JPS6081517A - Submersible bearing - Google Patents
Submersible bearingInfo
- Publication number
- JPS6081517A JPS6081517A JP18684383A JP18684383A JPS6081517A JP S6081517 A JPS6081517 A JP S6081517A JP 18684383 A JP18684383 A JP 18684383A JP 18684383 A JP18684383 A JP 18684383A JP S6081517 A JPS6081517 A JP S6081517A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- ceramics
- underwater
- segments
- carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/046—Bearings
- F04D29/047—Bearings hydrostatic; hydrodynamic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/046—Bearings
- F04D29/0465—Ceramic bearing designs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/043—Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
【発明の詳細な説明】
軸受に関し、特に、起動時及び停止時等に気体中におか
れて無潤滑条件下で運転され、定常運転時に水中又はス
ラリ中で運転される支軸7j?ンプ又は窪゛1i′ll
lllボンプに使用される水中軸受に関する。DETAILED DESCRIPTION OF THE INVENTION Regarding bearings, in particular, the spindle 7j is operated under non-lubricated conditions by being placed in gas during startup and stop, and is operated in water or slurry during steady operation. pump or dimple
This relates to underwater bearings used in lll pumps.
従来、支軸ポンプ及び斜+f’+f+ポンプの水中軸受
には、ゴム軸受、鉛青銅軸受等が使用きれていた。Conventionally, rubber bearings, lead bronze bearings, etc. have been used as underwater bearings for spindle pumps and oblique +f'+f+ pumps.
ところが、これらのポンプを起動する場合には、水中軸
受部が気体中におかれていることが多く、そのままの状
態で起動することは困難であった。However, when starting these pumps, the submersible bearings are often placed in gas, making it difficult to start them in that state.
その理由は、ゴム軸受も鉛青銅等の金属製軸受も。The reason is that both rubber bearings and metal bearings such as lead bronze.
水中或いは水や油で潤滑された状態で使用される場合は
極めて安定しだ摺動特性を示すが、気体中、即ち無潤滑
条件下で使用するときは、摺動部から激しく発熱し、軸
受部が速やかに破損されるからである。そのため、従来
の支軸ポンプや斜軸ポンプでは、起動時の無潤滑条件下
の運転から水中軸受を保護するだめ、軸受摺動部への潤
滑油の供給、或いは軸受部への注水等の手段が採用され
ていた。When used underwater or lubricated with water or oil, it exhibits extremely stable sliding characteristics, but when used in gas, that is, under unlubricated conditions, the sliding parts generate intense heat and the bearing This is because the parts are quickly damaged. Therefore, in conventional pivot shaft pumps and oblique shaft pumps, in order to protect the submersible bearings from operation under non-lubricated conditions at the time of startup, there are measures such as supplying lubricating oil to the sliding parts of the bearings or injecting water into the bearing parts. had been adopted.
この軸受部への注水装置を第1図及び第2図によって勝
、明する。This water injection device for the bearing portion will be explained with reference to FIGS. 1 and 2.
第1図は、軸受部へ注水する装置を設けた従来の支軸ポ
ンプの縦1υr面図であって、lは外水位であり、この
外水位lに水没する位1べに羽根車がくるように支軸ポ
ンプは設置されている。駆動用モータ3は保守、点検が
容易なように地上に設けられ、該実動用モータ3の回転
は軸継手≠を介して軸、t 、 Pに伝達され、軸ダの
先端部に接続された羽根車コを回転する。なお、乙は軸
jと軸j′とを接続する中間軸継手である。羽根車λの
回転によって、水は吸込みペル7から眩い込まれ吐出し
ボウルざ、吊下げ管り、10を通って吐出エルyytt
から吐出される。lコ、/3は、軸! 、Pを保強する
と共に上部水中軸受/4’及び下部水中軸受l!へ潤滑
水を導くだめの保護管である。まだ上部水中軸受l≠は
水中軸受支えl乙によって支持されておシ、下部水中軸
受isはリブ/ 7 、 / 7/によって支持されて
いる。Fig. 1 is a vertical 1υr side view of a conventional spindle pump equipped with a device for injecting water into the bearing part, where l is the outside water level, and the impeller is at the level where it is submerged in water at this outside water level l. The spindle pump is installed as shown. The drive motor 3 is installed on the ground for easy maintenance and inspection, and the rotation of the actual motor 3 is transmitted to the shafts, t, and P via a shaft coupling, which is connected to the tip of the shaft. Rotate the impeller. Note that B is an intermediate shaft joint that connects the shafts j and j'. By the rotation of the impeller λ, water is drawn from the suction pel 7, passes through the discharge bowl, the hanging pipe 10, and is discharged from the discharge el yytt.
It is discharged from. lko, /3 is the axis! , P and the upper underwater bearing/4' and the lower underwater bearing l! This is a protective tube that guides lubricating water to the tank. Still, the upper underwater bearing l≠ is supported by the underwater bearing support lB, and the lower underwater bearing is supported by the ribs /7, /7/.
第2図は、第1図A部の上部水中軸受/4’の拡大断面
図であって、軸jlには、ステンレス製の円筒状のスリ
ーブlI力訣ネジ/−’?aによって固着されて該軸3
1と一体に回転するように女っており、また、水中軸受
支えl乙には、ゴム軸受lりがスリーブ/l’の外周面
と僅かの隙間をもって固定されている。なお、このゴム
軸受l?の水平断面の内周形状は円形であって、通常、
憫滑水用の縦溝が数本設けられている。上記ゴム軸受l
りは、軸! 、 J+の回転によって生じる該軸j 、
3′の半径方向の振れを、スリーブitの外周面を該
ゴム軸受lりの内周面に摺接させることによって制限し
ている。FIG. 2 is an enlarged sectional view of the upper submersible bearing /4' in part A of FIG. The shaft 3 is fixed by a.
The rubber bearing 1 is fixed to the underwater bearing support 1 with a slight gap from the outer peripheral surface of the sleeve 1'. In addition, this rubber bearing l? The inner circumferential shape of the horizontal cross section is circular, and usually
There are several vertical grooves for sliding water. Above rubber bearing
Riha, axis! , the axis j caused by the rotation of J+,
The radial runout of the sleeve 3' is limited by bringing the outer circumferential surface of the sleeve it into sliding contact with the inner circumferential surface of the rubber bearing 1.
そして、第1図及び第2図に示される室軸ポンプの起動
時及び定常運転時には、上部に設けられた注水ロー20
から、軸r 、 srと保護管/−2、/Jとの間に注
水して1上部水中軸受/4’と下部水中軸受/Jの2個
の水中軸受を水で潤滑して保護している。ところが、支
軸ポンプでは軸s 、 srの長さが数10mにも及ぶ
ことがあシ、この場合には多数の水中軸受が用いられ、
その間の軸を保腹管で保護している。従って、ポンプ起
動時における水中軸受の保護のために、多大の設備費を
強いられる欠点があった。なお、以上の第1図及び第2
図の説明は室軸、IFンプに関するものであるが、斜軸
ポンプにおいても、全く同様の問題があった。When the chamber shaft pump shown in FIGS. 1 and 2 starts up and operates normally, the water injection row 20 provided at the top is
Then, water was poured between the shafts r and sr and the protection tubes /-2 and /J, and the two underwater bearings, 1 upper underwater bearing /4' and lower underwater bearing /J, were lubricated and protected with water. There is. However, in a spindle pump, the length of the shafts s and sr can reach several tens of meters, and in this case, many submersible bearings are used.
The shaft between them is protected by a stomach tube. Therefore, there is a drawback that a large amount of equipment cost is required to protect the underwater bearing when the pump is started. In addition, the above figures 1 and 2
Although the explanation in the figure relates to a chamber shaft and an IF pump, the same problem also occurred in a diagonal shaft pump.
本発明の目的は、上記した従来技術の欠点を除去するこ
とができ、液体中と気体中とで開用される水中軸受にお
いて、双方の使用条件下において安定した摺動特性をも
ち、しかも製作が容易な水中軸受を提供することであシ
、特に、支軸ポンプ及び斜軸ポンプの水中軸受として、
ポンプ起動時に水中軸受部が気体中におかれていて無潤
滑条件下で起動することが可能であシ、起動後の定常運
転時においても良好な摺動特性を示し、しかも、清水中
のみならず海水のような良電導度液体やスラリ液中にお
いても、安定した摺動特性を示す水中軸受を提供するに
ある。It is an object of the present invention to eliminate the drawbacks of the prior art described above, to provide a submersible bearing that is used in both liquid and gas, and to have stable sliding characteristics under both usage conditions. To provide a submersible bearing that is easy to use, especially as a submersible bearing for a pivot shaft pump and a tilted shaft pump.
The submersible bearing part is placed in gas when the pump is started, so it can be started under non-lubricated conditions, and it shows good sliding characteristics even during steady operation after startup, and can only be used in fresh water. Another object of the present invention is to provide an underwater bearing that exhibits stable sliding characteristics even in a liquid with good conductivity such as seawater or in a slurry liquid.
この目的を達成するために、本発明は、回転側部材をタ
ングステンカーバイド(WO)を含む超硬合金で、また
固定側部材を窒化珪素(813N4)又は炭化珪素(8
i0)のセラミックスでそれぞれ構成し、該セラミック
スをセグメント状に分割して固定側部材の周■1に環状
に配列して取り付けたことを特徴としている。In order to achieve this object, the present invention makes the rotating side member made of a cemented carbide containing tungsten carbide (WO), and the stationary side member made of silicon nitride (813N4) or silicon carbide (813N4).
They are each made of the ceramic of i0), and the ceramics are divided into segments and arranged and attached in an annular manner around the circumference (1) of the stationary side member.
以下、本発明を実施例によって詳しく説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.
先ず、本発明の特徴の一つとする、水中軸受の回転側及
び固定側に使用される材料について説明すると、支軸ポ
ンプ又は斜軸ポンプ等に使用される従来の水中軸受にお
ける摺動部利の組合せとして、例えば、「サム軸受−ス
テンレス鋼製軸スリーブ」或いは「カーボン含有テフロ
ン(簡標名)軸受−ステンレス鋼軸スリーブ」等の場合
にあつては、清水中の摺動特性は優れているが、無潤滑
条件下においては全く使用できず、又[カーゼン軸受又
はカーゼン含有鋼合金軸受−ステンレス鋼軸スリーブ」
の組合せにおいては、水中軸受部が珪砂(砂)やアルミ
ナ粒子を含むスラリ液によって浸漬されると、摺動面が
速やかに損傷され、必ずしも満足できるものではなかっ
た。First, to explain the materials used for the rotating and stationary sides of submersible bearings, which is one of the features of the present invention. For example, combinations such as "thumb bearing - stainless steel shaft sleeve" or "carbon-containing Teflon (simplified name) bearing - stainless steel shaft sleeve" have excellent sliding characteristics in fresh water. However, it cannot be used at all under non-lubricated conditions, and [Carzen bearings or steel alloy bearings containing steel alloys - stainless steel shaft sleeves]
In this combination, when the underwater bearing part is immersed in a slurry liquid containing silica sand or alumina particles, the sliding surface is quickly damaged, and the result is not necessarily satisfactory.
そこで本発明者等は、ラジアル軸受の摺動特性を調べる
試験装置及び保睦肯を具えない第V図に示すような豆粕
ポンプを用い、さまざまな部材について清水条件、気体
条件、スラリ条件、海水条件或いはスラリを含む海水条
件等のさまざまな使用環境における摺動特性を調べ、前
記のような本発明の水中軸受に使用される月料が最も優
れていることを見い出した。前記摺動試験の結果得られ
たデータを第1表に示す。Therefore, the present inventors used a testing device to examine the sliding characteristics of radial bearings and a bean dregs pump as shown in Figure V, which does not have a radial bearing. We investigated the sliding characteristics under various usage environments such as seawater conditions or seawater conditions containing slurry, and found that the above-mentioned monthly bearing used in the underwater bearing of the present invention is the most excellent. Table 1 shows the data obtained as a result of the sliding test.
に如 Pk−8
また第3図i、、l:、横軸に運転時間、縦軸に摩擦係
数をとった軸受の摺動付性勿示す線図であって。Pk-8 Figure 3 is also a diagram showing the sliding properties of the bearing, with the horizontal axis representing the operating time and the vertical axis representing the coefficient of friction.
摺動速度λ、j%/S 、面圧はゴム軸受−ステンレス
鋼SUS 3o弘については乙。3 kgf/ca (
×印の記号で表わす)、窒化珪素セラミックス軸受−超
硬合金(Y O% WC) K)イCはA7kg f/
crl (Q印)g6号で表わされた本発明/)、炭化
珪素セラミックス4和受−超硬合金(り0%Wc)につ
いては67 k g f / cyA(本発明2)及び
≠2kgf/c++!(本発明λ′)をそれぞれとって
いる。Sliding speed λ, j%/S, and surface pressure are rubber bearings - Stainless steel SUS 3o Hiro. 3 kgf/ca (
(represented by the symbol x), silicon nitride ceramic bearing - cemented carbide (Y O% WC) K) A C is A7 kg f/
67 kg f / cyA (present invention 2) and ≠ 2 kg f / c++! (λ' of the present invention), respectively.
前記の第7表及び第3図から明らかなように、本発明の
水中軸受における同包側部材と固定側部材ヲ、それぞれ
超硬合金(特にタングステンカーバイド葡含有)と窒化
珪素セラミックス又は炭化珪素セラミックスとした摺動
向は、空気中、清水中%或いは珪砂、アルミナ粒子を含
むスノ97L中においても極めて安定した摺!11Il
特性?示すものであることが分かる。As is clear from Table 7 and FIG. 3, the enclosed side member and fixed side member of the underwater bearing of the present invention are made of cemented carbide (particularly containing tungsten carbide) and silicon nitride ceramics or silicon carbide ceramics, respectively. The sliding behavior is extremely stable even in air, fresh water, and Sno 97L containing silica sand and alumina particles! 11Il
Characteristic? It can be seen that this is what is indicated.
なお1本発明において固定(111部材部材成する窒化
又は炭化珪素セラミックスは、引張強度、もろさ、線膨
張率などの愼械的性負から、できるだけ取付は容易なし
かも固定側の摺動向に用いられるべきであり、したがっ
て固定11111部月である軸受世11の摺動部材とし
て用いるのが望丑しく、もう一方の超硬合金は1回転側
部材である軸側の摺動部材とじて用いるのが望ましい。Note that in the present invention, the nitride or silicon carbide ceramics constituting the fixed (111) member are easy to install and are used for sliding movement on the fixed side due to mechanical properties such as tensile strength, brittleness, and coefficient of linear expansion. Therefore, it is preferable to use it as the sliding member of the bearing 11, which is the fixed part, and it is preferable to use the other cemented carbide as the sliding member of the shaft side, which is the one-turn side member. desirable.
また、第1表及び第3図に示した試験において使用した
超硬合金は。In addition, the cemented carbide used in the tests shown in Table 1 and Figure 3 is as follows.
JIS Hzrot aB3号に相当するものであるが
。It corresponds to JIS Hzrot aB3.
りOg ’44以上のタングステンカーバイド(WC)
を含む超硬合金でめれは、弔/表及びiA3図に示され
る良好で且つ簀足した摺呻り、f性全有するものである
。Tungsten carbide (WC) with Og '44 or higher
Cemented carbide alloys containing the same material have good and consistent sliding and f properties as shown in the table and Figure iA3.
次に、上記した軸受材]・)を用いた本発明の水中軸受
の実施1+11 ?]l−%第≠図ないしiJ4 A
0図と共に説明する。Next, implementation 1+11 of the underwater bearing of the present invention using the above-mentioned bearing material]・)? ]l-% ≠ figure or iJ4 A
This will be explained with reference to Figure 0.
第グ図は、第7図に示した従来の立すリノ1ポンfに本
発明の水中#l+受て通用した場合の縦1析而図でめっ
て、第7図におりる保砕g−/、z、/J、注水口20
と図がしていない汗水装置面及び下部水中軸受/jf支
えるリブ17等が不☆となったので設けられておらず、
富めてftf巣な構造となっている。Fig. 7 is a vertical 1 analysis diagram when the conventional standing lino 1 pon f shown in Fig. 7 is used with the underwater #l + receiver of the present invention. g-/, z, /J, water inlet 20
The sweat device surface and lower submersible bearing/JF supporting rib 17, etc., which are not shown in the figure, were not provided because they were defective.
It has a rich FTF structure.
しかも、上部及びト部の内水中軸受/41./、tが。Moreover, the in-water bearings at the top and bottom parts/41. /, t.
従来のものと比べて極めて小型になっている仁とが分か
る。You can see that it is extremely smaller than the conventional one.
上記のように1本発明全コネ用することによって水中軸
受を小型にできる理由は、第3図〃1らも明らかなより
に1本発明の水中軸受月利は極めて商い田1圧荷貞(a
t米の70倍以上)にも血1えることから、」習勤1田
(貞と小さくすることが可能になったからである。The reason why the underwater bearing can be made smaller by using all the connections of the present invention as described above is as shown in Fig. 3. a
This is because it is possible to make Xiqin as small as 1 tian (1 tian) because it can produce 1 blood even in 1 tian (more than 70 times the size of rice).
45図は、第j図B部の水中軸受部Q〕拡拡大面面図あ
って、軸j′C′(は、タングステンカーバイド全音ん
だ超硬合金製軸スリーブ2/が1図7」<シない止めネ
ノVこよって固着されて1犀に回転するようになってい
る。また水中軸受支え/2には、金属ケース22を介し
で、セグメント状に分割されたセラミック製+iQn受
23が取!II 1’i &Jられており。Figure 45 is an enlarged sectional view of the submersible bearing part Q in part B of Figure j, and the shaft j'C' (is the shaft sleeve 2 made of cemented carbide made of tungsten carbide). The submersible bearing support 2 has a ceramic +iQn bearing 23 that is divided into segments attached to the underwater bearing support 2 through a metal case 22. !II 1'i &J has been done.
仁れらセグメント状に分割ちれた谷セラミックス片は、
金属ケース!λの円囲に形成遁扛1こ臥合孔に眩め込む
よ′:)tこして巣状に配列もれ、Cセラミックス片の
内周面が軸スリーブ2/の外周面に線接触に近い状態に
なるようにして取り付けられている。なお、この取υ付
けは焼面め或いは接糸剤によってイテわれ、谷セラミッ
クス片は金属ケース22に強固に固着される。A piece of Tani ceramics divided into segments,
Metal case! One of the pieces formed in a circle of λ will be dazzled into the sleeping hole.The inner circumferential surface of the C ceramic piece will be in line contact with the outer circumferential surface of the shaft sleeve 2. It is installed so that it is in a similar state. Incidentally, this attachment is done by baking the surface or using a glue, and the valley ceramic piece is firmly fixed to the metal case 22.
第Aa図ないし第6C図は、g4j図のVl−Vl線断
■図であって、谷セグメント片が水中ttIC受支え/
lの金属ケース、2.2の内11111に1哀状vc配
列芒れて取り刊けられている態様が明瞭に示はれている
。Figures Aa to 6C are cross-sectional views along the line Vl-Vl in Figure g4j, where the valley segment piece supports the ttIC in water.
It is clearly shown that the metal case of 2.2 is arranged with 1 VC array in 11111 of 2.2.
すなわちb ’d’L t a図は、各セグメント片が
曲面円形の棒状体、23aで構成されている実施例ケン
Jクレ、これらのtlJi間円形のセグメント片、23
aは。That is, the figure shows an example in which each segment piece is composed of a curved circular rod-shaped body, 23a, and a circular segment piece, 23a, between these tlJi.
a is.
金ノ、4ケース、22の内側に予め間+’i、’+ ’
tr:隔てて軸方向に穿設されグこ0ノr面円弧状の貝
通孔2弘a内に、軸スリーブ2/の外周面と摺動するj
fli ’rj−’Y *イ+残して残部金・1.I’
r:駄め或いは接着剤によって固着きれている。Gold, 4 cases, pre-marked on the inside of 22 +'i,'+'
tr: J that slides on the outer circumferential surface of the shaft sleeve 2/ within the arc-shaped shell through hole 2a that is spaced apart and drilled in the axial direction.
fli 'rj-'Y *I + remaining money・1. I'
r: It is damaged or cannot be fixed with adhesive.
また第、<b図は、谷セグメント片が断面梯形の棒状体
、zJblxこよって構成された芙施例ヶ示し。Further, Fig. <b> shows an embodiment in which the valley segment piece is constituted by a rod-shaped body with a trapezoidal cross section, zJblx.
これらの各セグメント片23bは、4?hAケース22
の内0111に間隔を隔てて軸方向に膨設されたロノ[
囲俤形(アリ溝形)のifi辿孔!グb内1tC焼吠め
或いは接層剤によって同7dされている。Each of these segment pieces 23b is 4? hA case 22
Among them, the rono [
Surrounding (dovetail) ifi hole! The same 7d is applied by 1tC sintering or adhesive in the glue b.
同様に粛tc図は、谷セグメント片が断面矩形状の棹状
体2.3cで<M成された実施例を乃くし、これらの各
セグメント片2ECは、金属ケース2.2の内側に間隔
を隔ててql+方向に1設された11ノ「面矩形の貫通
孔、2弘Cビタに焼wくめ或いに区腐剤によって固着さ
れて、15−ジs 1lil+スリーブ、2/の外周面
との]習接面tよ、断面円弧状に形成されている。Similarly, the diagram shows an embodiment in which the valley segment pieces are made of rod-shaped bodies 2.3c with a rectangular cross section, and each of these segment pieces 2EC is spaced apart inside the metal case 2.2. A rectangular through hole with a rectangular surface of 11 is provided in the ql+ direction across the 15-jis 1liil+ sleeve, and the outer circumferential surface of the 15-jis 1liil+ sleeve is 2/. The tangential surface t is formed with an arcuate cross section.
これらの第1a図ないし第6C図に7J<された谷実施
例によiLは、水中軸受支え/ 、< VC金属ケース
、2.!を弁して取り伺けら7’したセラミックスd
ll’ll受23紫、セグメント状に分割して金kJi
ケース2.!の周面K J、L(状Vこ配列してj収9
1・1けているので、下1己のよりな作用、効果が会さ
れている。According to the valley embodiments labeled 7J in these Figures 1a to 6C, iL is an underwater bearing support/, <VC metal case, 2. ! 7' Ceramics d
ll'll Uke 23 purple, divided into segments and gold kJi
Case 2. ! The circumferential surface of K J, L (arranged in the shape of V and J is 9
Since it is in the 1.1 digit, the lower 1 self has more effects and effects.
山 谷セラミックス片と111111との接触が線ゴ安
j強に近い状聾Qこできるので、気中運転時の発熱乏低
下できる。これは、依融面槓が4りりて小らくそのため
部分的な回圧が非常に而くlるので従来の軸受材料では
不可能であったことであり、本元明VCよって初めて可
能となった。Since the contact between the ceramic piece and 111111 can be made in a state close to that of the line, the heat generation can be reduced during air operation. This was not possible with conventional bearing materials because the fused surface was small and the local rotation pressure was very small, and it was made possible for the first time with Hongenmei VC. Ta.
(団 セグメント状に分割され7こ谷セラミックス片間
の比較的広い間隙にポンプ揚水が流れるため。(This is because pumped water flows through the relatively wide gaps between the seven ceramic pieces, which are divided into segments.
取扱液中の異物が軸方向に流れ、摺動面へのかみ込みが
減少し、前日己軸受構成材料と相俟って耐摩耗1生が更
に向上する。Foreign matter in the handling liquid flows in the axial direction, reducing the amount of foreign matter caught in the sliding surface, and in combination with the previous bearing constituent material, the wear resistance is further improved.
011) 大きな軸径用のセラミック軸受葡一体で製作
した場合、材質の不均一がおき易く1強匿的に1d幀性
に乏しいものになシがらであ夛、またそのため市価なも
のになる。し71)シ本発明のようにセグメント状に分
Jすすることにより、セラミック単体としては小さなも
のですみ、大型の軸父にも適用でさ、(Q頼性を高める
ことができ、しかもコスト r Fけることができる。011) When a ceramic bearing for a large shaft diameter is manufactured in one piece, the material is likely to be non-uniform, and the bearing is inevitably poor in 1D width, resulting in a large number of blanks, and as a result, it becomes commercially expensive. 71) By dividing the ceramic into segments as in the present invention, the ceramic itself can be small and can be applied to large shaft shafts. r F can be written.
なお、上記の効果の外、 414 A a図に示r未施
例においては、各セラミックス片23aが断面円形の杯
状体に形JJy、されているので、加ニレ易く、製1・
「が最も容易であり、谷セラミックス片が半径方向内側
へ向けでゆる′LJ−恐れも全くない。同様に第6b図
に示す実施例においても、各セラミックス片がアリ溝形
の孔に面金されているので、内1111へ同かつてゆる
む恐れはなく、捷た各セラミックス片は底面が広くなっ
ているので、′!i:ボした支持が得られる効果がある
。第6C図に示す実施列は、前記2例に対してセラミッ
クス片がp;lf脱し易い形状になっているが、接層t
illにて固定する場合の組立て及び弔ab図に比べて
)用土を容易にしたものである。In addition to the above-mentioned effects, in the unimplemented example shown in Figure 414Aa, each ceramic piece 23a is shaped into a cup-shaped body with a circular cross section, so it is easy to etch and is easy to manufacture.
``LJ'' is the easiest, and there is no fear that the valley ceramic pieces are radially inward and loose.Similarly, in the embodiment shown in Fig. 6b, each ceramic piece is placed in a dovetail hole with a face plate. Because of this, there is no risk of the ceramic pieces coming loose in the same direction, and since each of the broken ceramic pieces has a wide bottom surface, it has the effect of providing rounded support. In contrast to the above two examples, the ceramic piece has a shape that allows it to easily come off p;lf, but the contact layer t
This makes the soil easier to assemble (compared to the AB diagram when fixing with an ill).
以上は、立輔ポンプの水中軸受に本づ6明を通用した例
について述べ1こが、斜軸ポンプに適用した場合につい
ても同様の作用効果ケ奏するものでりυ1またその他の
水力機械の水中+In+父としても利用できることは勿
jt館である。The above describes an example in which the submersible bearing of a vertical shaft pump is applied to the submersible bearing of a vertical shaft pump.However, the same effect is achieved when applied to a diagonal shaft pump. Of course, you can also use it as a +In+father.
3/こ1回転体會回ノJl柵(で支持するようにしたも
のにおける軸受装置であって、液体中及びン(体中で使
用される水中軸受に使用することも可能であり、と(1
)場合も、セラミックスは、千パ砿的注買等の点から固
定したqIlt+ 1lillに献けられる。3/This is a bearing device for a rotating body supported by a rotating body, and it can also be used for underwater bearings used in liquids and bodies. 1
), ceramics are also dedicated to a fixed amount of qIlt+1lill in terms of purchase of 1,000 pachinko, etc.
なお1回転+11117jlf月?伯ノ戊する超硬合釧
hタングステンカーバイド全生成分にするものであれば
よいことは勿論である。Furthermore, 1 revolution + 11117jlf month? Of course, it is sufficient that the entire component is made of tungsten carbide.
以上説明したように1本タロ明は、液体中及び気体中で
使用される水中!I’lll受において1回転11i1
1部材ケタングステンカーバイドからなる超硬8金で。As explained above, Ippon Taromei can be used underwater in liquids and gases! 1 rotation 11i1 in I'llll receiver
Made of carbide 8-karat gold made of one-piece ketungsten carbide.
ま/こしI定伸部材金屋化珪素又は層化珪素のセラミッ
クスでそれぞれ構成し、罎セラミックス奮セグメント状
に分割して固定側部祠の周面に根状に配列して取り付け
るようにして4h成しているので。The fixed elongated parts are each made of ceramics such as anodized silicon or layered silicon, and the ceramics are divided into segments and attached to the peripheral surface of the fixed side shrine in a root-like manner. Because I do.
従来の水中軸受では不可能でめった無間滑栄Y+−下の
始動、即ち気体中において(igi !13!+する場
合でも極めて女麓した慴動t1¥性全4し、水nJ r
けがなされている条件下では勿、ll@のこと、珪砂−
アルミナ做粒子からなるスラリ水中で摺動する場合でも
良好な摺動特性金柑持するので、無病rn状!&とfl
i」t’iy状態とが株ジ返えし出現する条件−F、或
いはJ4+3耗性取扱い液中で作動袋せるのりこ好適で
あり、寸だr?iJ記両セラミックスは艮絶縁性ケ有フ
ーるので、艮亀導朋液中で作動する摺動部拐としで用い
れは、腐食「匡流奮遮断して)d囲におかれノこ釡属部
材r保護することにもなる。史Vc、高い面圧荷置にも
劇えることから、セラミックス全セグメント状に分割し
て@11との接触葡線接触eこ近い状態にできるので。With conventional submersible bearings, it is impossible to start with low smoothness, that is, even when starting in gas (igi !
Under conditions of injury, of course, ll@, silica sand-
Even when sliding in slurry water made of alumina particles, it maintains good sliding properties, so it is disease-free! & and fl
I't'iy condition is a condition in which the stock reversals -F or J4+3 is suitable for a glue that can be operated in an abrasive handling liquid, and it is very close. Since both ceramics have insulating properties, they are used to protect sliding parts that operate in liquids, so that they can be surrounded by corrosion-resistant parts. It also protects the material.Since it can also be used for high surface pressure loading, the entire ceramic can be divided into segments and the contact with @11 can be made as close as possible.
気中運転時の発熱?低下でき、ま1こ分割された各セラ
ミックス片の間隙が取扱液中の異物の通路として利用で
きるので、それたけ摺動面が・昧膿されて1l111摩
耗性が向上するばかりでなく、セラミックスを分割して
いるので、各局に人形の軸受にも適用でき、またセラミ
ックスに一体成形で製拝する必要がなくコスト的にも安
価となる等の効果會有する。Fever when driving in the air? Since the gap between each divided ceramic piece can be used as a passage for foreign matter in the liquid being handled, the sliding surface is not only contaminated and the abrasion resistance is improved, but also the ceramic Since it is divided, it can be applied to doll bearings for each station, and there is no need to integrally mold it into ceramics, resulting in lower costs.
第1図は従来の車軸ポンプの、)↓(11;li面図、
第一図は第1図A部の拡大断]用図、+;i431メ1
は軸受の拍動特性を示す線図、第V図は本発明の一実施
例の水中軸受を通用した支軸ボンノの縦断面図、第5図
は第弘図B都の拡大+1jr ulI図、第Aa図ない
し第6C図は第5図のVl −Vl線断凹1で異なる実
施例金示す。
j′・・・回転軸、 /A・・・1ill受支え21・
・・軸スリーブ、、23・・・セラミックス。
、2Ja、、2Jb、23c・・・セラミックス片。Figure 1 shows a conventional axle pump, )↓(11; li side view,
Figure 1 is an enlarged section of part A in Figure 1.
is a diagram showing the pulsation characteristics of the bearing, FIG. FIGS. Aa to 6C show different embodiments at the Vl--Vl line break 1 of FIG. j'...rotating shaft, /A...1ill support 21.
...Shaft sleeve, 23...Ceramics. , 2Ja, , 2Jb, 23c...ceramic pieces.
Claims (1)
、回転側部材をタングステンカーバイド′(WO)を含
む超硬合金で、また固定側部材を窒化珪1t(SlaN
n)又は炭化珪素(Sin)のセラミックスでそれぞれ
構成し、核セラミックスをセグメント状に分割して固定
側部材の周1mに環状に配列して取υ付けたことを特徴
とする水中軸受。 2 起動時及び停止時に水中軸受部が気体中におかれ無
潤滑条件下で運転される水中軸受において、軸佃部拐を
タングステンカーバイド′を宮む超硬合金で、また軸受
側部材を鷺化珪素又は炭化珪素のセラミックスでそれぞ
れ構成し、該セラミックスをセグメント状に分割して軸
受側部相の周面に環状に配列して取り伺けた特許請求の
札囲!:1′J1項記載の水中軸受。 3 セグメント状に分割された各セラミックス片を、断
面円形に形成した特許請求の範囲第1項記載の水中軸受
。 ≠ セグメント状に分割された各セラミックス片を、断
面梯形に形成した特許請求の範囲第1項記載の水中軸受
。 よ セグメント状に分割された各セラミックス片を、断
面矩形状に形成した特if”l−請求の範囲第1項記載
の水中軸受。[Claims] 1. In an underwater bearing used in liquid and gas, the rotating side member is made of a cemented carbide containing tungsten carbide (WO), and the stationary side member is made of silicon nitride 1t (SlaN).
n) or silicon carbide (Sin) ceramics, and is characterized in that the core ceramics are divided into segments and arranged and attached in an annular manner 1 m around the stationary side member. 2. In underwater bearings that are operated under non-lubricated conditions with the underwater bearing part placed in gas during startup and stop, the shaft part is made of cemented carbide coated with tungsten carbide, and the bearing side member is made of tungsten carbide. Each of the ceramics is made of silicon or silicon carbide, and the ceramics are divided into segments and arranged in an annular manner on the circumferential surface of the bearing side phase. :1' Submersible bearing described in J1. 3. The underwater bearing according to claim 1, wherein each ceramic piece divided into segments is formed to have a circular cross section. ≠ The underwater bearing according to claim 1, wherein each ceramic piece divided into segments is formed into a trapezoidal cross section. The underwater bearing according to claim 1, wherein each ceramic piece divided into segments is formed into a rectangular cross section.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18684383A JPS6081517A (en) | 1983-10-07 | 1983-10-07 | Submersible bearing |
AU32968/84A AU579834B2 (en) | 1983-09-30 | 1984-09-12 | Combination of slide members |
US06/651,039 US4664595A (en) | 1983-09-30 | 1984-09-14 | Combination of slide members |
DE3435821A DE3435821C2 (en) | 1983-09-30 | 1984-09-28 | Bearing for a pump |
KR1019840006058A KR930002055B1 (en) | 1983-09-30 | 1984-09-29 | Active part combined structure of bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18684383A JPS6081517A (en) | 1983-10-07 | 1983-10-07 | Submersible bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6081517A true JPS6081517A (en) | 1985-05-09 |
JPS6349086B2 JPS6349086B2 (en) | 1988-10-03 |
Family
ID=16195602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18684383A Granted JPS6081517A (en) | 1983-09-30 | 1983-10-07 | Submersible bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6081517A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6084423A (en) * | 1983-10-17 | 1985-05-13 | Ebara Corp | Sliding bearing |
JPS622832U (en) * | 1985-06-24 | 1987-01-09 | ||
JPS622831U (en) * | 1985-06-24 | 1987-01-09 | ||
JPS622833U (en) * | 1985-06-24 | 1987-01-09 | ||
JPS62107294A (en) * | 1985-11-05 | 1987-05-18 | Ebara Corp | Single suction type multi-stage volute pump |
JPH048797U (en) * | 1990-05-11 | 1992-01-27 | ||
US5346316A (en) * | 1992-03-18 | 1994-09-13 | Hitachi, Ltd. | Bearing unit, drainage pump and hydraulic turbine each incorporating the bearing unit |
JP2000314423A (en) * | 1992-03-18 | 2000-11-14 | Hitachi Ltd | Drainage pump and manufacture thereof |
JP2017061999A (en) * | 2015-09-25 | 2017-03-30 | 株式会社荏原製作所 | Sliding bearing device |
-
1983
- 1983-10-07 JP JP18684383A patent/JPS6081517A/en active Granted
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6349087B2 (en) * | 1983-10-17 | 1988-10-03 | Ebara Mfg | |
JPS6084423A (en) * | 1983-10-17 | 1985-05-13 | Ebara Corp | Sliding bearing |
JPH028099Y2 (en) * | 1985-06-24 | 1990-02-27 | ||
JPS622833U (en) * | 1985-06-24 | 1987-01-09 | ||
JPS622831U (en) * | 1985-06-24 | 1987-01-09 | ||
JPS622832U (en) * | 1985-06-24 | 1987-01-09 | ||
JPH028100Y2 (en) * | 1985-06-24 | 1990-02-27 | ||
JPH0211609Y2 (en) * | 1985-06-24 | 1990-03-27 | ||
JPS62107294A (en) * | 1985-11-05 | 1987-05-18 | Ebara Corp | Single suction type multi-stage volute pump |
JPH048797U (en) * | 1990-05-11 | 1992-01-27 | ||
US5346316A (en) * | 1992-03-18 | 1994-09-13 | Hitachi, Ltd. | Bearing unit, drainage pump and hydraulic turbine each incorporating the bearing unit |
JP2000314423A (en) * | 1992-03-18 | 2000-11-14 | Hitachi Ltd | Drainage pump and manufacture thereof |
JP2017061999A (en) * | 2015-09-25 | 2017-03-30 | 株式会社荏原製作所 | Sliding bearing device |
Also Published As
Publication number | Publication date |
---|---|
JPS6349086B2 (en) | 1988-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2333397C2 (en) | Submerged centrifugal pump stage | |
US4664595A (en) | Combination of slide members | |
JPS6081517A (en) | Submersible bearing | |
US5722812A (en) | Abrasion resistant centrifugal pump | |
CN105408635B (en) | Vertical shaft pump | |
JP4008390B2 (en) | pump | |
JP3970260B2 (en) | pump | |
US3149574A (en) | Ceramic lined pump | |
WO2024149085A1 (en) | Seawater pump | |
JP2023549910A (en) | Blast furnace raw material charging equipment with improved nitrogen seal structure | |
US2069367A (en) | Rubber bearing | |
JP2018084193A (en) | Vertical shaft pump | |
CA2246188C (en) | Front-removable bearing housing for vertical turbine pump | |
CN106662109B (en) | Vertical shaft pump | |
JPS6073123A (en) | Combined sliding member | |
CN106286316A (en) | The magnetic drive pump that a kind of structure is improved | |
JP6472735B2 (en) | Slide bearing device | |
JPS6084423A (en) | Sliding bearing | |
JP2840190B2 (en) | Magnet driven pump | |
JPH10281300A (en) | Mechanical seal device | |
JP2002303297A (en) | Horizontal shaft type pump | |
JP2020139454A (en) | Slide bearing device and vertical shaft pump | |
RU2187727C2 (en) | Pulse end seal | |
JPH07293556A (en) | Submerged bearing device | |
JP2003194046A (en) | Bearing device and vertical shaft pump |