm or more formed on the surface of the sprayed film is 15 / mm. 2 It is as follows.
[0022]
Furthermore, the coated thermal sprayed film is heated at a temperature of 300 ° C. or higher and 550 ° C. or lower for 1 hour or longer after coating, the coating hardness is improved to 1000 or more in terms of Vickers hardness, and exhibits sufficient abrasion resistance against earth and sand water. To do.
[0023]
The material of the bearing and sleeve for coating the sprayed film may be Fe-based metal, but stainless steel is preferable.
[0024]
When either the bearing or the sleeve is coated with the above-mentioned sprayed film, the other has SiC or Si on the sliding surface. 3 N 4 Or the whole is SiC or Si 3 N 4 It may be composed of Further, the sleeve or the bearing may be divided into two or more.
[0025]
As the bearing member, a sprayed film containing Cr as a main component in a sliding portion of a stainless steel bearing member processed into a predetermined shape and containing one or more of Ni, Cr, and CO as a binder or Cr 3 C 2 After forming a sprayed film containing Ni and Cr as a main component in the binder, heating is performed at a temperature of 300 ° C. or higher and 550 ° C. or lower for 1 hour or longer, and then finished to a predetermined size.
[0026]
Generally, WC, Cr 3 C 2 It has been said that when a sprayed film containing as a main component is heated, the strain for increasing the hardness of the coating disappears and the hardness decreases. In addition, a WC or Cr having a low thermal expansion coefficient on a Fe-based material (SUS403 in the embodiment of the present invention) as a base material. 3 C 2 When coating a thermal sprayed film mainly composed of, due to the difference in thermal expansion coefficient between the two, when heated after film formation, the coating adhesive force decreases due to thermal stress, and further WC particles or Cr by heating 3 C 2 It has been thought that the oxidation of particles occurs and the properties of the sprayed film are degraded. For this reason, WC or Cr 3 C 2 Heating after thermal spraying of a thermal sprayed film containing as a main component has not been considered desirable. However, if the heating conditions are selected, the hardness can be increased without adversely affecting the sprayed film. For example, the thermal spray coating hardness is increased by heating at a temperature of 300 ° C. or more and 550 ° C. or less for 1 hour or more, and exhibits sufficient abrasion resistance against earth and sand water. Details of the mechanism and examination results will be described in the examples.
[0027]
If there are vacancies in the sprayed film, the strength of the sprayed film itself decreases, and WC particles or Cr 3 C 2 Since the bonding force between particles also decreases, WC particles or Cr during sliding 3 C 2 Particles fall off and cause a reduction in wear resistance. However, when heated at a high temperature after film formation to eliminate vacancies, as described above, binder particles, WC particles or Cr 3 C 2 Oxidation of the particles, a decrease in the adhesion of the sprayed film, and a decrease in the hardness and corrosion resistance of the lower material occur, resulting in a decrease in reliability. However, according to the present invention, WC or Cr 3 C 2 Even if the temperature and heating time are appropriately selected, the number of pores in the sprayed film will be reduced, even at low temperatures where oxidation of the sprayed film, reduction in film adhesion due to thermal stress, and lower hardness and corrosion resistance of other materials will not occur. In addition, it became clear that the pore size was reduced and the hardness of the sprayed coating was increased.
[0028]
In particular, when heated under these conditions, binder particles, WC particles or Cr 3 C 2 It has been found that large pores of 20 μm or more exceeding the maximum particle diameter of the particles are reduced. Large pores of 20 μm or more are WC particles or Cr 3 C 2 This is a direct cause of particle dropout. Therefore, the reduction of large pores of 20 μm or more acts to improve the strength of the sprayed film. Further, when the large pores of 20 μm or more are reduced, ductility is imparted to the coating, resistance to impact is increased, coating breakage and peeling are reduced, and coating reliability is increased.
Moreover, since a void | hole becomes a corrosion generation | occurrence | production point of a sprayed film, between WC particles becomes dense by reducing a void | hole, the corrosion which arises between particle | grains is suppressed, and the corrosion resistance with respect to waste_water | drain increases.
In addition, since the bearing device that can be operated in a non-lubricated state is used even if the drainage pump of the present invention is used for the preliminary standby operation, it has sufficient reliability.
[0029]
Further, by making the sleeve or the bearing into a divided structure, the manufacture becomes easy, and the effect is particularly great in a large diameter one.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a longitudinal sectional view showing a structure of a drainage pump according to an embodiment of the present invention. Usually, the drainage pump is provided with bearings at two locations near the impeller and at the top. The bearing device of this embodiment can be applied to both bearings. In FIG. 1, 1 is a main shaft, 2 is a sleeve attached to the main shaft, and 3 is a bearing. In this embodiment, SUS403 is used for the
[0031]
The pump is provided with a pipe at the drainage suction port of the casing, one end is supported by the rib of the casing, and the other end is supported by the floor of the drainage station and opens to the atmosphere.
In this pump, when the drainage water level is low, a pressure difference is generated between the pump internal pressure and the atmosphere, and air is absorbed into the drainage from the pipe. As a result, the amount of flowing water is reduced, and the generation of vortices on the drainage surface must be prevented because it generates an excitation force and contributes to pump vibration. By sucking air from the pipe, vortices can be prevented from being generated even at low water levels where vortices are likely to occur, so that stable drainage is possible.
[0032]
Furthermore, when the water level becomes sufficiently high, the pressure difference between the inside and outside of the casing decreases, and intake from the pipe stops naturally. Since the pressure change in the casing due to the drainage water level is used, there is no need for external control and the reliability is high.
Further, by providing a valve at the open end on the atmosphere side, it is possible to control the intake air amount and cancel this function.
[0033]
The bearing device of the present embodiment will be described with reference to FIGS.
FIG. 2 is an enlarged view showing a bearing device installed at the upper part of the drainage pump shown in FIG. 1, and FIG. 3 is a sectional view further enlarging the sliding portion of FIG. In the manufacturing method of the sleeve and the bearing, first, the
[0034]
The
According to this example, since SUS403 was used as the sleeve base material, the thermal expansion coefficient coincided with that of the main shaft material, so that the generation of thermal stress was prevented, and since the toughness was high, the sprayed film coated on the surface was stably stabilized. The sleeve can be held.
[0035]
In addition, since the WC sprayed film is heat treated to increase the hardness, the wear resistance is increased and the life and reliability of the bearing device are increased.
In this embodiment, the sprayed film using WC as the main component and NiCr as the binder as the material of the sprayed film formed on the sleeve and the bearing has been described. However, the thermal spraying using WC as the main component and Co as the binder is described. Film or Cr 3 C 2 The same effect was obtained even when a sprayed coating containing NiCr as a main component and NiCr as a binder was used.
The drainage pump of the present embodiment exhibits stable sliding performance even when the bearing device is in a non-lubricated condition, that is, in a non-water supply state, and can perform better sliding in sliding after water supply.
In addition, although the drainage pump of this embodiment is provided with an intrusion prevention member that prevents the intrusion of earth and sand into the sliding part of the bearing device, the sliding part is not affected even if the earth and sand mixed in the drainage enters the sliding part. Since it has sufficient wear resistance, stable operation is possible.
Further, since good sliding performance can be obtained even in a non-lubricated state, a highly reliable operation can be performed even in a use situation where the non-lubricated state and the lubricated state are repeated, that is, in a prior standby operation.
[0036]
FIG. 4 is a longitudinal sectional view of a pump bearing device showing another embodiment of the present invention. The sliding surface of the
According to this embodiment, since the material of the bearing portion is made of a sintered ceramic having a uniform and high hardness, the life and reliability of the bearing device are increased.
In the present embodiment, the sprayed film having WC as the main component and NiCr as the binder has been described as the material of the sprayed film formed on the sleeve, but the sprayed film having WC as the main component and Co as the binder may be used. Cr 3 C 2 The same effect was obtained even when a sprayed coating containing NiCr as a main component and NiCr as a binder was used.
[0037]
FIG. 5 is a longitudinal sectional view of a pump bearing device showing another embodiment of the present invention. The present embodiment is a bearing structure that can cope with the idling operation in which the drainage water level does not reach the bearing height during the preceding standby operation. In addition, in this figure, in order to show the whole structure, the detailed cross-sectional structure of the
[0038]
6 and 7 are a sectional view of a fixing portion and a sleeve fixing state of a pump bearing device according to another embodiment of the present invention. In this embodiment, a sleeve divided into four in the circumferential direction is used. The four divided
Other structures are the same as those of the embodiment described with reference to FIGS.
[0039]
A method for manufacturing and assembling the bearing will be described below.
In this embodiment, since the sleeve is divided, the sprayed film can be easily formed, and the weight of each of the divided sleeves is about ¼ that of the integrated type. Become.
FIG. 8 is an external view including a partial cross section of a bearing of a pump bearing device according to another embodiment of the present invention. This embodiment has a structure in which sliding
In the present embodiment, since the bearing sliding portion has a divided structure, it is easy to form the sprayed film, and each sliding
[0040]
In the present invention, SUS can be used for a sleeve that has been conventionally made of a super hard material mainly composed of WC, and the weight can be significantly reduced. Furthermore, unlike a super hard material, when a base material is SUS, since screw hole processing is possible, handling becomes easy. In particular, when the diameter is large, the weight of the sleeve increases, and the present invention is effective. The effect of the present invention on the weight reduction of the sleeve is summarized in FIG. FIG. 9 is a diagram showing the correlation between the outer diameter of the sleeve (hereinafter referred to as D) and the weight of the sleeve (hereinafter referred to as W). Since the sleeve weight W varies depending on the outer diameter D of the sleeve, W / D 2 As standardized. In the sleeve of the present invention, W / D 2 Decreases significantly, showing 0.05 or less.
[0041]
FIG. 10 shows a sectional view of a water turbine using the bearing device of the present invention as a water turbine bearing as another embodiment. In FIG. 10,
[0042]
In order to investigate the wear resistance characteristics of the bearings used in the above examples, the hardness change of the sprayed film due to heat treatment was examined by an element test. The change in hardness of the sprayed film by heating was examined in the range of heating temperature 200 ° C. to 600 ° C. and
[0043]
FIG. 11 shows a part of the measurement results, and shows a change in hardness when the WC-27% NiCr sprayed film is heated at 400 ° C. The horizontal axis is the heating time, and the horizontal axis is the hardness of the sprayed film. The sprayed film is formed by high-speed flame spraying, the film thickness is about 100 μm after surface polishing, and the base is SUS403, which is quenched before thermal spraying and tempered at about 700 ° C. In addition, since the measured value of hardness has dispersion | variation, 10 points | pieces were measured, the maximum and minimum value in the measured value were shown with the line as the variation range, and the average value was shown by (circle).
[0044]
As shown in FIG. 11, the hardness of the sprayed film increases with time, reaches the maximum hardness in 10 to 30 hours, and then becomes substantially constant with variations. The maximum value of the average hardness is Hv1014 (maximum value Hv1065, minimum value Hv890). Hardness, average value Hv1317 (maximum value Hv1404, minimum value Hv1235) of a sintered body (hereinafter referred to as WC-12% Co sintered body) in which WC was measured as a main component and Co was added as a binder in an amount of 12% by weight. However, the average value of the hardness before the heat treatment Hv 727 (maximum value Hv 869, minimum value Hv 604) is about 34% increase in average value, which is remarkably improved.
[0045]
FIG. 12 shows part of the measurement results, and shows the change in hardness when the WC-27% NiCr sprayed film is heated at 500 ° C. as in FIG. The sample formation method, shape, and hardness measurement method are all the same as in FIG. The hardness of the sprayed film reaches almost the maximum hardness when heated for about 1.5 hours. The maximum value of the average hardness is Hv1115 (maximum value Hv1139, minimum value Hv1084). Compared to the hardness before the heat treatment, the average value is about 47% increase, which is almost equal to the WC-12% Co sintered body.
[0046]
FIG. 13 is also a part of the measurement result, and the hardness change when a sprayed film (hereinafter referred to as WC-12% Co sprayed film) containing 12 wt% of WC as a main component and Co as a binder is heated at 400 ° C. Indicates. The WC-12% Co sprayed film is also formed by high-speed flame spraying similar to the samples of FIGS. 11 and 12, and the film thickness is about 100 μm after surface polishing, and the base is SUS403 that has been heat-treated. The method for measuring the shape and hardness of the sample is also the same as in FIGS. In the case of the WC-12% Co sprayed film, the hardness increases with time, reaches the maximum hardness in 10 to 20 hours, and slightly decreases in 25 hours. The maximum hardness is Hv946 (maximum value Hv1149, minimum value Hv792) in average value. Compared to the hardness before heat treatment, the average value Hv584 (maximum value Hv652, minimum value Hv490), the average value is about 62% increase. When heated at 500 ° C., the hardness change was almost the same as in the case of the WC-27% NiCr sprayed film, and the maximum hardness was reached by heating for about 1 hour.
[0047]
FIG. 14 is also a part of the measurement result, and Cr 3 C 2 The hardness change when a -25% NiCr sprayed film is heated at 400 degreeC is shown. Cr 3 C 2 The −25% NiCr sprayed film is also formed by high-speed flame spraying similar to each sample used in the above-described measurement of FIGS. 11, 12 and 13, the film thickness is about 100 μm after surface polishing, and the base is SUS403 that has been heat-treated. is there. The shape and hardness of the sample are also measured in the same manner as in FIGS. Cr 3 C 2 For a -25% NiCr sprayed coating, the hardness gradually increases with time. The maximum value of the average hardness at the heating time of 25 hours is Hv958 (maximum value Hv1043, minimum value Hv905). Compared to the hardness before heat treatment, average value Hv791 (maximum value Hv817, minimum value Hv744), the average value is about 21% increase, and the WC-27% NiCr sprayed film and WC-12% Co sprayed film are more prominent. Does not increase. Also, when heated at 500 ° C., the hardness gradually increases with time as in 400 ° C. heating, but the ratio is larger.
[0048]
WC-27% NiCr sprayed film, WC-12% Co sprayed film and Cr 3 C 2 The hardness of the −25% NiCr sprayed coating is remarkably improved by heating at 400 to 500 ° C., and becomes almost equal to the hardness of the sintered body of WC-12% Co. By heating at 400 ° C to 500 ° C, WC particles or Cr in the sprayed film 3 C 2 It is considered that the bonding force between the particles and the binder increased, and was almost equal to the sintered body.
[0049]
The results of investigation in the range of heating temperature 200 ° C. to 600 ° C. and
[0050]
FIG. 15 shows a WC-27% NiCr sprayed film sprayed to a thickness of about 200 μm, heated at 400 ° C., then surface-polished to a thickness of about 100 μm, further heated, and again polished to a mirror surface state. The schematic diagram of a metallographic photograph is shown. The final film thickness is about 90 μm. (A) is a photograph of an untreated sprayed film, (B) is a photograph of a sprayed film heated for 10 hours, (C) is a photograph of a sprayed film heated for 20 hours, and the magnifications are all 100 times.
[0051]
Since the observation is performed without etching, the difference between the WC particles and the binder NiCr cannot be observed, and all are observed as a white base. Portions that are scattered and appear black are holes. When (A), (B), and (C) are compared, the number of pores decreases and the size decreases with the heat treatment time. Since the sample used for the test was cut from a sprayed film formed on a SUS403 plate (26 mm × 26 mm), the difference in the number of holes was not caused by the spraying conditions, but the holes were not formed by heat treatment. It is a decrease. The same phenomenon was observed with the WC-12% Co sprayed film or the Cr3c2-25% NiCr sprayed film.
[0052]
FIG. 16 shows the relationship between the heating time and the density of pores having a size of 20 μm or more observed on the surface when the WC-27% NiCr sprayed film is heated at 400 ° C. The method for observing the surface vacancies is the same as the method shown in FIG. On the other hand, when the structure of the WC-27% NiCr sprayed film was observed with a scanning electron microscope, the average particle diameter of the WC particles and the NiCr binder particles was about 10 μm, and at most 20 μm or less. Therefore, if the vacancies are several μm or less, the WC particles are less affected. However, when the thickness is 20 μm or more, WC particles fall off, which is a direct cause of reducing the strength of the sprayed film. Therefore, in this measurement of vacancies, only those having a particle diameter of 20 μm or more were measured. Hereinafter, when expressed as holes, all holes are 20 μm or more.
[0053]
As shown in FIG. 16, when the heating temperature is 400 ° C., the number of vacancies rapidly decreases when heated for 15 hours or more. This change in pore density is consistent with the change in hardness shown in FIG. That is, it is considered that the change in hardness of the sprayed film due to heating is caused by the hole density in the sprayed film.
[0054]
The relationship between the hole density and the hardness is obtained from the change in hardness due to the heating time and the change in hole density shown in FIGS. 12 and 16, and is shown in FIG. Pore density is 30 / mm 2 Hardness starts to increase below 15 pieces / mm 2 The desired hardness for the pump bearing is as follows. Therefore, as the thermal spray film disposed on the pump bearing portion, the pore density of 20 μm or more existing on the surface is 15 / mm. 2 Below, desirably 10 pieces / mm 2 It is as follows. WC-12% Co sprayed film, Cr 3 C 2 The same phenomenon was observed with a -25% NiCr sprayed film.
[0055]
The following elemental tests were conducted to examine the wear resistance of bearings and sleeves using thermal sprayed coatings against sediment water. A part of the method and the result will be described with reference to FIGS. FIG. 18 shows the shape of the test piece and the sliding method. The rotating
[0056]
FIG. 19 is a part of the result of examining the wear resistance of the thermally sprayed coating by the above test. The horizontal axis represents the sliding distance, and the vertical axis represents the average wear amount of the rotating side test piece. The fixed-side test piece is α-SiC, the rotation-side test piece is a WC-27% NiCr sprayed film, the film thickness is about 100 μm, the base is SUS403 subjected to quenching and tempering heat treatment. The heat treatment conditions of the sprayed film were set to 400 ° C. × 20 hours with reference to the result of FIG. As comparative materials, a WC-12% Co sintered body and an untreated WC-27% NiCr sprayed film were tested under the same conditions as a rotating side test piece. Other test conditions are 2kg / cm of surface pressure 2 The peripheral speed is 0.5 m / s, and the silica sand concentration is 9 wt%.
[0057]
In FIG. 19, the line (1) indicated by-▲-is a change in the amount of wear of the heat-treated WC-27% NiCr sprayed film which is the bearing member of the present invention, and the line (2) indicated by -O- is a comparative material. A change in wear amount of a conventional WC-12% Co sintered body, which is a bearing member, and a line (3) indicated by -Δ- is a change in wear amount of a non-heat treated WC-27% NiCr sprayed film as a comparative material. is there. The wear rate of the unheat-treated WC-27% NiCr sprayed film is about three times as high as that of the WC-12% Co sintered body, whereas the heat-treated WC-27% NiCr sprayed film is almost equivalent. Indicates the wear rate. That is, the amount of wear of the WC-27% NiCr sprayed coating on the earth and sand water was reduced to about 1/3 by heat treatment at 400 ° C. for 20 hours. This decrease in the amount of wear is considered to result from an increase in hardness due to the heat treatment of the sprayed film shown in FIG. Also from the relationship between the hardness of the sprayed film and the wear rate shown in FIG. 21, the wear resistance of the heat-treated sprayed film is a reasonable value. Further, although not shown in FIG. 19, a WC-27% NiCr sprayed film subjected to heat treatment at 400 ° C. × 20 hours and Si 3 N 4 The combination with also shows good wear resistance. Si used for the fixed side specimen 3 N 4 Exhibited wear resistance superior to that of SiC.
[0058]
According to the same test, the WC-12% Co sprayed film also shows the improvement effect by the same heat treatment. However, in the case of a WC-12% Co sprayed film, the hardness does not increase as much as that of a WC-27% NiCr sprayed film. Therefore, the wear resistance of the WC-12% Co sintered body and the heat treated WC-27% NiCr sprayed film is improved. It doesn't reach. Furthermore, since the binding material Co is inferior in corrosion resistance to NiCr, wear due to corrosion may occur. In the heat-treated WC-12% Co sprayed film under this condition, since the surface void density is reduced, the wear resistance against corrosion wear is improved even with the Co binder. However, the corrosion resistance against wastewater containing salt like seawater is still insufficient. Therefore, depending on the usage environment, a bearing using a WC-12% Co sprayed film cannot be used.
[0059]
According to a similar test, Cr 3 C 2 A -25% NiCr sprayed coating also improves wear resistance. However, the wear resistance is not significantly improved as compared with the WC-27% NiCr sprayed film and the WC-12% Co sprayed film. This is Cr 3 C 2 This is because the hardness of the −25% NiCr sprayed film itself is essentially not as high as that of the WC-27% NiCr sprayed film and the WC-12% Co sprayed film, and therefore the effect is small even if heat treatment is performed.
[0060]
When the heat-treated WC-27% NiCr sprayed film is used for both the fixed side and the rotating side test pieces, and the heat-treated WC-27% NiCr sprayed film for the rotating side test pieces and the fixed side test pieces. Heat treated Cr 3 C 2 The results of using a -25% NiCr sprayed coating are shown together in FIG.
[0061]
FIG. 20 shows the wear rate at the test time of 60 hours for both the fixed and rotating side test pieces. The test conditions are the same as in the test of FIG. The relative wear rate on the vertical axis is the combination of the WC-12% Co sintered body and α-SiC (A), and the wear rate of each test piece on the rotating side and the fixed side is 1.0. And the wear rate of each sample as a relative value. Also, in the bar graph, the side with the diagonal line is the wear rate of the rotating side test piece, and the side without it is the wear rate of the fixed side test piece.
[0062]
The combination (A) is a combination of a WC-12% Co sintered body and α-SiC, and is the result of the curve (2) in FIG. (B) is a combination result of the unheat-treated WC-27% NiCr sprayed film and α-SiC shown in the curve (3) of FIG. (C) is a combination result of heat-treated WC-27% NiCr sprayed film and α-SiC, which is the bearing member of the present invention shown in curve (1) of FIG. (D) is a combination result of a heat-treated WC-27% NiCr sprayed film and a heat-treated WC-27% NiCr sprayed film as the bearing member of the present invention, and (E) is a heat-treated WC-27% NiCr sprayed film. Heat treated Cr 3 C 2 It is a combination result with a -25% NiCr sprayed film. The thermal treatment conditions for the sprayed film are all 400 ° C. × 20 hours.
[0063]
As shown in FIG. 19, the combination of (C) is almost the same as the combination (A), that is, the combination of a WC-12% Co sintered body and α-SiC in both the stationary and rotating test pieces. Shows wear resistance. Even in the combination of (D) using heat-treated WC-27% NiCr sprayed coatings on both the fixed and rotating specimens, the rotating and stationary specimens are almost the same as the WC-12% Co sintered body. Showed wear resistance.
[0064]
The heat-treated WC-27% NiCr sprayed film of the fixed-side test piece showed excellent wear resistance higher than α-SiC. The hardness of α-SiC is an average value Hv2704 (maximum value Hv2874, minimum value Hv2591), which is much higher than the heat-treated WC-27% NiCr sprayed film. Nevertheless, the reason why the WC-27% NiCr sprayed film showed better wear resistance than α-SiC is considered to be due to the difference in ductility between them, that is, the fracture toughness. The fracture toughness of α-SiC is about 3.9 (MN / m · √m), which is less than about 13 (MN / m · √m) of the thermally treated WC-27% NiCr sprayed film. It is considered that the excellent fracture toughness of the heat-treated WC-27% NiCr sprayed film affected the wear resistance more than the hardness and exhibited the above-mentioned excellent wear resistance. The fracture toughness was measured by the Vickers indentation method.
[0065]
Heat treated WC-27% NiCr sprayed coating on rotating side test piece, heat treated Cr on fixed side test piece 3 C 2 The combination of (E) using a -25% NiCr sprayed film showed the result that the relative wear rate of the rotating side test piece was almost the same as the combination of (C) and (D).
[0066]
However, the heat-treated Cr of the fixed side specimen 3 C 2 The wear rate of the -25% NiCr sprayed coating is α-SCr. 3 C 2 It showed a higher value than iC or heat treated WC-27% NiCr sprayed film. As shown in FIG. 14, even if heat treatment is performed, Cr 3 C 2 This is probably because the hardness of the −25% NiCr sprayed film does not increase significantly. However, under conditions where the temperature of the wastewater is high, Cr 3 C 2 The -25% NiCr sprayed film showed wear resistance equal to or higher than that of the WC-27% NiCr sprayed film. This is Cr 3 C 2 This is probably because the -25% NiCr sprayed coating has a small decrease in hardness at high temperatures. Therefore, depending on the usage environment, heat treated WC-27% NiCr sprayed film and heat treated Cr
3 C 2 The combination of -25% NiCr sprayed film is good.
[0067]
The above results are summarized below.
Heat-treated WC-27% NiCr sprayed film is used for sleeve, SiC or Si 3 N 4 When combined with a bearing, good wear resistance and sliding properties can be obtained. In this case, SiC or Si 3 N 4 Since the strength increases when compressive stress is applied, it is better to use it on the bearing side of the structure supported by the back metal by shrink fitting. When heat-treated WC-27% NiCr sprayed film is used for both sleeves and bearings, it generally exhibits excellent wear resistance and sliding properties. In this case, even with a WC sprayed coating using Co as a binder, excellent wear resistance can be obtained as well. However, when salt is contained in the wastewater, it is difficult to use due to corrosion. Heat treated WC-27% NiCr sprayed film and heat treated Cr 3 C 2 When a -25% NiCr sprayed coating is used for the sleeve and bearing, the wear resistance is not as excellent as the combination of the heat treated WC-27% NiCr sprayed coating. However, when drainage temperature is high, more excellent characteristics are exhibited. In this case, a WC-27% NiCr sprayed film may be disposed on either the sleeve or the bearing, and the characteristics are not affected.
[0068]
Therefore, the bearing structure of the present invention has almost the same wear resistance of the sleeve and the sliding surface of the bearing as that using the WC-12% Co sintered body for the bearing, and the weight of the sleeve and the bearing is small. Easy to assemble. Further, since the toughness of the sleeve and the bearing is high, there is no breakdown due to impact, and the reliability is improved. For this reason, a rotating machine using the bearing structure of the present invention, such as a pump, has high reliability.
[0069]
In each of the above embodiments, high-speed flame spraying is used as the sprayed film forming method. However, explosive spraying, low-pressure plasma spraying, laser spraying, and plasma spraying may be used, and the manufacturing method is not limited thereto. The hardness before the heat treatment is preferably high, and high-speed flame spraying and explosive spraying that can form a high-hardness sprayed film are desirable.
[0070]
In each of the above embodiments, SUS403 is used as the material for the sleeve base material and the bearing base material, but any material that can be used in water may be used. WC or Cr 3 C 2 SUS403 is more desirable than SUS304, which has a large thermal expansion coefficient. In consideration of a decrease in corrosion resistance of SUS due to heat treatment, SUS304L or SUS316L having a low carbon content is desirable.
[0071]
In each of the above embodiments, NiCr and Co are used as the binder, and the contents are 12 wt%, 25 wt%, and 27 wt%. However, if the properties are satisfied as a sprayed film, the contents are not limited. Absent.
[0072]
【The invention's effect】
According to the present invention, WC or Cr 3 C 2 By heating a sprayed film mainly containing WC under predetermined conditions, WC particles, Cr 3 C 2 The bond strength between the particles and the binder increases, resulting in a decrease in the number of pores in the sprayed coating and an increase in hardness of about 50-60% on average, improving wear resistance against earth and sand water by about three times that before heat treatment. To do. This characteristic is almost the same as that of a ceramic sintered body such as WC-12% Co. Instead of a sleeve and a bearing made of a WC-12% Co sintered body, a sleeve having a metal surface coated with a sprayed film and a bearing may be used. it can. As a result, WC, SiC, Si 3 N 4 Large diameter bearings and sleeves that could not be manufactured with this sintered body can be manufactured.
[0073]
Further, since the weight of the bearing and the sleeve is reduced regardless of the diameter, the assemblability is greatly improved. Also, WC, SiC, Si with low toughness 3 N 4 Stainless steel can be used as a base material instead of The Therefore, the reliability of the bearing and sleeve is increased. Therefore, the reliability of the pump using this bearing device is increased.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a drainage pump structure according to an embodiment of the present invention.
FIG. 2 is a partial cross-sectional perspective view showing a bearing device according to an embodiment of the present invention.
FIG. 3 is a longitudinal sectional view of a bearing device according to another embodiment of the present invention.
FIG. 4 is a longitudinal sectional view of a bearing device according to another embodiment of the present invention.
FIG. 5 is a longitudinal sectional view of a bearing device according to another embodiment of the present invention.
FIG. 6 is a perspective view showing a sleeve structure according to another embodiment of the present invention.
7 is a cross-sectional view taken along the line AA in FIG.
FIG. 8 is a partial sectional perspective view showing a bearing according to another embodiment of the present invention.
FIG. 9 shows an outer diameter D and a weight W / (outer diameter D) of a sleeve according to another embodiment of the present invention. 2 FIG.
FIG. 10 is a cross-sectional view showing a water wheel structure according to another embodiment of the present invention.
FIG. 11 is a diagram showing a change in hardness of a WC-27% NiCr sprayed film when heated at 400 ° C.
FIG. 12 is a diagram showing a change in hardness of a WC-27% NiCr sprayed film when heated at 500 ° C.
FIG. 13 is a diagram showing a change in hardness of a WC-12% Co sprayed film when heated at 400 ° C.
FIG. 14 Cr 3 C 2 It is a figure which shows the hardness change at the time of 400 degreeC heating of a -25% NiCr sprayed film.
FIG. 15 is a schematic diagram of a metallographic photograph showing a change state of a WC-27% NiCr sprayed film when heated at 400 ° C. FIG.
FIG. 16 is a graph showing the relationship between the vacancy density of the sprayed film surface and the heating time when the WC-27% NiCr sprayed film is heated at 400 ° C.
FIG. 17 is a graph showing the relationship between the vacancy density and the hardness of the sprayed film surface when the WC-27% NiCr sprayed film is heated at 400 ° C.
FIG. 18 is a diagram showing a shape of a wear test piece and a sliding method.
FIG. 19 is a relationship diagram between the sliding distance and the wear amount of a WC-12% Co sintered body, an unheated WC-27% NiCr sprayed film and a heat-treated WC-27% NiCr sprayed film by an abrasion test.
FIG. 20: Heat treated WC-27% NiCr sprayed film, heat treated Cr 3 C 2 It is a relative abrasion rate comparison figure of various material combination containing a -25% NiCr sprayed film.
FIG. 21 is a diagram showing the hardness of each conventional sprayed coating and the relative wear rate based on a WC-12% Co sintered body with respect to earth and sand water.
[Explanation of symbols]
DESCRIPTION OF
Claims (6)
前記軸受装置を構成するスリ−ブの摺動部は2個以上に分割され、かつ
前記軸受装置を構成する軸受及びスリ−ブのいずれか一方若しくは両方の摺動面は溶射膜を被覆したものであり、前記溶射膜はその表面に形成される20μm以上の大きさの空孔の密度が15個/mm2以下であることを特徴とする排水ポンプ。A casing in which drainage flows; and a main shaft that is supported by a bearing device in the casing and has an impeller disposed on a part thereof and that rotates, wherein at least one of the bearing devices includes: In the drainage pump that is operated without supplying clean water from the outside,
The sliding portion of the sleeve constituting the bearing device is divided into two or more, and one or both sliding surfaces of the bearing and sleeve constituting the bearing device are coated with a sprayed film. The sprayed coating is characterized in that the sprayed film has a density of pores of 20 μm or more formed on the surface thereof of 15 / mm 2 or less.
前記軸受装置を構成するスリ−ブの摺動部は2個以上に分割され、かつ
前記軸受装置を構成する軸受及びスリ−ブのいずれか一方若しくは両方の摺動面は溶射膜を被覆したものであり、該溶射膜は、被覆した後300℃以上550℃以下の温度で1時間以上加熱され、該溶射膜のビッカース硬さが1000以上であることを特徴とする排水ポンプ。A casing in which drainage flows; and a main shaft that is supported by a bearing device in the casing and has an impeller disposed on a part thereof and that rotates, wherein at least one of the bearing devices includes: In the drainage pump that is operated without supplying clean water from the outside,
The sliding portion of the sleeve constituting the bearing device is divided into two or more, and one or both sliding surfaces of the bearing and sleeve constituting the bearing device are coated with a sprayed film. The drainage pump, wherein the sprayed film is coated and heated at a temperature of 300 ° C. or more and 550 ° C. or less for 1 hour or more, and the sprayed film has a Vickers hardness of 1000 or more.
前記軸受装置を構成するスリ−ブの摺動部は2個以上に分割され、かつ
前記軸受装置を構成するスリーブの摺動面は溶射膜を被覆したものであり、前記溶射膜はその表面に形成される20μm以上の大きさの空孔の密度が15個/mm2以下であることを特徴とする排水ポンプ。A casing in which drainage flows; and a main shaft that is supported by a bearing device in the casing and has an impeller disposed on a part thereof and that rotates, wherein at least one of the bearing devices includes: In the drainage pump that is operated without supplying clean water from the outside,
The sliding part of the sleeve constituting the bearing device is divided into two or more, and the sliding surface of the sleeve constituting the bearing device is coated with a sprayed film, and the sprayed film is formed on the surface thereof. A drainage pump characterized in that the density of pores having a size of 20 μm or more formed is 15 / mm 2 or less.
前記軸受装置を構成するスリ−ブの摺動部は2個以上に分割され、かつ
前記軸受装置を構成するスリ−ブの摺動面は溶射膜を被覆したものであり、そのkg単位の重量Wと、cm単位の外径Dとの比、W/D2が0.05以下であることを特徴とする排水ポンプ。A casing in which drainage flows; and a main shaft that is supported by a bearing device in the casing and has an impeller disposed on a part thereof and that rotates, wherein at least one of the bearing devices includes: In the drainage pump that is operated without supplying clean water from the outside,
The sliding part of the sleeve constituting the bearing device is divided into two or more, and the sliding surface of the sleeve constituting the bearing device is coated with a sprayed film, and its weight in kg A drainage pump characterized in that the ratio of W to the outer diameter D in cm, W / D 2 is 0.05 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000072448A JP3627614B2 (en) | 1992-03-18 | 2000-03-10 | Drainage pump |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9157192 | 1992-03-18 | ||
JP4-91571 | 1992-03-18 | ||
JP2000072448A JP3627614B2 (en) | 1992-03-18 | 2000-03-10 | Drainage pump |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08113693A Division JP3271363B2 (en) | 1992-03-18 | 1993-03-17 | Bearing device, drain pump and water turbine provided with the bearing device, and method of manufacturing bearing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000314423A JP2000314423A (en) | 2000-11-14 |
JP3627614B2 true JP3627614B2 (en) | 2005-03-09 |
Family
ID=34395507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000072448A Expired - Fee Related JP3627614B2 (en) | 1992-03-18 | 2000-03-10 | Drainage pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3627614B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3930734B2 (en) * | 2001-12-28 | 2007-06-13 | 株式会社荏原製作所 | Vertical shaft pump |
JP2003343474A (en) * | 2002-05-29 | 2003-12-03 | Hitachi Industries Co Ltd | Bearing device and vertical shaft pump having this device |
JP4322473B2 (en) * | 2002-06-13 | 2009-09-02 | 株式会社東芝 | Water supply pump |
JP4156963B2 (en) * | 2003-04-07 | 2008-09-24 | 本田技研工業株式会社 | Bonding method between sprayed layer and steel member |
JP5101189B2 (en) * | 2007-06-27 | 2012-12-19 | 株式会社川本製作所 | Pump bearings |
JP5671334B2 (en) * | 2010-12-28 | 2015-02-18 | 株式会社荏原製作所 | Vertical shaft pump |
JP6777529B2 (en) * | 2016-12-22 | 2020-10-28 | 株式会社荏原製作所 | How to manufacture shaft sleeves, pumps, and shaft sleeves |
JP7216362B2 (en) * | 2018-07-17 | 2023-02-01 | 株式会社フジミインコーポレーテッド | Three-dimensional modeling method, three-dimensional modeling apparatus and base material used therefor |
KR102210342B1 (en) * | 2019-04-05 | 2021-02-01 | (주)동양화공기계 | Drainage pump for hydroelectric power plant |
JP7461278B2 (en) | 2020-11-13 | 2024-04-03 | 株式会社クボタ | Bearing device and vertical shaft pump |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7905973A (en) * | 1979-08-03 | 1981-02-05 | Skf Ind Trading & Dev | METHOD FOR APPLYING A DENSE, HARD, TIGHT AND WEAR-RESISTANT COAT OF CERMETS OR CERAMIC MATERIAL ON A METAL ARTICLE AND OBTAINED THEREFORE. |
JPS6081517A (en) * | 1983-10-07 | 1985-05-09 | Ebara Corp | Submersible bearing |
JPS6336720U (en) * | 1986-08-27 | 1988-03-09 | ||
JPH0339616Y2 (en) * | 1986-12-11 | 1991-08-21 | ||
JPH01230759A (en) * | 1987-12-29 | 1989-09-14 | Showa Denko Kk | Composite powder for thermal spraying |
JP2618955B2 (en) * | 1988-03-02 | 1997-06-11 | 株式会社東芝 | Bearing equipment for hydraulic machinery |
JPH01250615A (en) * | 1988-03-31 | 1989-10-05 | Toshiba Corp | Sliding member for bearing unit |
JP3271363B2 (en) * | 1992-03-18 | 2002-04-02 | 株式会社日立製作所 | Bearing device, drain pump and water turbine provided with the bearing device, and method of manufacturing bearing device |
-
2000
- 2000-03-10 JP JP2000072448A patent/JP3627614B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000314423A (en) | 2000-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5346316A (en) | Bearing unit, drainage pump and hydraulic turbine each incorporating the bearing unit | |
US5458460A (en) | Drainage pump and a hydraulic turbine incorporating a bearing member, and a method of manufacturing the bearing member | |
US11534845B2 (en) | Heterogeneous composite bodies with isolated cermet regions formed by high temperature, rapid consolidation | |
JP3271363B2 (en) | Bearing device, drain pump and water turbine provided with the bearing device, and method of manufacturing bearing device | |
JP3627614B2 (en) | Drainage pump | |
US6358333B1 (en) | Rolling member | |
US6250812B1 (en) | Rolling bearing | |
US8485788B2 (en) | Rotor for steam turbine and method of manufacturing the same | |
US6485581B2 (en) | Bearing for main spindle of machine tool | |
US5108491A (en) | Rolling bearing composition | |
JPH1180897A (en) | Rolling bearing | |
EP1123986B1 (en) | Rolling bearing | |
CA2365553A1 (en) | Rolling bearing | |
US6565677B1 (en) | Rolling bearing | |
WO2001018273A1 (en) | Rolling bearing | |
JP2001289251A (en) | Rolling bearing and method of manufacturing the same | |
Sun et al. | Effect of layer thickness on the rolling-sliding wear behavior of low-temperature plasma-carburized austenitic stainless steel | |
Heshmat et al. | Coatings for high temperature foil bearings | |
JPH0790533A (en) | Sleeve and its production and drainage pump having this sleeve | |
EP1001181A2 (en) | Rolling or sliding parts | |
GB2344828A (en) | Rolling member | |
JP2899641B2 (en) | Bearing structure and pump for drainage pump | |
Yu et al. | Tribological behavior of 1Cr18Ni9Ti steel under hydrogen peroxide solution against different ceramic counterparts | |
WO2000049304A1 (en) | Rolling bearing | |
JP3843198B2 (en) | Sliding member and vertical shaft pump using the sliding member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041129 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121217 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |