[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3609742B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP3609742B2
JP3609742B2 JP2001102037A JP2001102037A JP3609742B2 JP 3609742 B2 JP3609742 B2 JP 3609742B2 JP 2001102037 A JP2001102037 A JP 2001102037A JP 2001102037 A JP2001102037 A JP 2001102037A JP 3609742 B2 JP3609742 B2 JP 3609742B2
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
cooling water
chamber
medium chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001102037A
Other languages
Japanese (ja)
Other versions
JP2002298898A (en
Inventor
龍次 畑山
陽 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001102037A priority Critical patent/JP3609742B2/en
Publication of JP2002298898A publication Critical patent/JP2002298898A/en
Application granted granted Critical
Publication of JP3609742B2 publication Critical patent/JP3609742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に燃料電池の端部に熱媒室が設けられた固体高分子形燃料電池の改良に関する。
【0002】
【従来の技術】
固体高分子形燃料電池は、電解質としてフッ素樹脂系イオン交換膜等の固体高分子電解質膜を備え、この電解質膜の一方の面に燃料極、他方の面に空気極がそれぞれ接合されることでセルが形成され、更に燃料極側に燃料ガスの流通する燃料室、空気極側に空気が流通する空気室を配して単位セルとなし、この単位セルを多数重ねて積層体を形成すると共に、両端に端板をそれぞれ当ててボルト等で気密に締め付け一体化したものである。
【0003】
このように構成された固体高分子形燃料電池は、前記燃料室に燃料ガス(炭化水素系原燃料を水素リッチガスに改質した改質ガス)が供給されると共に、空気室には外気から取り込んだ空気が供給され、改質ガス中の水素ガスと空気中の酸素ガスとが電解質膜を介して電気化学反応し電力と水とを生成する。この際、電気化学反応は発熱反応であるため、固体高分子形燃料電池には冷却水が供給されて冷やされる。
【0004】
固体高分子形燃料電池は適温(例えば80℃)で作動するが、端部の単位セルは金属製の端板に接触しているため他の単位セルより温度が低下する傾向がある。単位セルの温度が低下すると、発電性能が低下するのみならず改質ガス中に微量に含まれるCOが電解質膜に付着して被毒される。このため、端部の単位セルにおける空気室と端板との間に熱媒室を設けて端部の単位セルを昇温させるようにした固体高分子形燃料電池が知られている(例えば特開平11−97048号公報)。
【0005】
【発明が解決しようとする課題】
上記従来の固体高分子形燃料電池では、熱媒室に供給する熱媒として例えば改質ガスが用いられているが、この場合改質ガスの一部を使用しているに過ぎず次のような問題点が指摘されていた。
▲1▼ 熱媒室に改質ガスの一部を通すため、端部の単位セルへの熱交換効率が低い。
▲2▼ 熱媒室を通過した改質ガスは、発電に使われることが困難で燃料電池から排出されるため反応効率が低い。
▲3▼ 燃料電池に供給する改質ガスは、通常改質器で改質されたものを直接供給するため温度が高く、燃料電池温度の異常上昇を招き易く寿命が短くなる。
【0006】
そこで、本発明は、熱媒室と端部の単位セルとの間に熱拡散板を設け、熱媒室には改質ガスを全量通過させることで端部の単位セルへの熱交換効率を向上させると共に、通過した改質ガスを各単位セルに供給することで反応効率を高める構成とした固体高分子形燃料電池を提供することを目的とする。又、熱拡散板の内部或は熱媒室に隣接させて冷却水流通路を設けることで、改質ガスの温度を下げて燃料電池温度の異常上昇を防ぐと共に端部の単位セルの昇温を調整することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するための具体的手段として、本発明は、固体高分子電解質膜の一方の面に燃料極、他方の面に空気極を接合してなるセルの燃料極側に燃料ガスの流通する燃料室、空気極側に空気が流通する空気室を配して単位セルとなし、当該単位セルを多数重ねた積層体の前記燃料室が端面となる側に第1の端板、前記空気室が端面となる側に第2の端板をそれぞれ当てて締め付け一体化した固体高分子形燃料電池において、前記第2の端板と当該第2の端板側の端部の単位セルとの間に設けられた熱媒室と、当該熱媒室と前記端部単位セルとの間に設けられた熱拡散板と、を備え、前記熱媒室に前記燃料ガスを全量流すと共に、前記熱媒室通過後の前記燃料ガスを各単位セルの燃料室に供給することを特徴とする固体高分子形燃料電池を要旨とする。
又、前記熱拡散板に冷却水流通路を設けた構成
前記熱媒室と端板との間に冷却水流通路を設けた構成、
前記冷却水流通路には燃料電池から排出された冷却水が流通する構成、
前記冷却水流通路と端板との間に燃料電池から排出された未反応水素ガス流通路を設けた構成、
前記熱媒室と冷却水流通路との間は透水部材で仕切られている構成、
を特徴とするものである。
【0008】
このような構成により、本願発明では、次のような効果を期待することができる。
▲1▼ 熱媒室に全量の改質ガスを通過させ、且つ熱媒室と端部の単位セルとの間に熱伝導性の高い材料(熱拡散板)を介在させることで、端部の単位セルに対する熱交換効率が向上する。
▲2▼ 熱媒室を通過した改質ガスを各単位セルに供給することで、燃料電池の反応効率が向上する。
▲3▼ 熱拡散板の内部或は熱媒室に隣接させて冷却水流通路を設けることで、改質ガスを冷やし燃料電池温度の異常上昇を防ぐことができる。
▲4▼ 熱媒室と冷却水流通路との間に透水部材を介在させることで、改質ガスの加湿も行える。
【0009】
【発明の実施の形態】
次に、本発明に係る固体高分子形燃料電池の実施の形態を添付図面を参照しながら説明する。図1は、第1実施形態を示すもので、1は単位セルであって従来と同様に固体高分子電解質膜の一方の面に燃料極、他方の面に空気極を接合してなるセルと、そのセルの燃料極側に燃料ガスの流通する燃料室と、空気極側に空気が流通する空気室とを配して構成されている。2は積層体であり、前記単位セル1を多数重ね合わせて形成され、この積層体2の両端部に金属製の端板3,4を当て、図示を省略したボルトで締め付け一体化して燃料電池5Aが形成されている。
【0010】
この燃料電池5Aは、一方の端板4とこの端板4側の端部の単位セル1Aとの間に熱媒室6が設けられ、この熱媒室6と単位セル1Aとの間には熱伝導性の高い仕切板である熱拡散板7が介在されている。又、熱媒室6には燃料ガス即ち水素リッチな改質ガスが全量通過すると共に、通過後に全ての単位セルの燃料室にそれぞれ供給されるようにしてある。
【0011】
改質ガスは都市ガス等の原燃料ガスを改質器(図略)で改質した後供給されるが、その温度は120℃程度であり、この改質ガスが前記熱媒室6を通過する際に熱媒室6内を昇温する。この熱媒室6に接して前記熱拡散板7があるため、この熱拡散板7を介して隣接する端部の単位セル1Aに伝熱される。従って、端部の単位セル1Aは短時間で所定温度まで昇温し、且つ発電中の温度低下を防止して所定温度に保持することができる。
【0012】
燃料電池5Aでの発電は、従来と同じく各単位セル1の燃料室に改質ガスが供給されると共に、空気室には空気が供給され、改質ガス中の水素ガスと空気中の酸素ガスとがセル中の電解質膜を介して電気化学反応を起こすことで行われる。
【0013】
発電中、電解質膜は適度に湿潤していることが要求されるため、通常は前記改質ガスを加湿して供給することにより電解質膜の湿潤状態を保持する。又、発電に伴って燃料電池5Aが発熱するため、水タンク(図略)から燃料電池5Aの冷却部(図略)に冷却水を供給し、燃料電池5Aと水タンクとの間で冷却水を循環させることで燃料電池5Aを適正温度に保持するようにしている。
【0014】
前記端板3側においては、この端板3に隣接する端部の単位セル1Bは燃料室が端板3に面しており、その燃料室には前記のように熱媒室6を通過した高温の改質ガスが供給されるため発電中の温度低下が阻止される。これに対し、端板4側の端部の単位セル1Aは空気室が端板4側に対面しており、この空気室には外気から取り込んだ常温の空気が供給されるため冷やされ、発電中に温度低下を来たす。従って、単位セル1Aに付いては前記のような昇温対策が必要になるのである。
【0015】
図2は、燃料電池5Aにおける起動時の温度推移を測定したグラフである。起動前の停止時には燃料電池5Aは常温程度に冷えており、予熱により所定温度になるまでは改質ガスは供給されない。燃料電池5Aが80℃近くまで昇温した時点で熱媒室6に改質ガスが導入されて発電が開始する。この測定結果によると、端板4側の端部の単位セル1Aは、他の部位に位置する単位セルの温度推移とほぼ同じ傾向を示した。各単位セルに温度分布が殆ど生じることがなく、効率良く発電することが判明した。この場合、熱媒室6に全量の改質ガスを通過させ、且つ熱拡散板7が介在することで端部の単位セル1Aの昇温を効率良く行うことができる。
【0016】
図3は、本発明に係る固体高分子形燃料電池の第2実施形態を示すもので、1は単位セルであって固体高分子電解質膜の一方の面に燃料極、他方の面に空気極を接合してなるセルと、そのセルの燃料極側に燃料ガスの流通する燃料室と、空気極側に空気が流通する空気室とを配して構成されている。2は積層体であり、前記単位セル1を多数重ね合わせて形成され、この積層体2の両端部に金属製の端板3,4を当て、図示を省略したボルトで締め付け一体化して燃料電池5Bが形成されている。
【0017】
この燃料電池5Bは、一方の端板4とこの端板4側の端部の単位セル1Aとの間に熱媒室6が設けられ、この熱媒室6と単位セル1Aとの間には熱伝導性の高い仕切板である熱拡散板7が介在され、この熱拡散板7の内部に冷却水流通路7aが設けられている。前記と同様に熱媒室6には水素リッチな改質ガスが全量通過すると共に、通過後に全ての単位セルの燃料室にそれぞれ供給される。
【0018】
この場合も、熱媒室6に全量の改質ガスを通過させ、且つ熱拡散板7が介在することによって端板4側の端部の単位セル1Aの昇温を効率良く行うことができる。熱拡散板7中に冷却水流通路7aを設けた理由は、高温の改質ガスによって熱拡散板7が異常に高温になるのを防止するためである。即ち、冷却水流通路7aに冷却水を通すことで熱拡散板7を冷やし、これにより端部の単位セル1Aの昇温を調整して温度の上がりすぎを防ぐためである。冷却水としては、燃料電池5Bの冷却部から排出される冷却水を用いることができ、熱拡散板7との熱交換で温められた冷却水は水タンクに戻される。用いる冷却水はこれに限定されない。
【0019】
図4は、燃料電池5Bにおける起動時の温度推移を測定したグラフである。この測定結果によると、熱媒室6に全量の改質ガスを通過させ、且つ熱拡散板7が介在することで端部の単位セル1Aを効率良く昇温させることが分かった。更に、冷却水を流通させることにより、発電時の燃料電池5Bの温度を所定温度(約80℃)に保持できることが分かった。
【0020】
図5は、本発明に係る固体高分子形燃料電池の第3実施形態を示すもので、1は単位セルであって固体高分子電解質膜の一方の面に燃料極、他方の面に空気極を接合してなるセルと、そのセルの燃料極側に燃料ガスの流通する燃料室と、空気極側に空気が流通する空気室とを配して構成されている。2は積層体であり、前記単位セル1を多数重ね合わせて形成され、この積層体2の両端部に金属製の端板3,4を当て、図示を省略したボルトで締め付け一体化して燃料電池5Cが形成されている。
【0021】
この燃料電池5Cは、一方の端板4とこの端板4側の端部の単位セル1Aとの間に熱媒室6が設けられ、この熱媒室6と単位セル1Aとの間には熱伝導性の高い仕切板である熱拡散板7が介在され、更に熱媒室6と端板4との間に冷却水流通路8が設けられている。この場合も、熱媒室6には水素リッチな改質ガスが全量通過すると共に、通過後に全ての単位セルの燃料室にそれぞれ供給される。
【0022】
この場合は、熱媒室6に全量の改質ガスを通過させ、且つ熱媒室6と端部の単位セル1Aとの間に熱拡散板7が介在することから、端部の単位セル1Aの昇温を効率良く行うことができる。熱媒室6と端板4との間に冷却水流通路8を設けたのは、冷却水によって熱媒室6を通過する高温の改質ガスを冷やすことで端部の単位セル1Aの温度の上がりすぎを防ぐと共に、燃料電池温度の異常上昇を防ぐためである。又、冷却水は改質ガスから奪った熱で端板4を加温し、その冷えすぎを防ぐことができる。
【0023】
図6は、燃料電池5Cにおける起動時の要部の温度推移を測定したグラフである。この測定結果によると、熱媒室6に全量の改質ガスを通過させ、且つ熱拡散板7が介在することで端部の単位セル1Aを効率良く昇温させ、冷却水によって端部の単位セル1Aの温度の上がりすぎが防止され、燃料電池5Cの温度の異常上昇を防いで適温に保持できることが分かった。又、発電開始後に、冷却水流通路8を通過する冷却水が改質ガスとの熱交換によって水温が上昇する状態が認められた。
【0024】
図7は、本発明に係る固体高分子形燃料電池の第4実施例を示すもので、1は単位セルであって固体高分子電解質膜の一方の面に燃料極、他方の面に空気極を接合してなるセルと、そのセルの燃料極側に燃料ガスの流通する燃料室と、空気極側に空気が流通する空気室とを配して構成されている。2は積層体であり、前記単位セル1を多数重ね合わせて形成され、この積層体2の両端部に金属製の端板3,4を当て、図示を省略したボルトで締め付け一体化して燃料電池5Dが形成されている。
【0025】
この燃料電池5Dは、一方の端板4とこの端板4側の端部の単位セル1Aとの間に熱媒室6が設けられ、この熱媒室6と単位セル1Aとの間には熱伝導性の高い仕切板である熱拡散板7が介在され、熱媒室6の隣り(熱拡散板7とは反対側)に冷却水流通路8を設け、更に冷却水流通路8と端板4との間に未反応水素ガス流通路9を設けた構成にしてある。熱媒室6には水素リッチな改質ガスが全量通過すると共に、通過後に全ての単位セルの燃料室にそれぞれ供給され、前記未反応水素ガス流通路9には燃料電池5Dから排出される未反応水素ガスが通過する。
【0026】
この場合、熱媒室6に全量の改質ガスを通過させ、且つ熱媒室6と端部の単位セル1Aとの間に熱拡散板7が介在することから、端部の単位セル1Aの昇温を効率良く行うことができる。又、冷却水流通路8を設けたことで端部の単位セル1Aの温度の上がりすぎを防止すると共に燃料電池温度の異常上昇を防いで適温に保持することができる。未反応水素ガス流通路9を設けたのは、燃料電池5Dから排出される未反応水素ガスを未反応水素ガス流通路9に通すことで冷却水流通路8を通る冷却水温度を調整するためである。これにより、改質ガスの冷やしすぎを防止すると共に、端板4を暖めてその冷えすぎを防ぐことが可能となる。
【0027】
図8は、燃料電池5Dにおける起動時の温度推移を測定したグラフである。この測定結果によると、熱媒室6に全量の改質ガスを通過させ、且つ熱拡散板7が介在することで端部の単位セル1Aを効率良く昇温させ、又冷却水によって端部の単位セル1Aの温度の上がりすぎを防止すると共に、燃料電池5Dの温度異常上昇を防いで適温に保持できることが分かった。燃料電池5Dに供給される空気は常温であるが、未反応に終わった水素ガスは78℃程度で排出される状態が認められた。
【0028】
図9は、本発明に係る固体高分子形燃料電池の第5実施形態を示すもので、1は単位セルであって固体高分子電解質膜の一方の面に燃料極、他方の面に空気極を接合してなるセルと、そのセルの燃料極側に燃料ガスの流通する燃料室と、空気極側に空気が流通する空気室とを配して構成されている。2は積層体であり、前記単位セル1を多数重ね合わせて形成され、この積層体2の両端部に金属製の端板3,4を当て、図示を省略したボルトで締め付け一体化して燃料電池5Eが形成されている。
【0029】
この燃料電池5Eは、一方の端板4とこの端板4側の端部の単位セル1Aとの間に熱媒室6が設けられ、この熱媒室6と単位セル1Aとの間には熱伝導性の高い仕切板である熱拡散板7が介在され、熱媒室6の隣り(熱拡散板7とは反対側)に冷却水流通路8を設けると共に、これらの間を透水部材10例えば水透過膜或は多孔質板等で仕切り、更に冷却水流通路8と端板4との間に未反応水素ガス流通路9を設けた構成にしてある。熱媒室6には水素リッチな改質ガスが全量通過すると共に、通過後に全ての単位セルの燃料室にそれぞれ供給され、未反応水素ガス流通路9には燃料電池5Eから排出される未反応水素ガスが通過する。
【0030】
この場合、熱媒室6に全量の改質ガスを通過させ、且つ熱媒室6と端部の単位セル1Aとの間に熱拡散板7が介在することから、端部の単位セル1Aの昇温を効率良く行うことができ、又冷却水流通路8を設けたことで端部の単位セル1Aの温度の上がりすぎを防止すると共に、燃料電池温度の異常上昇を防いで適温に保持することができる。未反応水素ガス流通路9を設けたことで冷却水流通路8を通る冷却水の温度調整と、端板4の冷えすぎを防ぐことができる。更に、熱媒室6と冷却水流通路8との間に透水部材10を介在させることで、冷却水流通路8を通る冷却水の一部を熱媒室6に導入して改質ガスを加湿することができる。これにより、従来改質ガスの加湿に用いられていた気液混合器が不要となる。この改質ガスの加湿によって各単位セル内の電解質膜が湿潤状態に保持され、正常な発電がなされる。尚、燃料電池に供給する空気を加湿し、この空気の加湿によって電解質膜を湿潤状態にする場合もある。
【0031】
図10は、燃料電池5Eにおける起動時の温度推移及び改質ガスの湿度を測定したグラフである。この測定結果によると、熱媒室6に全量の改質ガスを通過させ、且つ熱拡散板7が介在することで端部の単位セル1Aを効率良く昇温させ、冷却水によって端部の単位セル1Aの温度の上がりすぎを防止すると共に、燃料電池温度の異常上昇を防いで適温に保持することができる。又、燃料電池5Eに供給される空気は常温であるが、発電開始後は急激に上昇しやがて78℃位でほぼ一定温度となる。改質ガス湿度は、初期の段階では60〜65%Rhの範囲でばらつき不安定であるが、やがて上昇して約85%Rh前後で安定する状態が認められた。
【0032】
【発明の効果】
▲1▼ 本発明の請求項1の固体高分子形燃料電池によれば、熱媒室に改質ガスの全量を通過させ、且つ熱媒室と端部の単位セルとの間に熱伝導性の高い仕切板(熱拡散板)を設けたことにより端部の単位セルの昇温を効率良く行うことができる。
又、熱媒室を通過した改質ガスを各単位セルに供給することで発電効率を高めることができる。
▲2▼ 本発明の請求項2の固体高分子形燃料電池によれば、熱拡散板の内部に冷却水を通すことにより熱拡散板が異常に高温になるのを抑え、端部の単位セルの温度の上がりすぎを防止することができる。
▲3▼ 本発明の請求項3の固体高分子形燃料電池によれば、冷却水によって改質ガスを冷やし、端部の単位セルの温度の上がりすぎを防止すると共に、燃料電池温度の異常上昇を防いで適温に保持することができる。
▲4▼ 本発明の請求項4の固体高分子形燃料電池によれば、冷却水として燃料電池から排出される冷却水を利用することができる。
▲5▼ 本発明の請求項5の固体高分子形燃料電池によれば、燃料電池から排出される未反応水素ガスを通すことで冷却水の温度を調整し、改質ガスの冷やしすぎを防ぐと共に端板を温めて冷えすぎを防止することができる。
▲6▼ 本発明の請求項6の固体高分子形燃料電池によれば、熱媒室と冷却水流通路との間に透水部材を介在させることで熱媒室を通過する改質ガスを加湿することができる。この改質ガスの加湿によって単位セル内の電解質膜を湿潤状態に保持することができる。
【図面の簡単な説明】
【図1】本発明に係る固体高分子形燃料電池の第1実施形態を示す説明図
【図2】第1実施形態での起動時の燃料電池温度推移を示すグラフ図
【図3】本発明に係る固体高分子形燃料電池の第2実施形態を示す説明図
【図4】第1実施形態での起動時の燃料電池温度推移を示すグラフ図
【図5】本発明に係る固体高分子形燃料電池の第3実施形態を示す説明図
【図6】第3実施形態での起動時の燃料電池温度推移を示すグラフ図
【図7】本発明に係る固体高分子形燃料電池の第4実施形態を示す説明図
【図8】第4実施形態での起動時の燃料電池温度推移を示すグラフ図
【図9】本発明に係る固体高分子形燃料電池の第5実施形態を示す説明図
【図10】第5実施形態での起動時の燃料電池温度推移及び改質ガス湿度を示すグラフ図
【符号の説明】
1…単位セル
1A…端部の単位セル
2…積層体
3、4…端板
5A〜5E…燃料電池
6…熱媒室
7…熱拡散板
7a…冷却水流通路
8…冷却水流通路
9…未反応水素ガス流通路
10…透水部材
[0001]
BACKGROUND OF THE INVENTION
The present invention particularly relates to an improvement in a polymer electrolyte fuel cell in which a heat medium chamber is provided at an end of the fuel cell.
[0002]
[Prior art]
A polymer electrolyte fuel cell includes a solid polymer electrolyte membrane such as a fluororesin ion exchange membrane as an electrolyte, and a fuel electrode is joined to one surface of the electrolyte membrane, and an air electrode is joined to the other surface. A cell is formed, and further, a fuel chamber in which fuel gas flows on the fuel electrode side and an air chamber in which air flows on the air electrode side are provided as unit cells, and a plurality of unit cells are stacked to form a laminate. The end plates are respectively attached to both ends and hermetically tightened with bolts or the like to be integrated.
[0003]
In the polymer electrolyte fuel cell configured as described above, a fuel gas (reformed gas obtained by reforming a hydrocarbon-based raw fuel into a hydrogen-rich gas) is supplied to the fuel chamber, and taken into the air chamber from outside air. The air is supplied, and the hydrogen gas in the reformed gas and the oxygen gas in the air undergo an electrochemical reaction through the electrolyte membrane to generate electric power and water. At this time, since the electrochemical reaction is an exothermic reaction, cooling water is supplied to the polymer electrolyte fuel cell to cool it.
[0004]
The polymer electrolyte fuel cell operates at an appropriate temperature (for example, 80 ° C.), but the unit cell at the end tends to be lower in temperature than the other unit cells because it is in contact with the metal end plate. When the temperature of the unit cell is lowered, not only the power generation performance is lowered, but CO contained in a minute amount in the reformed gas adheres to the electrolyte membrane and is poisoned. For this reason, a polymer electrolyte fuel cell is known in which a heating medium chamber is provided between the air chamber and the end plate in the end unit cell so as to raise the temperature of the end unit cell (for example, a special type). (Kaihei 11-97048).
[0005]
[Problems to be solved by the invention]
In the conventional polymer electrolyte fuel cell, for example, a reformed gas is used as a heat medium supplied to the heat medium chamber. In this case, only a part of the reformed gas is used, and the following is performed. The problem was pointed out.
(1) Since part of the reformed gas is passed through the heat medium chamber, the heat exchange efficiency to the unit cell at the end is low.
(2) The reformed gas that has passed through the heat medium chamber is difficult to be used for power generation and is discharged from the fuel cell, so the reaction efficiency is low.
(3) The reformed gas supplied to the fuel cell is usually supplied with the reformed gas directly by the reformer, so that the temperature is high and the fuel cell temperature is likely to rise abnormally, resulting in a short life.
[0006]
Therefore, the present invention provides a heat diffusion plate between the heat medium chamber and the end unit cell, and allows the entire amount of the reformed gas to pass through the heat medium chamber to increase the heat exchange efficiency to the end unit cell. An object of the present invention is to provide a polymer electrolyte fuel cell that is configured to improve the reaction efficiency by supplying the reformed gas that has passed therethrough to each unit cell. In addition, by providing a cooling water flow passage inside the heat diffusion plate or adjacent to the heat medium chamber, the temperature of the reformed gas is lowered to prevent an abnormal rise in the temperature of the fuel cell and the temperature of the unit cell at the end is raised. The purpose is to adjust.
[0007]
[Means for Solving the Problems]
As a specific means for achieving the above object, the present invention provides a fuel gas distribution on the fuel electrode side of a cell formed by joining a fuel electrode to one surface of a solid polymer electrolyte membrane and an air electrode to the other surface. fuel chamber, by disposing the air chamber unit cell and without the air flows to the air electrode side, a first end plate on the side of the fuel chamber of the stack of superposed multiple the unit cell is the end surface of the air chambers at a second end plate solid high polymer fuel cell and integrated tightened against each side the end surfaces, and said second end plate and said second end plate side end unit cell of and Netsunakadachishitsu provided between, together with and a thermal diffusion plate provided between said heating medium chamber and a unit cell of said end portions, supplying the total amount of the fuel gas to the heating medium chamber, wherein solid polymer fuel collector, characterized by supplying the fuel gas after Netsunakadachishitsu pass into the fuel chamber of each unit cell The the gist.
Also, a configuration in which a cooling water flow passage is provided in the heat diffusion plate, a configuration in which a cooling water flow passage is provided between the heat medium chamber and the end plate,
A configuration in which cooling water discharged from the fuel cell circulates in the cooling water flow passage;
A configuration in which an unreacted hydrogen gas flow passage discharged from the fuel cell is provided between the cooling water flow passage and the end plate;
A configuration in which the heat medium chamber and the cooling water flow passage are partitioned by a water permeable member,
It is characterized by.
[0008]
With such a configuration, the following effects can be expected in the present invention.
(1) By passing the entire amount of reformed gas through the heat medium chamber and interposing a material (heat diffusion plate) with high heat conductivity between the heat medium chamber and the end unit cell, The heat exchange efficiency for the unit cell is improved.
(2) The reaction efficiency of the fuel cell is improved by supplying the reformed gas that has passed through the heat medium chamber to each unit cell.
(3) By providing the cooling water flow passage in the heat diffusion plate or adjacent to the heat medium chamber, it is possible to cool the reformed gas and prevent the fuel cell temperature from rising abnormally.
(4) The reformed gas can be humidified by interposing a water-permeable member between the heat medium chamber and the cooling water flow passage.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the polymer electrolyte fuel cell according to the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a first embodiment, wherein 1 is a unit cell, and a cell formed by joining a fuel electrode on one surface of a solid polymer electrolyte membrane and an air electrode on the other surface as in the prior art. A fuel chamber through which fuel gas flows is arranged on the fuel electrode side of the cell, and an air chamber through which air circulates on the air electrode side. Reference numeral 2 denotes a laminated body, which is formed by stacking a large number of the unit cells 1, metal end plates 3 and 4 are applied to both ends of the laminated body 2, and tightened with bolts (not shown) to be integrated into a fuel cell 5A is formed.
[0010]
In the fuel cell 5A, a heat medium chamber 6 is provided between one end plate 4 and a unit cell 1A at the end on the end plate 4 side, and between the heat medium chamber 6 and the unit cell 1A, A thermal diffusion plate 7 that is a partition plate having high thermal conductivity is interposed. Further, the entire amount of fuel gas, that is, hydrogen-rich reformed gas, passes through the heat medium chamber 6 and is supplied to the fuel chambers of all unit cells after the passage.
[0011]
The reformed gas is supplied after reforming the raw fuel gas such as city gas with a reformer (not shown), but the temperature is about 120 ° C., and this reformed gas passes through the heat medium chamber 6. When heating, the temperature inside the heat medium chamber 6 is raised. Since the heat diffusion plate 7 is in contact with the heat medium chamber 6, heat is transferred to the adjacent unit cell 1 </ b> A via the heat diffusion plate 7. Therefore, the unit cell 1A at the end can be heated to a predetermined temperature in a short time, and can be maintained at the predetermined temperature by preventing a temperature drop during power generation.
[0012]
In the power generation in the fuel cell 5A, the reformed gas is supplied to the fuel chamber of each unit cell 1 and air is supplied to the air chamber, and hydrogen gas in the reformed gas and oxygen gas in the air are supplied. Is caused by causing an electrochemical reaction through the electrolyte membrane in the cell.
[0013]
Since the electrolyte membrane is required to be moderately wet during power generation, the wet state of the electrolyte membrane is usually maintained by supplying the reformed gas with humidification. Further, since the fuel cell 5A generates heat as power is generated, the cooling water is supplied from the water tank (not shown) to the cooling part (not shown) of the fuel cell 5A, and the cooling water is supplied between the fuel cell 5A and the water tank. Is circulated to keep the fuel cell 5A at an appropriate temperature.
[0014]
On the end plate 3 side, the unit cell 1B at the end adjacent to the end plate 3 has a fuel chamber facing the end plate 3, and the fuel chamber has passed through the heat medium chamber 6 as described above. Since the high-temperature reformed gas is supplied, temperature drop during power generation is prevented. On the other hand, the unit cell 1A at the end on the end plate 4 side has an air chamber facing the end plate 4 side, and is cooled because normal temperature air taken in from outside air is supplied to the air chamber. The temperature drops inside. Therefore, it is necessary to take measures against the temperature increase as described above for the unit cell 1A.
[0015]
FIG. 2 is a graph obtained by measuring the temperature transition at the start of the fuel cell 5A. When the fuel cell 5A is stopped before starting, the fuel cell 5A is cooled to about room temperature, and the reformed gas is not supplied until it reaches a predetermined temperature by preheating. When the temperature of the fuel cell 5A is raised to nearly 80 ° C., the reformed gas is introduced into the heat medium chamber 6 and power generation is started. According to this measurement result, the unit cell 1A at the end on the end plate 4 side showed almost the same tendency as the temperature transition of the unit cells located in other parts. It has been found that power generation is efficient with almost no temperature distribution in each unit cell. In this case, it is possible to efficiently raise the temperature of the unit cell 1A at the end by allowing the entire amount of the reformed gas to pass through the heat medium chamber 6 and interposing the heat diffusion plate 7.
[0016]
FIG. 3 shows a second embodiment of a polymer electrolyte fuel cell according to the present invention. Reference numeral 1 denotes a unit cell, which is a fuel electrode on one surface of the solid polymer electrolyte membrane and an air electrode on the other surface. , A fuel chamber in which fuel gas circulates on the fuel electrode side of the cell, and an air chamber in which air circulates on the air electrode side. Reference numeral 2 denotes a laminated body, which is formed by stacking a large number of the unit cells 1, metal end plates 3 and 4 are applied to both ends of the laminated body 2, and tightened with bolts (not shown) to be integrated into a fuel cell 5B is formed.
[0017]
In the fuel cell 5B, a heat medium chamber 6 is provided between one end plate 4 and the unit cell 1A at the end on the end plate 4 side, and between the heat medium chamber 6 and the unit cell 1A, A heat diffusion plate 7, which is a partition plate having high thermal conductivity, is interposed, and a cooling water flow passage 7 a is provided inside the heat diffusion plate 7. In the same manner as described above, the entire amount of hydrogen-rich reformed gas passes through the heat medium chamber 6 and is supplied to the fuel chambers of all unit cells after the passage.
[0018]
Also in this case, the temperature of the unit cell 1A at the end on the end plate 4 side can be efficiently increased by allowing the entire amount of the reformed gas to pass through the heat medium chamber 6 and interposing the heat diffusion plate 7. The reason why the cooling water flow passage 7a is provided in the heat diffusion plate 7 is to prevent the heat diffusion plate 7 from being abnormally heated by the high-temperature reformed gas. That is, it is for cooling the thermal diffusion plate 7 by passing cooling water through the cooling water flow passage 7a, thereby adjusting the temperature rise of the unit cell 1A at the end to prevent the temperature from rising excessively. As the cooling water, cooling water discharged from the cooling section of the fuel cell 5B can be used, and the cooling water warmed by heat exchange with the heat diffusion plate 7 is returned to the water tank. The cooling water to be used is not limited to this.
[0019]
FIG. 4 is a graph obtained by measuring the temperature transition at the start of the fuel cell 5B. According to this measurement result, it was found that the entire amount of the reformed gas was allowed to pass through the heat medium chamber 6 and the end unit cell 1A was efficiently heated by the presence of the heat diffusion plate 7. Furthermore, it was found that the temperature of the fuel cell 5B during power generation can be maintained at a predetermined temperature (about 80 ° C.) by circulating the cooling water.
[0020]
FIG. 5 shows a third embodiment of a polymer electrolyte fuel cell according to the present invention. Reference numeral 1 denotes a unit cell, which is a fuel electrode on one surface of the polymer electrolyte membrane and an air electrode on the other surface. , A fuel chamber in which fuel gas circulates on the fuel electrode side of the cell, and an air chamber in which air circulates on the air electrode side. Reference numeral 2 denotes a laminated body, which is formed by stacking a large number of the unit cells 1, metal end plates 3 and 4 are applied to both ends of the laminated body 2, and tightened with bolts (not shown) to be integrated into a fuel cell 5C is formed.
[0021]
In this fuel cell 5C, a heat medium chamber 6 is provided between one end plate 4 and a unit cell 1A at the end on the end plate 4 side, and between this heat medium chamber 6 and the unit cell 1A, A heat diffusion plate 7 which is a partition plate having high thermal conductivity is interposed, and a cooling water flow passage 8 is provided between the heat medium chamber 6 and the end plate 4. Also in this case, the entire amount of hydrogen-rich reformed gas passes through the heat medium chamber 6 and is supplied to the fuel chambers of all the unit cells after the passage.
[0022]
In this case, since the entire amount of the reformed gas is passed through the heat medium chamber 6 and the heat diffusion plate 7 is interposed between the heat medium chamber 6 and the end unit cell 1A, the end unit cell 1A. Can be efficiently performed. The cooling water flow passage 8 is provided between the heat medium chamber 6 and the end plate 4 because the temperature of the end unit cell 1A is reduced by cooling the high-temperature reformed gas passing through the heat medium chamber 6 with the cooling water. This is to prevent the fuel cell temperature from rising excessively and to prevent an abnormal increase in the fuel cell temperature. Further, the cooling water can heat the end plate 4 with the heat taken from the reformed gas, thereby preventing the cooling water from being overcooled.
[0023]
FIG. 6 is a graph obtained by measuring the temperature transition of the main part at the time of startup in the fuel cell 5C. According to this measurement result, the entire amount of the reformed gas is passed through the heat medium chamber 6 and the end unit cell 1A is efficiently heated by the heat diffusion plate 7 being interposed, and the end unit is cooled by cooling water. It has been found that the temperature of the cell 1A is prevented from rising excessively, and that the temperature of the fuel cell 5C can be prevented from rising abnormally and kept at an appropriate temperature. In addition, it was recognized that the temperature of the cooling water passing through the cooling water flow passage 8 was increased by heat exchange with the reformed gas after the start of power generation.
[0024]
FIG. 7 shows a fourth embodiment of the polymer electrolyte fuel cell according to the present invention. Reference numeral 1 denotes a unit cell, which is a fuel electrode on one surface of the polymer electrolyte membrane and an air electrode on the other surface. , A fuel chamber in which fuel gas circulates on the fuel electrode side of the cell, and an air chamber in which air circulates on the air electrode side. Reference numeral 2 denotes a laminated body, which is formed by stacking a large number of the unit cells 1, metal end plates 3 and 4 are applied to both ends of the laminated body 2, and tightened with bolts (not shown) to be integrated into a fuel cell 5D is formed.
[0025]
In the fuel cell 5D, a heat medium chamber 6 is provided between one end plate 4 and the unit cell 1A at the end on the end plate 4 side, and between the heat medium chamber 6 and the unit cell 1A, A heat diffusion plate 7 which is a partition plate having high thermal conductivity is interposed, a cooling water flow passage 8 is provided next to the heat medium chamber 6 (on the side opposite to the heat diffusion plate 7), and the cooling water flow passage 8 and the end plate 4 are further provided. The unreacted hydrogen gas flow passage 9 is provided between the two. A total amount of hydrogen-rich reformed gas passes through the heat medium chamber 6 and is supplied to the fuel chambers of all the unit cells after the passage. The unreacted hydrogen gas flow passages 9 are not discharged from the fuel cell 5D. Reactive hydrogen gas passes through.
[0026]
In this case, since the entire amount of the reformed gas is passed through the heat medium chamber 6 and the heat diffusion plate 7 is interposed between the heat medium chamber 6 and the end unit cell 1A, the end unit cell 1A The temperature can be increased efficiently. Further, by providing the cooling water flow passage 8, it is possible to prevent the temperature of the unit cell 1A at the end from excessively rising and to prevent an abnormal increase in the temperature of the fuel cell and to maintain the temperature appropriately. The unreacted hydrogen gas flow passage 9 is provided in order to adjust the coolant temperature passing through the cooling water flow passage 8 by passing the unreacted hydrogen gas discharged from the fuel cell 5D through the unreacted hydrogen gas flow passage 9. is there. As a result, the reformed gas can be prevented from being overcooled, and the end plate 4 can be warmed to prevent the reformed gas from being overcooled.
[0027]
FIG. 8 is a graph obtained by measuring the temperature transition at the start of the fuel cell 5D. According to this measurement result, the entire amount of the reformed gas is allowed to pass through the heat medium chamber 6 and the end diffusion unit 7 is interposed to efficiently raise the temperature of the end unit cell 1A. It has been found that the unit cell 1A can be kept at an appropriate temperature while preventing the temperature of the unit cell 1A from rising excessively and preventing an abnormal temperature rise of the fuel cell 5D. Although the air supplied to the fuel cell 5D was at room temperature, it was recognized that the unreacted hydrogen gas was discharged at about 78 ° C.
[0028]
FIG. 9 shows a fifth embodiment of a polymer electrolyte fuel cell according to the present invention. Reference numeral 1 denotes a unit cell, which is a fuel electrode on one surface of the solid polymer electrolyte membrane and an air electrode on the other surface. , A fuel chamber in which fuel gas circulates on the fuel electrode side of the cell, and an air chamber in which air circulates on the air electrode side. Reference numeral 2 denotes a laminated body, which is formed by stacking a large number of the unit cells 1, metal end plates 3 and 4 are applied to both ends of the laminated body 2, and tightened with bolts (not shown) to be integrated into a fuel cell 5E is formed.
[0029]
In the fuel cell 5E, a heat medium chamber 6 is provided between one end plate 4 and the unit cell 1A at the end on the end plate 4 side, and between the heat medium chamber 6 and the unit cell 1A, A heat diffusion plate 7 which is a partition plate having high thermal conductivity is interposed, a cooling water flow passage 8 is provided next to the heat medium chamber 6 (on the opposite side to the heat diffusion plate 7), and a water permeable member 10 such as The structure is such that it is partitioned by a water permeable membrane or a porous plate, and an unreacted hydrogen gas flow passage 9 is provided between the cooling water flow passage 8 and the end plate 4. A total amount of hydrogen-rich reformed gas passes through the heat medium chamber 6 and is supplied to the fuel chambers of all the unit cells after passing through. The unreacted hydrogen gas flow passage 9 is unreacted discharged from the fuel cell 5E. Hydrogen gas passes through.
[0030]
In this case, since the entire amount of the reformed gas is passed through the heat medium chamber 6 and the heat diffusion plate 7 is interposed between the heat medium chamber 6 and the end unit cell 1A, the end unit cell 1A The temperature can be increased efficiently, and the cooling water flow passage 8 is provided to prevent the temperature of the unit cell 1A at the end from excessively rising and to keep the fuel cell temperature from rising abnormally and to keep it at an appropriate temperature. Can do. By providing the unreacted hydrogen gas flow passage 9, it is possible to prevent the temperature adjustment of the cooling water passing through the cooling water flow passage 8 and the end plate 4 from being overcooled. Further, by interposing the water-permeable member 10 between the heat medium chamber 6 and the cooling water flow passage 8, a part of the cooling water passing through the cooling water flow passage 8 is introduced into the heat medium chamber 6 to humidify the reformed gas. be able to. Thereby, the gas-liquid mixer which was conventionally used for humidification of reformed gas becomes unnecessary. By humidifying the reformed gas, the electrolyte membrane in each unit cell is maintained in a wet state, and normal power generation is performed. In some cases, the air supplied to the fuel cell is humidified, and the electrolyte membrane is wetted by humidification of the air.
[0031]
FIG. 10 is a graph obtained by measuring the temperature transition at startup and the humidity of the reformed gas in the fuel cell 5E. According to this measurement result, the entire amount of the reformed gas is passed through the heat medium chamber 6 and the end unit cell 1A is efficiently heated by the heat diffusion plate 7 being interposed, and the end unit is cooled by cooling water. While preventing the temperature of the cell 1A from rising excessively, it is possible to keep the fuel cell temperature from rising abnormally and to keep it at an appropriate temperature. In addition, the air supplied to the fuel cell 5E is at room temperature, but rapidly rises after the start of power generation and eventually reaches a substantially constant temperature of about 78 ° C. The reformed gas humidity was unstable and unstable in the range of 60 to 65% Rh in the initial stage, but eventually increased and stabilized at about 85% Rh.
[0032]
【The invention's effect】
(1) According to the polymer electrolyte fuel cell of claim 1 of the present invention, the entire amount of the reformed gas is passed through the heat medium chamber, and the thermal conductivity is provided between the heat medium chamber and the end unit cell. By providing a high partition plate (heat diffusion plate), the temperature of the unit cell at the end can be efficiently increased.
Further, the power generation efficiency can be increased by supplying the reformed gas that has passed through the heat medium chamber to each unit cell.
(2) According to the polymer electrolyte fuel cell of claim 2 of the present invention, it is possible to prevent the heat diffusion plate from becoming abnormally hot by passing cooling water through the inside of the heat diffusion plate. It is possible to prevent the temperature from rising excessively.
(3) According to the polymer electrolyte fuel cell of claim 3 of the present invention, the reformed gas is cooled by the cooling water to prevent the temperature of the unit cell at the end from being excessively raised and the temperature of the fuel cell is abnormally increased. Can be kept at an appropriate temperature.
(4) According to the polymer electrolyte fuel cell of claim 4 of the present invention, the cooling water discharged from the fuel cell can be used as the cooling water.
(5) According to the polymer electrolyte fuel cell of claim 5 of the present invention, the temperature of the cooling water is adjusted by passing the unreacted hydrogen gas discharged from the fuel cell to prevent the reformed gas from being overcooled. At the same time, the end plate can be warmed to prevent overcooling.
(6) According to the polymer electrolyte fuel cell of claim 6 of the present invention, the reformed gas passing through the heat medium chamber is humidified by interposing a water-permeable member between the heat medium chamber and the cooling water flow passage. be able to. By humidifying the reformed gas, the electrolyte membrane in the unit cell can be kept in a wet state.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a first embodiment of a polymer electrolyte fuel cell according to the present invention. FIG. 2 is a graph showing a fuel cell temperature transition at start-up in the first embodiment. Explanatory drawing which shows 2nd Embodiment of the polymer electrolyte fuel cell which concerns on FIG. 4 A graph which shows fuel cell temperature transition at the time of starting in 1st Embodiment FIG. 5 Explanatory drawing which shows 3rd Embodiment of a fuel cell. FIG. 6 is a graph which shows fuel cell temperature transition at the time of starting in 3rd Embodiment. FIG. 7 is 4th Embodiment of the polymer electrolyte fuel cell which concerns on this invention. FIG. 8 is a graph showing the transition of the fuel cell temperature at start-up in the fourth embodiment. FIG. 9 is an explanatory diagram showing the fifth embodiment of the polymer electrolyte fuel cell according to the present invention. FIG. 10 is a graph showing fuel cell temperature transition and reformed gas humidity at start-up in the fifth embodiment. Akira]
DESCRIPTION OF SYMBOLS 1 ... Unit cell 1A ... End unit cell 2 ... Laminated body 3, 4 ... End plate 5A-5E ... Fuel cell 6 ... Heat-medium chamber 7 ... Heat diffusion plate 7a ... Cooling water flow path 8 ... Cooling water flow path 9 ... Not yet Reactive hydrogen gas flow passage 10 ... Permeable member

Claims (6)

固体高分子電解質膜の一方の面に燃料極、他方の面に空気極を接合してなるセルの燃料極側に燃料ガスの流通する燃料室、空気極側に空気が流通する空気室を配して単位セルとなし、当該単位セルを多数重ねた積層体の前記燃料室が端面となる側に第1の端板、前記空気室が端面となる側に第2の端板をそれぞれ当てて締め付け一体化した固体高分子形燃料電池において、
前記第2の端板と当該第2の端板側の端部の単位セルとの間に設けられた熱媒室と、
当該熱媒室と前記端部単位セルとの間に設けられた熱拡散板と、を備え、
前記熱媒室に前記燃料ガスを全量流すと共に、前記熱媒室通過後の前記燃料ガスを各単位セルの燃料室に供給することを特徴とする固体高分子形燃料電池。
A fuel electrode is connected to one side of the solid polymer electrolyte membrane, an air electrode is joined to the other side, and a fuel chamber in which fuel gas flows is arranged on the fuel electrode side of the cell, and an air chamber in which air is circulated on the air electrode side. to the unit cell and without, against first end plate on the side of the fuel chamber of the stack of superposed multiple the unit cell is an end face, said air chamber and the second end plate on the side to be the end face, respectively in the solid high polymer fuel cell was clamped integrated
A heat medium chamber provided between the second end plate and the unit cell at the end on the second end plate side ;
And a thermal diffusion plate provided between said heating medium chamber and a unit cell of said end portion,
With flowing whole amount the fuel gas to the heating medium chamber, a solid polymer fuel cell and supplying the fuel gas after the heating medium chamber passes through the fuel chamber of each unit cell.
請求項1の固体高分子形燃料電池において、前記熱拡散板に冷却水流通路を設けたことを特徴とする固体高分子形燃料電池。2. The polymer electrolyte fuel cell according to claim 1, wherein a cooling water flow passage is provided in the heat diffusion plate. 請求項1の固体高分子形燃料電池において、前記熱媒室と端板との間に冷却水流通路を設けたことを特徴とする固体高分子形燃料電池。2. The polymer electrolyte fuel cell according to claim 1, wherein a cooling water flow passage is provided between the heat medium chamber and the end plate. 請求項2又は3の固体高分子形燃料電池において、前記冷却水流通路には燃料電池から排出された冷却水が流通することを特徴とする固体高分子形燃料電池。4. The polymer electrolyte fuel cell according to claim 2, wherein cooling water discharged from the fuel cell flows through the cooling water flow passage. 請求項2、3又は4の固体高分子形燃料電池において、前記冷却水流通路と端板との間に燃料電池から排出された未反応水素ガス流通路を設けたことを特徴とする固体高分子形燃料電池。5. The solid polymer fuel cell according to claim 2, 3 or 4, wherein an unreacted hydrogen gas flow passage discharged from the fuel cell is provided between the cooling water flow passage and the end plate. Fuel cell. 請求項2,3,4又は5の固体高分子形燃料電池において、前記熱媒室と冷却水流通路との間は透水部材で仕切られていることを特徴とする固体高分子形燃料電池。6. The polymer electrolyte fuel cell according to claim 2, wherein the heat medium chamber and the cooling water flow passage are partitioned by a water permeable member.
JP2001102037A 2001-03-30 2001-03-30 Polymer electrolyte fuel cell Expired - Fee Related JP3609742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001102037A JP3609742B2 (en) 2001-03-30 2001-03-30 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001102037A JP3609742B2 (en) 2001-03-30 2001-03-30 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002298898A JP2002298898A (en) 2002-10-11
JP3609742B2 true JP3609742B2 (en) 2005-01-12

Family

ID=18955281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102037A Expired - Fee Related JP3609742B2 (en) 2001-03-30 2001-03-30 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3609742B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706173B2 (en) * 2004-01-15 2011-06-22 トヨタ自動車株式会社 Fuel cell stack
DE112005000291B4 (en) * 2004-02-12 2019-08-08 Avl List Gmbh Fuel cell stack of medium or high temperature fuel cells
JP4585475B2 (en) * 2006-03-14 2010-11-24 株式会社東芝 Fuel cell unit
US8372555B2 (en) * 2006-06-27 2013-02-12 GM Global Technology Operations LLC Stack end cell heater control methodology
JP5296361B2 (en) * 2007-10-09 2013-09-25 日本特殊陶業株式会社 Solid oxide fuel cell module
JP5254588B2 (en) * 2007-10-12 2013-08-07 日本特殊陶業株式会社 Solid oxide fuel cell module
KR100952838B1 (en) * 2008-04-15 2010-04-15 삼성에스디아이 주식회사 Fuel cell system and control method thereof
US8822095B2 (en) * 2008-11-05 2014-09-02 Belenos Clean Power Holding Ag Fuel cell system comprising a heat exchanger
FR2973953A1 (en) * 2011-04-05 2012-10-12 Commissariat Energie Atomique FUEL CELL WITH REDUCED SIZE
CN108155399A (en) * 2017-12-29 2018-06-12 上海神力科技有限公司 A kind of fuel cell pile with insulation construction

Also Published As

Publication number Publication date
JP2002298898A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
US7722996B2 (en) Polymer electrolyte fuel cell system and operation method thereof
JP4741643B2 (en) Fuel cell stack
US7976991B2 (en) Relative humidity control for a fuel cell
KR101246524B1 (en) Polymer electrolyte type fuel cell generation system
JP2004039357A (en) Solid polymer fuel cell
JP2002367641A (en) Fuel cell and driving method of the same
JP3609742B2 (en) Polymer electrolyte fuel cell
KR100554050B1 (en) Fuel cell and fuel cell system
JP3839978B2 (en) Polymer electrolyte fuel cell system
JP2002170584A (en) Solid polymer type fuel battery
JP2000277128A (en) Solid polymer type fuel cell
JP3443276B2 (en) Fuel cell system
JPH08111230A (en) Operating method for solid high polymer type fuel cell
JP2010129482A (en) Fuel cell separator, fuel cell stack, and fuel cell system
JP4665353B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JPH0935737A (en) Solid polymer electrolyte fuel cell
US20100178577A1 (en) Fuel cell system
JP2004185938A (en) Fuel cell and fuel cell system
JP2008524812A (en) Passive micro coolant loop for electrochemical fuel cells
JP4034804B2 (en) Polymer electrolyte fuel cell power generation system
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device
JP3963368B2 (en) Humidifier for fuel cell and heating method thereof
JP2006147506A (en) Fuel cell stack
JP4222823B2 (en) Fuel cell
JP2006210334A5 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees