JP3699761B2 - 落射蛍光顕微鏡 - Google Patents
落射蛍光顕微鏡 Download PDFInfo
- Publication number
- JP3699761B2 JP3699761B2 JP33896395A JP33896395A JP3699761B2 JP 3699761 B2 JP3699761 B2 JP 3699761B2 JP 33896395 A JP33896395 A JP 33896395A JP 33896395 A JP33896395 A JP 33896395A JP 3699761 B2 JP3699761 B2 JP 3699761B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- optical system
- observation
- wavelength region
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 claims description 80
- 238000002834 transmittance Methods 0.000 claims description 66
- 238000005286 illumination Methods 0.000 claims description 51
- 230000003595 spectral effect Effects 0.000 claims description 33
- 230000005540 biological transmission Effects 0.000 claims description 27
- 210000001747 pupil Anatomy 0.000 claims description 27
- 238000002073 fluorescence micrograph Methods 0.000 claims description 22
- 239000012788 optical film Substances 0.000 claims description 2
- 230000005284 excitation Effects 0.000 description 37
- 238000010586 diagram Methods 0.000 description 28
- 238000000034 method Methods 0.000 description 22
- 238000010521 absorption reaction Methods 0.000 description 19
- 239000010408 film Substances 0.000 description 12
- 238000003384 imaging method Methods 0.000 description 11
- 239000007850 fluorescent dye Substances 0.000 description 5
- 238000000386 microscopy Methods 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 238000004611 spectroscopical analysis Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 101000717962 Bos taurus Aldehyde dehydrogenase, dimeric NADP-preferring Proteins 0.000 description 1
- 235000014548 Rubus moluccanus Nutrition 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010865 video microscopy Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/06—Means for illuminating specimens
- G02B21/08—Condensers
- G02B21/082—Condensers for incident illumination only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/16—Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microscoopes, Condenser (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
【発明の属する技術分野】
本発明は、医学、生物学などの分野において、細胞や組織などの状態を観察する際に利用される落射蛍光顕微鏡に係わり、特に細胞や組織の輪郭を微分干渉観察法または変調コントラスト(ホフマンモジュレーションコントラスト)顕微鏡等による瞳変調検鏡法で観察しながら、同時に落射蛍光観察法により物質等の位置を検出する落射蛍光顕微鏡に関する。
【0002】
【従来の技術】
(第1の従来の技術)
一般に蛍光顕微鏡は、医学および生物学をはじめ、その他の分野においても、生物組織や細胞上で蛍光標識を施した蛋白や遺伝子等を検出する目的で広く用いられている。特に近年では、微分干渉観察法により細胞や組織の輪郭を検出しながら、同時に落射蛍光観察法により蛍光標識を施した蛋白や遺伝子を検出し、それらが細胞や組織のどこに位置するのかを調べることが可能になりつつある。
【0003】
しかしながら、微分干渉観察と落射蛍光観察を同時に行なう場合、観察光学系の中にアナライザ(偏光板)を設ける必要があり、このアナライザを透過することによる光量損失が大きくなる。特に蛍光像は微弱な光であるため問題になる。したがって、必要な蛍光を得るために強力な励起光を標本に照射する必要がある。しかしこの場合、蛍光褪色が早くなるばかりか、生きた標本の場合には標本に対するダメージも大きくなるという欠点がある。
【0004】
以上のような問題を解決するために、“OPTICAL MICROSCOPY FOR BIOLOGY”(Proceeding of The International Conference on Video Microscopy Held in Chapel Hill,North Carolina June 4−7,1989:A JOHN WILEY & SONS,INC,PUBLICATION出版:Brian Herman,Ken Jacobson著)の513ページ〜522ページには、ダイクロイックミラーの偏光と波長に依存する透過率特性を利用した、微分干渉観察と落射蛍光観察の同時観察が可能な顕微鏡の構成が開示されている。この構成によれば、ダイクロイックミラーはある特定の波長領域にのみアナライザ(偏光板)の機能を有することになる。そして、前記特定の波長より長波長の領域では透過率が高いので、その波長領域の蛍光像は暗くならず、高い効率で微分干渉観察と落射蛍光観察を同時に行なうことが可能になる。
【0005】
(第2の従来の技術)
近年では、変調コントラスト顕微鏡等を用いた瞳変調検鏡法により細胞や組織の状態を検出しながら、同時に落射蛍光観察法により蛍光標識を施した蛋白や遺伝子を検出し、それらが細胞や組織のどこに位置するのか、さらにはその動態を調べることが可能になりつつある。
【0006】
図12の(a)は、特開昭51−128548号公報に開示されている、一般の顕微鏡にモジュレーションコントラスト観察のための要素を付加した構成を示す図である。図12の(a)に示すように、対物レンズ103の射出瞳面にモジュレーター102が配置されている。このモジュレーター102は、図12の(b)に示すように透過率が3段階に異なる領域を有するフィルターである。このフィルターにおいて、108は光をほとんど通さない暗黒部分(D)、109は透過率が約15%の灰色部分(G)、さらに110は光を全部通す領域であり明るい部分(B)になっている。
【0007】
また、コンデンサー105の前側焦点面には、スリット106が配置されている。このスリット106の片側に付加されているP1 とその下に配置されているP2 は各々偏光板であり、偏光板P2 を回転させることにより、スリット106を透過する光量を制御できる。また、モジュレーター102の置かれている対物レンズ103の射出瞳面と、スリット106の置かれているコンデンサー105の前側焦点面は、互いに共役関係にあるので、スリット106の像はモジュレーター102の面に形成される。
【0008】
そして、位相差顕微鏡のリングスリットをフェーズプレートのリングに合わせる調整と同様に、オペレータが事前に望遠鏡を用いて対物レンズ103の射出瞳面のモジュレーター102を見ながら、スリット像をモジュレーター102の上記灰色部分(G)109に合わせておく。また、モジュレーター102とスリット106は、偏斜照明系の如く偏芯した位置関係で配置されている。
【0009】
図13は、透明な位相物体を透過した光がモジュレーターを介することにより、コントラストのついた像を形成する過程を示す図である。この原理は、R.HoffmanとL.Grossにより、1975年に発表されたものである。なお図13では、説明の都合上スリット117とモジュレーター112を光軸aの中心に配置させている。
【0010】
以下、透明な位相分布をもった試料115が、図13に示すようなプリズムの形状を成しているものとする。スリット117を出てコンデンサー116で平行になった光線が、下側からこのプリズムに入射すると、図中左側の傾斜部分を通過する光線は入射光線より左側に、また右側の傾斜部分を通過する光線は入射光線より右側に各々曲がる。また、前記プリズムの下面と上面が平行部分である中央を通過する光線は、曲がらずにそのまま直進する。
【0011】
これらの光線は、対物レンズ113を通過後、モジュレーター112に入射し、図中左側の光はモジュレーター112の暗黒部(D)121を通り強度が弱められて暗い光となり、対物レンズ113の結像位置124に達し中間像をつくる。また、中央部を通ったものはモジュレーター112の灰色部(G)122を通り、少し強度が減った光として中間像をつくる。そして右側の光は、モジュレーター112の明るい部分(B)123を通り、明るさを弱められることなく中間像をつくる。このようにして、透明なプリズム状の位相分布をもった試料115の像は、傾きや厚さの変化に応じて暗黒の差がついた、目に見える像111に形成される。以上がホフマンモジュレーションコントラスト観察の原理である。
【0012】
次に、前述した変調コントラスト顕微鏡に落射蛍光顕微鏡を組合せた従来の複合検鏡顕微鏡について説明する。
図14は、従来の複合検鏡顕微鏡の構成を示す図である。透過光源131から発せられた光はミラー134により折り返され、上記スリット106と同様のスリット136を通り、コンデンサー137により試料138に導かれる。試料138を透過した光は対物レンズ139により集められ、上記モジュレーター102,112と同様のモジュレーター140を通る。そして落射蛍光用のダイクロイックミラー141および吸収フィルター142を透過し、結像レンズ143により結像され、接眼レンズ145に導かれる。以上が、変調コントラスト法による照明および観察光路である。
【0013】
またこれと同時に、以下の落射蛍光用光路が形成される。落射光源146から発せられた光は、コレクターレンズ147等を介して励起フィルター151に導かれる。励起フィルター151を通過した励過光は、ダイクロイックミラー141で反射され、モジュレーター140、対物レンズ139を通り、試料138に照射される。
【0014】
試料138から発光した蛍光は、上述した変調コントラスト法による像と同様に対物レンズ139により集められ、モジュレーター140を通る。そしてダイクロイックミラー141および吸収フィルター142を透過し、結像レンズ143により結像された後接眼レンズ145に導かれる。
【0015】
上記のように形成された二つの光路、すなわち変調コントラスト法による光路と落射蛍光用光路を同時に用いることで、変調コントラスト法と落射蛍光観察法による二つの像が接眼レンズ145において同時に重なり、観察可能になる。
【0016】
【発明が解決しようとする課題】
(第1の従来の技術の問題点)
上述したような第1の従来の技術によれば、高い効率で微分干渉観察と落射蛍光観察を同時に行なえるようになった。しかし、バンドパスフィルターを介した微分干渉観察用の波長領域を、ダイクロイックミラーや吸収フィルターで透過させる構成を成している。そのため、励起波長と蛍光波長とが近い蛍光色素の場合、上述したような構成であると励起光が観察光学系に混入しやすくなる。このため、蛍光像のコントラストすなわちバックグラウンドと蛍光の強度比が著しく低下してしまう、という欠点がある。
【0017】
(第2の従来の技術の問題点)
一方、上述したような第2の従来の技術によれば、変調コントラスト顕微鏡に落射蛍光顕微鏡を組み合わせ、細胞や組織の状態を検出しながら蛍光標識を施した蛋白や遺伝子等を検出し、その所在や動態を調べることができる。
【0018】
しかし、観察光学系中にモジュレーター等の光学部材が介存しているため、特に落射蛍光観察においては蛍光像の明るさが致命的に低下してしまう。また、変調コントラスト顕微鏡等の瞳変調検鏡法で観察される細胞や組織は、一般に白色の背景色を有しているので、同時に観察される蛍光が同系色であると細胞や組織の像と蛍光像とを分離することが困難である、という欠点がある。
【0019】
本発明の目的は、下記の落射蛍光顕微鏡を提供することにある。
(a) 簡易な構成により、効率の高い微分干渉観察と落射蛍光観察の同時観察を可能にするとともに、コントラストの高い蛍光像を得ることができる落射蛍光顕微鏡。
(b) 効率の高い(明るい蛍光像が得られる)瞳変調検鏡法と落射蛍光観察の複合検鏡を可能にするとともに、瞳変調検鏡法による像と落射蛍光像の分離能を高くできる落射蛍光顕微鏡。
【0020】
【課題を解決するための手段】
上記課題を解決し目的を達成するために、本発明の落射蛍光顕微鏡は以下の如く構成されている。
(1)本発明の落射蛍光顕微鏡は、透過照明光学系に設けられ、照明光を透過するためのバンドパスフィルタ、ポラライザー、及び第1のウォラストンプリズムと、標本より対物レンズ側の観察光学系に設けられ、前記バンドパスフィルタ、前記ポラライザー、及び前記第1のウォラストンプリズムと組み合わせて観察するための第2のウォラストンプリズムと、前記標本より前記対物レンズ側の前記観察光学系に設けられ、前記バンドパスフィルタ、前記ポラライザー、及び前記第1のウォラストンプリズムと組み合わせて観察するためのダイクロイックミラーであり、前記バンドパスフィルタ、前記ポラライザー、及び前記第1のウォラストンプリズムを透過した波長の光を透過または反射するダイクロイックミラーと、前記観察光学系の光路中に前記ダイクロイックミラーを介して接続された落射蛍光照明光学系と、を備えた落射蛍光顕微鏡において、前記ダイクロイックミラーには、分光透過率特性が、前記バンドパスフィルタのピーク波長領域よりも短い波長領域で立ち下がるS偏光と、前記バンドパスフィルタのピーク波長領域よりも長い波長領域で立ち下がるP偏光となる光学手段が形成され、前記バンドパスフィルタは、前記落射蛍光照明光学系により励起された前記標本の蛍光像のピーク波長よりも長い波長領域をピーク波長とする分光透過率特性を有し、前記P偏光と前記S偏光の立ち下がり領域の間の波長領域の波長の光を透過し、前記落射蛍光照明光学系による前記標本の蛍光像と、前記バンドパスフィルタの透過波長領域で、かつ、前記蛍光像よりも長波長の波長領域における、前記ポラライザー及び前記第1のウォラストンプリズムと前記第2のウォラストンプリズム及び前記光学手段とによる微分干渉像と、を同時に観察するよう構成されている。
(2)本発明の落射蛍光顕微鏡は上記(1)に記載の顕微鏡であって、かつ前記光学手段は、前記ダイクロイックミラーの少なくとも1面に形成された光学膜である。
(3)本発明の落射蛍光顕微鏡は、透過照明光学系に設けられ、照明光を透過するためのバンドパスフィルタ及びホフマンモジュレーションコントラスト観察用のスリットと、標本より対物レンズ側の観察光学系に設けられ、前記バンドパスフィルタ及び前記スリットと組み合わせて観察するためのホフマンモジュレーションコントラスト観察用のモジュレーターと、前記標本より前記対物レンズ側の前記観察光学系に設けられ、前記バンドパスフィルタ及び前記スリットと組み合わせて観察するためのダイクロイックミラーであり、前記バンドパスフィルタ及び前記スリットを透過した波長の光を透過または反射するダイクロイックミラーと、前記観察光学系の光路中に前記ダイクロイックミラーを介して接続された落射蛍光照明光学系と、を備えた落射蛍光顕微鏡において、前記モジュレーターは、前記標本からの蛍光波長を透過すると共に、暗黒部と灰色部を有し、前記暗黒部と前記灰色部の各々の透過率が0近傍になる波長の間の波長領域に前記バンドパスフィルタのピーク波長領域が位置し、前記バンドパスフィルタは、前記落射蛍光照明光学系により励起された前記標本の蛍光像のピーク波長よりも長い波長領域をピーク波長とする分光透過率特性を有し、前記モジュレーターの前記暗黒部と前記灰色部の各々の透過率が0近傍になる波長の間の波長領域の波長の光を透過し、前記落射蛍光照明光学系による前記標本の蛍光像と、前記バンドパスフィルタの透過波長領域で、かつ、前記蛍光像よりも長波長の波長領域における、前記スリット及び前記モジュレーターによる瞳変調像と、を同時に観察する。
(4)本発明の落射蛍光顕微鏡は、透過照明光学系に設けられ、照明光を透過するためのバンドパスフィルタ及び位相差用スリットと、標本より対物レンズ側の観察光学系に設けられ、前記バンドパスフィルタ及び前記位相差用スリットと組み合わせて観察するための位相差用モジュレーターと、前記標本より前記対物レンズ側の前記観察光学系に設けられ、前記バンドパスフィルタ及び前記位相差用スリットと組み合わせて観察するためのダイクロイックミラーであり、前記バンドパスフィルタ及び前記位相差用スリットを透過した波長の光を透過または反射するダイクロイックミラーと、前記観察光学系の光路中に前記 ダイクロイックミラーを介して接続された落射蛍光照明光学系と、を備えた落射蛍光顕微鏡において、前記位相差用モジュレーターは、前記標本からの蛍光波長を透過すると共に、前記蛍光波長よりも長い波長側に、透過率が低下した低透過率波長帯域を有し、前記バンドパスフィルタは、前記落射蛍光照明光学系により励起された前記標本の蛍光像のピーク波長よりも長い波長領域をピーク波長とする分光透過率特性を有し、前記位相差用モジュレーターの前記低透過率波長帯域の波長の光を透過し、前記落射蛍光照明光学系による前記標本の蛍光像と、前記バンドパスフィルタの透過波長領域で、かつ、前記蛍光像よりも長波長の波長領域における、前記位相差用スリット及び前記位相差用モジュレーターによる位相差像と、を同時に観察する。
【0021】
上記手段を講じた結果、それぞれ次のような作用が生じる。
(1)本発明の落射蛍光顕微鏡によれば、透過照明光学系に設けられ透過光を変調するための第1の光学的変調部材は、蛍光波長よりも長波長側に透過率のピークを有し、観察光学系に設けられる第2の光学的変調部材は、前記第1の光学的変調部材を透過した波長のみを選択的に変調するようにしたので、蛍光波長領域は効率良く前記第2の光学的変調部材を透過でき、蛍光像は暗くならない。よって、非常に高効率な同時観察が可能になる。また、励起光が蛍光像に混入せずコントラストの高い蛍光像が得られる。本発明は、特に励起波長と蛍光波長が近い蛍光色素を使用する観察に有効に活用できる。
(2)本発明の落射蛍光顕微鏡によれば、前記透過照明光学系及び前記観察光学系は微分干渉観察法に基づく光学系であるので、蛍光像と微分干渉観察による像との成す色の差を明瞭に観察でき、非常に高効率な微分干渉観察と落射蛍光の同時観察が可能になる。
(3)本発明の落射蛍光顕微鏡によれば、前記透過照明光学系及び前記観察光学系は瞳変調検鏡法に基づく光学系であるので、蛍光像と瞳変調検鏡法による像との成す色の差を明瞭に観察でき、非常に高効率な瞳変調検鏡と落射蛍光の同時観察が可能になる。
【0022】
【発明の実施の形態】
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る落射蛍光顕微鏡の構成を示す図である。図1に示す顕微鏡は、微分干渉観察法と落射蛍光観察法を同時に行なえるものである。
【0023】
まず、図1における微分干渉観察に係る部分について説明する。図1において1は透過用光源であり、この透過用光源1から発せられた光はバンドパスフィルター2で特定波長のみが透過し、ポラライザー3に入射する。なお、バンドパスフィルター2の分光透過率特性については後述する。
【0024】
そしてポラライザー3から出射した直線偏光は、ウォラストンプリズム(複屈折素子)4を通過することで互いに直交する方向に振動する二つの直線偏光に分かれる。これらはコンデンサーレンズ5で集光し、標本6上を横ずれ(シャー)して進む。これら二つの光線は対物レンズ7を透過し、第2のウォラストンプリズム8と後述するダイクロイックミラー12のアナライザー機能により干渉する。それら二つの波面による干渉像は、標本6の位相変化を微分したものが、明暗または色のコントラストの差として結像レンズ9を介して観察される。
【0025】
次に、図1における落射蛍光観察に係る部分について説明する。図1において10は超高圧水銀灯等の励起光源であり、この励起光源10から発せられた発光波長のうち、標本6を励起するのに必要な波長のみが励起フィルター11を透過する。励起フィルター11を透過した波長はダイクロイックミラー12で選択的に反射する。なお、ダイクロイックミラー12には後述するような分光透過率特性を有するコーティングを施してあり、特定される波長領域より長い波長を透過するものである。そして、ダイクロイックミラー12で反射した励起光は、ウォラストンプリズム8を通り対物レンズ7により標本6へ照射される。
【0026】
これにより標本6の蛍光色素に染色されている部分が励起され、励起光より長い波長の蛍光を発し、その発した蛍光が対物レンズ7により集められる。そしてウォラストンプリズム8を介してダイクロイックミラー12を透過する。ダイクロイックミラー12を透過した蛍光は、特定される波長領域より長い波長の蛍光像のみを透過する吸収フィルター13を透過した後、結像レンズ結像レンズ9に導かれ、観察される。
【0027】
図2は、上記した励起フィルター11、ダイクロイックミラー12、吸収フィルター13およびバンドパスフィルター2の分光透過率特性を示す図である。なお、励起フィルター11と吸収フィルター13の分光透過率特性は、従来の落射蛍光顕微鏡と同様一般的なものである。そして、ダイクロイックミラー12には、励起光を反射し蛍光を透過する分光透過率Tが立上がる波長領域TU においては、偏光に関せず分光透過率Tが急激に上昇し、分光透過率Tが立下がる波長領域TD においては、P偏光の方がS偏光よりも長波長側で立下がるようなコーティングが施してある。
【0028】
ここで図2に示すように、バンドパスフィルター2の分光透過率特性のピークをダイクロイックミラー12のP偏光とS偏光の立下がり領域の間に設定すると、この波長領域においてダイクロイックミラー12のP偏光は透過し、S偏光は透過しない。すなわち、この波長領域で微分干渉観察を行なうよう透過照明系にバンドパスフィルター2を配置することにより、ダイクロイックミラー12が偏光板としての機能を有することになり、このダイクロイックミラー12を前述の微分干渉観察のためのアナライザーとして用いることができる。一方、蛍光波長領域Dは、効率良くダイクロイックミラー12および吸収フィルター13を透過できるので、蛍光像は暗くならない。よって、非常に高効率な微分干渉と落射蛍光の同時観察が可能になる。
【0029】
またさらに、ダイクロイックミラー12の立上がり波長領域TU と吸収フィルター13の立上がり波長領域では、偏光依存性がなくシャープな透過率の立上がりを成しているので、励起光がダイクロイックミラー12や吸収フィルター13で完全に遮断され蛍光像に混入せず、コントラストの高い蛍光像が得られる。これは、特に励起波長と蛍光波長が近い蛍光色素を使用する観察に有効である。
【0030】
(第2の実施の形態)
図3の(a)および(b)は、本発明の第2の実施の形態に係るダイクロイックミラー12の分光透過率特性を示す図である。本第2の実施の形態では、ダイクロイックミラー12の裏面(透過用光源1および励起光源10側)、表面(結像レンズ9側)にそれぞれ図3の(a),(b)に示すような分光透過率特性を有するコーティングを施す。そしてこれらの組合せにより、図2に示したような分光透過率特性を成すようにしている。これにより、上記第1の実施の形態に示したものと比べて、コーティングに係る設計が簡易に行なえるという利点が生じる。
【0031】
(第3の実施の形態)
図4は、本発明の第3の実施の形態に係る落射蛍光顕微鏡の構成を示す図である。図4に示す顕微鏡は、瞳変調検鏡法であるホフマンモジュレーションコントラスト観察法と落射蛍光観察法とを同時に行なえるものである。
【0032】
まず、図4におけるホフマンモジュレーションコントラスト観察に係る部分について説明する。図4において21は透過用光源であり、この透過用光源21は例えばハロゲンランプからなる。透過用光源21から発光した照明光はコレクタレンズ22により進められ、視野絞り23を介し折り返しミラー24により反射される。そして窓レンズ25を通りバンドパスフィルター26で特定波長のみ透過し、コンデンサーレンズ28の前側焦点面位置にあるスリット27に入射する。なお、バンドパスフィルター26の分光透過率特性については後述する。
【0033】
スリット27を出た光は、コンデンサーレンズ28により集光して標本29を照明する。標本29を透過した光は対物レンズ30により集められ、対物レンズ30の射出瞳面にある三つの異なる波長特性(後述する)を有するモジュレーター31を透過する。そして、ダイクロイックミラー32および吸収フィルター33を透過した後、結像レンズ34およびプリズム35を介して接眼レンズ36に導かれ、上記第2の従来の技術に述べた原理に基づいた像が観察される。
【0034】
次に、図4における落射蛍光観察に係る部分について説明する。図4において37は超高圧水銀灯等の励起光源であり、この励起光源37から発せされた光はコレクターレンズ38により集められ、開口絞り39、視野絞り40および投影レンズ41を介して励起フィルター42に導かれる。そして励起フィルター42で、標本29を励起するのに必要な波長のみを透過する。励起フィルター42を透過した波長はダイクロイックミラー32で選択的に反射する。なお、ダイクロイックミラー32は、特定される波長領域より長い波長を透過するものである。そして、ダイクロイックミラー32で反射した励起光は、モジュレーター31を通り対物レンズ30により標本29へ照射される。
【0035】
これにより標本29の蛍光色素に染色されている部分が励起され、励起光より長い波長の蛍光を発し、その発した蛍光が対物レンズ30により集められる。そしてモジュレーター31を介してダイクロイックミラー32を透過する。ダイクロイックミラー32を透過した蛍光は、特定される波長領域より長い波長の蛍光像のみを透過する吸収フィルター33を透過した後、結像レンズ34およびプリズム35を介して接眼レンズ36に導かれ、観察される。
【0036】
図5は、上記した励起フィルター42、ダイクロイックミラー32、吸収フィルター33、バンドパスフィルター26およびモジュレーター31の分光透過率特性を示す図である。なお、励起フィルター42、ダイクロイックミラー32および吸収フィルター33の分光透過率特性は、従来の落射蛍光顕微鏡と同様一般的なものである。
【0037】
図6は、モジュレーター31の構成を示す図である。図6に示すようにモジュレーター31は三つの部分から構成されており、AおよびBで示す部分は図5に示すように透過率Tが一定の分光波長から、各々比較的緩やかな傾斜を成して長い波長側へ向かって減少する透過率特性を有している。またCは、図5には示さないが全ての波長に対し100%近い透過率を有している。
【0038】
ここで、バンドパスフィルター26の分光透過率特性のピークを、図5に示すようにモジュレーター31におけるAの透過率とBの透過率とが0になる間隔付近に設定する。このような波長領域においては、モジュレーター31のAはほとんど透過せず、Bは数十%の透過率になるが、Cは100%近く透過する。よって、これらA、B、Cはそれぞれ図12の(b)に示したホフマンモジュレーションコントラスト観察に必要なモジュレーターの暗黒部(D)108、灰色部(G)109、明るい部分(B)110に対応することになる。これにより、バンドパスフィルター26の透過波長領域においては、ホフマンモジュレーションコントラスト観察の効果が得られることになる。
【0039】
一方、モジュレーター31は、蛍光観察に必要な波長領域、すなわち図5に示すような励起フィルター42が100%の透過率を有する領域と発光する蛍光の波長領域Dとにおいて高い透過率を有している。このように、蛍光観察には何ら影響を与えることがないので、蛍光像も暗くなることはない。よって本第3の実施の形態によれば、蛍光観察においても損失のない非常に高効率なホフマンモジュレーションコントラストと落射蛍光の同時観察が可能になる。
【0040】
(第4の実施の形態)
図7は、本発明の第4の実施の形態に係る落射蛍光顕微鏡の構成を示す図である。なお図7において図4と同一な部分には同一符号を付し、説明を省略する。図7に示す顕微鏡は上記第3の実施の形態と同様、ホフマンモジュレーションコントラスト観察法と落射蛍光観察法を同時に行なえるものである。
【0041】
上記第3の実施の形態では図4に示したように、ホフマンモジュレーションコントラスト観察に必要なスリット27およびモジュレーター31は、それぞれコンデンサーレンズ28の前側焦点面および対物レンズ30の射出瞳面に配置されるのが一般的である。しかしこの二つ位置は、一般的に複数枚で構成されたレンズ群の間に存在することが多く、スペース的な余裕が少ない。また、スリット27およびモジュレーター31を、構成上正確な位置に配置できず、光学性能上問題とならない範囲で光軸方向へずらして配置される場合もある。さらに、モジュレーター31は対物レンズ30のレンズ群中のレンズ面にコーティングされている場合もあり、特性を変更する場合は対物レンズごと変更しなければならず、コーティングの技術も困難である。
【0042】
本第4の実施の形態では、図7に示すように瞳投影レンズ51およびリレーレンズ52を用いることで、対物レンズ30の射出瞳面と光学的に共役な位置を観察光路中に作りだすことができる。光学的に共役であるため、モジュレーター31を投影された瞳位置に配置することでも、ホフマンモジュレーションコントラスト観察を行なうことができる。また、照明側のスリット27もコンデンサーレンズ28の前側焦点面と光学的に共役な位置に置き換えることができる。
【0043】
図7は、前述したように光学的に共役な位置にスリット27およびモジュレーター31を置き換えた構成を示している。このような構成であれば、スリット27およびモジュレーター31をスペース的に余裕のある位置に配置可能になるので、各々を交換可能な構成を成すことができる。よって、図5に示したようなモジュレーター31の分光透過率特性を変更したものと交換することで、試料の特性に合わせてバンドパスフィルター26の透過波長領域に対する透過率を変え、ホフマンモジュレーションコントラスト観察の効果を調整することが可能になる。
【0044】
また、落射蛍光観察との同時観察に関しては、上記第3の実施の形態と同様、高効率なホフマンモジュレーションコントラストと落射蛍光の同時観察が可能になる。
【0045】
(第5の実施の形態)
図8は、本発明の第5の実施の形態に係る落射蛍光顕微鏡の構成を示す図である。なお、図8において図4と同一な部分には同一符号を付し、説明を省略する。図8に示す顕微鏡は上記第3の実施の形態におけるホフマンモジュレーションコントラスト観察法を瞳変調検鏡法である位相差観察法に置き換えたものであり、位相差観察法と落射蛍光観察法を同時に行なえるものである。よって、基本的な光学的構成等は上記第3の実施の形態と同様であるので、位相差観察のポイントとなるスリット61およびモジュレーター62を中心に説明する。
【0046】
図9の(a),(b)は、それぞれ図8において対物レンズ30の射出瞳面に置かれる位相差用モジュレーター62と、コンデンサーレンズ28の前側焦点面に置かれる位相差用スリット61とを示す図である。図9の(a)における91はモジュレーター62の位相膜部であり、図9の(b)における92はスリット61の開口部である。
【0047】
なお、位相差観察の原理は公知の通りであるが、以下に簡単に説明する。スリット61を通過しコンデンサーレンズ28により試料29に平面波が入射する。ここで試料29がなければ、開口部92の像は対物レンズ30によりモジュレーター62の位相膜部91の中に入るように結像される。試料29により回折された回折光は、位相膜部91の外を通り、回折されない0次の回折光のみが位相膜部91を通過する。なお、試料29で回折された回折光は0次光に対し位相が遅れるため、位相膜部91において0次光の位相を1/4λもしくは3/4λ遅らせる。それとともに、強度を落としてやり、回折光と干渉させて像にコントラストを付けて観察する。一般的には、位相膜部91の透過率は数%から40%程度であり、落射蛍光観察を同時に行なうと蛍光はかなりの損失を生じてしまう。
【0048】
図10は、上記した励起フィルター42、ダイクロイックミラー32、吸収フィルター33、バンドパスフィルター26およびモジュレーター62の分光透過率特性を示す図である。図10に示すようにモジュレーター62の位相膜部91は、一定波長より短い波長では高い透過率を持ち、一定波長より長い波長では低い透過率を持つ分光透過率特性を有している。
【0049】
ここで、バンドパスフィルター26の分光透過率特性のピークを、図10に示すようにモジュレーター62(すなわち位相膜部91)の透過率が低い部分に設定すると、この波長領域においてバンドパスフィルター26は低い透過率になり、位相差観察に必要な0次光の強度を落とす機能を持つこととなる。よって、位相を遅らせる機能と合わせることで、バンドパスフィルター26の透過波長領域においては、位相差観察の効果が得られることになる。
【0050】
さらに、位相膜部91の分光透過率特性は蛍光観察に必要な波長領域、すなわち図10に示すような励起フィルター42が100%の透過率を有する領域と発光する蛍光の波長領域Dとにおいて高い透過率を有している。そのため、蛍光観察には何ら影響を与えることがないので、蛍光像も暗くなることはない。よって本第5の実施の形態によれば、蛍光観察においても損失のない非常に高効率な位相差と落射蛍光の同時観察が可能になる。
【0051】
(第6の実施の形態)
図11は、本発明の第6の実施の形態に係る落射蛍光顕微鏡の構成を示す図である。なお、図11において図8と同一な部分には同一符号を付し、説明を省略する。図11に示す顕微鏡は上記第5の実施の形態と同様、位相差観察法と落射蛍光観察法を同時に行なえるものである。
【0052】
当該顕微鏡は第4の実施の形態に示したように、対物レンズ30の射出瞳面と光学的に共役な位置を、瞳投影レンズ51およびリレーレンズ52の働きで観察光路中に作りだすことができる。光学的に共役であるため、位相差用モジュレーター62を投影された瞳位置に配置することでも、位相差観察を行なう事ができる。
【0053】
一般的に、ホフマンモジュレーションコントラスト観察と同様、位相差用モジュレーター62も対物レンズ30のレンズ群の中にあるため、モジュレーター62を変更しようとすると対物レンズ30ごとに交換することになる。しかしながら、特に位相差観察においては、位相膜部91の透過率と位相の遅れ量はコントラストの付き方により複数の組み合わせを持っているため、その数だけ対物レンズが必要になっている。
【0054】
よって本第6の実施の形態のように、投影された瞳位置にモジュレーター62を置き交換可能とし、図10に示したバンドパスフィルター26の透過波長領域における位相膜部91の透過率を変更したもの、または位相膜部91の位相の遅らせ幅を変更したものとモジュレーター62とを交換することで、位相差における複数のコントラストの違いを一本の対物レンズ30で観察することができる。また、照明側の位相差用スリット61も、コンデンサーレンズ28の前側焦点面と光学的に共役な位置に置き変えることで、余裕のあるスペースで容易に交換可能とすることができる。
【0055】
さらに、落射蛍光との同時観察においては、図10に示した分光透過率特性を保ったままモジュレーター62を交換できるので、高効率を保ち位相差と落射蛍光の同時観察における位相差のコントラスト手法の変更が行なえる。
なお、本発明は上記各実施の形態に限定されず、要旨を変更しない範囲で適宜変形して実施できる。
【0056】
【発明の効果】
本発明によれば、下記の落射蛍光顕微鏡を提供できる。
(a) 簡易な構成により、効率の高い微分干渉観察と落射蛍光観察の同時観察を可能にするとともに、コントラストの高い蛍光像を得ることができる落射蛍光顕微鏡。
(b) 効率の高い(明るい蛍光像が得られる)瞳変調検鏡法と落射蛍光観察の複合検鏡を可能にするとともに、瞳変調検鏡法による像と落射蛍光像の分離能を高くできる落射蛍光顕微鏡。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る落射蛍光顕微鏡の構成を示す図。
【図2】本発明の第1の実施の形態に係る、励起フィルター、ダイクロイックミラー、吸収フィルターおよびバンドパスフィルターの分光透過率特性を示す図。
【図3】本発明の第2の実施の形態に係る、ダイクロイックミラーの分光透過率特性を示す図であり、(a)はダイクロイックミラーの裏面、(b)は表面に係る図。
【図4】本発明の第3の実施の形態に係る落射蛍光顕微鏡の構成を示す図。
【図5】本発明の第3の実施の形態に係る、励起フィルター、ダイクロイックミラー、吸収フィルター、バンドパスフィルターおよびモジュレーターの分光透過率特性を示す図。
【図6】本発明の第3の実施の形態に係る、モジュレーターの構成を示す図。
【図7】本発明の第4の実施の形態に係る落射蛍光顕微鏡の構成を示す図。
【図8】本発明の第5の実施の形態に係る落射蛍光顕微鏡の構成を示す図。
【図9】本発明の第5の実施の形態に係る図であり、(a)は位相差用モジュレーター、(b)は位相差用スリットを示す図。
【図10】本発明の第5の実施の形態に係る、励起フィルター、ダイクロイックミラー、吸収フィルター、バンドパスフィルターおよびモジュレーターの分光透過率特性を示す図。
【図11】本発明の第6の実施の形態に係る落射蛍光顕微鏡の構成を示す図。
【図12】従来例に係る図であり、(a)は一般の顕微鏡にモジュレーションコントラスト法のための要素を付加した構成を示す図、(b)は透過率が3段階に異なる領域を有するフィルタを示す図。
【図13】従来例に係る図であり、透明な位相物体を透過した光がモジュレーターを介することにより、コントラストのついた像を形成する過程を示す図。
【図14】従来の複合検鏡顕微鏡の構成を示す図。
【符号の説明】
1…透過用光源、2…バンドパスフィルター、3…ポラライザー、4…ウォラストンプリズム、5…コンデンサーレンズ、6…標本、7…対物レンズ、8…ウォラストンプリズム、9…結像レンズ、10…励起光源、11…励起フィルター、12…ダイクロイックミラー、13…吸収フィルター、21…透過用光源、22…コレクタレンズ、23…視野絞り、24…折り返しミラー、25…窓レンズ、26…バンドパスフィルター、27…スリット、28…コンデンサーレンズ、29…標本、30…対物レンズ、31…モジュレーター、32…ダイクロイックミラー、33…吸収フィルター、34…結像レンズ、35…プリズム、36…接眼レンズ、101…接眼レンズ、102…モジュレーター、103…対物レンズ、104…試料、105…コンデンサー、106…スリット、108…暗黒部分(D)、109…灰色部分(G)、110…明るい部分(B)、111…像、112…モジュレーター、113…対物レンズ、114…コンデンサー、115…試料、116…コンデンサー、117…スリット、121…暗黒部(D)、122…灰色部(G)、123…明るい部(B)、124…結像位置。
Claims (4)
- 透過照明光学系に設けられ、照明光を透過するためのバンドパスフィルタ、ポラライザー、及び第1のウォラストンプリズムと、
標本より対物レンズ側の観察光学系に設けられ、前記バンドパスフィルタ、前記ポラライザー、及び前記第1のウォラストンプリズムと組み合わせて観察するための第2のウォラストンプリズムと、
前記標本より前記対物レンズ側の前記観察光学系に設けられ、前記バンドパスフィルタ、前記ポラライザー、及び前記第1のウォラストンプリズムと組み合わせて観察するためのダイクロイックミラーであり、前記バンドパスフィルタ、前記ポラライザー、及び前記第1のウォラストンプリズムを透過した波長の光を透過または反射するダイクロイックミラーと、
前記観察光学系の光路中に前記ダイクロイックミラーを介して接続された落射蛍光照明光学系と、を備えた落射蛍光顕微鏡において、
前記ダイクロイックミラーには、分光透過率特性が、前記バンドパスフィルタのピーク波長領域よりも短い波長領域で立ち下がるS偏光と、前記バンドパスフィルタのピーク波長領域よりも長い波長領域で立ち下がるP偏光となる光学手段が形成され、
前記バンドパスフィルタは、前記落射蛍光照明光学系により励起された前記標本の蛍光像のピーク波長よりも長い波長領域をピーク波長とする分光透過率特性を有し、前記P偏光と前記S偏光の立ち下がり領域の間の波長領域の波長の光を透過し、
前記落射蛍光照明光学系による前記標本の蛍光像と、前記バンドパスフィルタの透過波長領域で、かつ、前記蛍光像よりも長波長の波長領域における、前記ポラライザー及び前記第1のウォラストンプリズムと前記第2のウォラストンプリズム及び前記光学手段とによる微分干渉像と、を同時に観察することを特徴とする落射蛍光顕微鏡。 - 前記光学手段は、前記ダイクロイックミラーの少なくとも1面に形成された光学膜であることを特徴とする請求項1に記載の落射蛍光顕微鏡。
- 透過照明光学系に設けられ、照明光を透過するためのバンドパスフィルタ及びホフマンモジュレーションコントラスト観察用のスリットと、
標本より対物レンズ側の観察光学系に設けられ、前記バンドパスフィルタ及び前記スリットと組み合わせて観察するためのホフマンモジュレーションコントラスト観察用のモジュレーターと、
前記標本より前記対物レンズ側の前記観察光学系に設けられ、前記バンドパスフィルタ及び前記スリットと組み合わせて観察するためのダイクロイックミラーであり、前記バンドパスフィルタ及び前記スリットを透過した波長の光を透過または反射するダイクロイックミラーと、
前記観察光学系の光路中に前記ダイクロイックミラーを介して接続された落射蛍光照明光学系と、を備えた落射蛍光顕微鏡において、
前記モジュレーターは、前記標本からの蛍光波長を透過すると共に、暗黒部と灰色部を有し、前記暗黒部と前記灰色部の各々の透過率が0近傍になる波長の間の波長領域に前記バンドパスフィルタのピーク波長領域が位置し、
前記バンドパスフィルタは、前記落射蛍光照明光学系により励起された前記標本の蛍光像のピーク波長よりも長い波長領域をピーク波長とする分光透過率特性を有し、前記モジュレーターの前記暗黒部と前記灰色部の各々の透過率が0近傍になる波長の間の波長領域の波長の光を透過し、
前記落射蛍光照明光学系による前記標本の蛍光像と、前記バンドパスフィルタの透過波長領域で、かつ、前記蛍光像よりも長波長の波長領域における、前記スリット及び前記モジュレーターによる瞳変調像と、を同時に観察することを特徴とする落射蛍光顕微鏡。 - 透過照明光学系に設けられ、照明光を透過するためのバンドパスフィルタ及び位相差用スリットと、
標本より対物レンズ側の観察光学系に設けられ、前記バンドパスフィルタ及び前記位相差用スリットと組み合わせて観察するための位相差用モジュレーターと、
前記標本より前記対物レンズ側の前記観察光学系に設けられ、前記バンドパスフィルタ及び前記位相差用スリットと組み合わせて観察するためのダイクロイックミラーであり、前記バンドパスフィルタ及び前記位相差用スリットを透過した波長の光を透過または反射するダイクロイックミラーと、
前記観察光学系の光路中に前記ダイクロイックミラーを介して接続された落射蛍光照明光学系と、を備えた落射蛍光顕微鏡において、
前記位相差用モジュレーターは、前記標本からの蛍光波長を透過すると共に、前記蛍光波長よりも長い波長側に、透過率が低下した低透過率波長帯域を有し、
前記バンドパスフィルタは、前記落射蛍光照明光学系により励起された前記標本の蛍光像のピーク波長よりも長い波長領域をピーク波長とする分光透過率特性を有し、前記位相差用モジュレーターの前記低透過率波長帯域の波長の光を透過し、
前記落射蛍光照明光学系による前記標本の蛍光像と、前記バンドパスフィルタの透過波長領域で、かつ、前記蛍光像よりも長波長の波長領域における、前記位相差用スリット及び前記位相差用モジュレーターによる位相差像と、を同時に観察することを特徴とする落射蛍光顕微鏡。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33896395A JP3699761B2 (ja) | 1995-12-26 | 1995-12-26 | 落射蛍光顕微鏡 |
US08/766,132 US6025956A (en) | 1995-12-26 | 1996-12-16 | Incident-light fluorescence microscope |
CN96123425.3A CN1129804C (zh) | 1995-12-26 | 1996-12-25 | 入射光荧光显微镜 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33896395A JP3699761B2 (ja) | 1995-12-26 | 1995-12-26 | 落射蛍光顕微鏡 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09179034A JPH09179034A (ja) | 1997-07-11 |
JP3699761B2 true JP3699761B2 (ja) | 2005-09-28 |
Family
ID=18322987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33896395A Expired - Fee Related JP3699761B2 (ja) | 1995-12-26 | 1995-12-26 | 落射蛍光顕微鏡 |
Country Status (3)
Country | Link |
---|---|
US (1) | US6025956A (ja) |
JP (1) | JP3699761B2 (ja) |
CN (1) | CN1129804C (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106594553A (zh) * | 2017-01-11 | 2017-04-26 | 哈尔滨理工大学 | 一种新生儿鼻孔照明装置 |
Families Citing this family (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1434522B1 (en) | 2000-10-30 | 2010-01-13 | The General Hospital Corporation | Optical systems for tissue analysis |
DE60123450D1 (de) * | 2000-11-06 | 2006-11-09 | Vincent Lauer | Mikroskop für beugungsobjekte |
US9295391B1 (en) | 2000-11-10 | 2016-03-29 | The General Hospital Corporation | Spectrally encoded miniature endoscopic imaging probe |
DE10107095A1 (de) * | 2001-02-14 | 2002-08-29 | Leica Microsystems | Doppelkonfokales Rastermikroskop |
US7865231B2 (en) * | 2001-05-01 | 2011-01-04 | The General Hospital Corporation | Method and apparatus for determination of atherosclerotic plaque type by measurement of tissue optical properties |
US7355716B2 (en) | 2002-01-24 | 2008-04-08 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
US6906859B2 (en) * | 2002-06-05 | 2005-06-14 | Nikon Corporation | Epi-illumination apparatus for fluorescent observation and fluorescence microscope having the same |
US20040184144A1 (en) * | 2002-12-31 | 2004-09-23 | Goodwin Paul C. | Wavelength-specific phase microscopy |
US7643153B2 (en) * | 2003-01-24 | 2010-01-05 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
CN1741768A (zh) * | 2003-01-24 | 2006-03-01 | 通用医疗有限公司 | 利用低相干干涉测量法识别组织的系统和方法 |
EP2436307B1 (en) | 2003-03-31 | 2015-10-21 | The General Hospital Corporation | Speckle reduction in optical coherence tomography by path length encoded angular compounding |
EP2030562A3 (en) | 2003-06-06 | 2009-03-25 | The General Hospital Corporation | Process and apparatus for a wavelength tuning source |
WO2005029413A1 (en) * | 2003-09-23 | 2005-03-31 | Iatia Imaging Pty Ltd | Method and apparatus for determining the area or confluency of a sample |
CN103082996A (zh) | 2003-10-27 | 2013-05-08 | 通用医疗公司 | 用于使用频域干涉测量法进行光学成像的方法和设备 |
US7193774B2 (en) * | 2003-12-02 | 2007-03-20 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Sub-diffraction limit resolution in microscopy |
JP4837279B2 (ja) * | 2004-04-05 | 2011-12-14 | オリンパス株式会社 | 落射顕微鏡および蛍光フィルターセット |
US8018598B2 (en) * | 2004-05-29 | 2011-09-13 | The General Hospital Corporation | Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (OCT) imaging |
EP1771755B1 (en) | 2004-07-02 | 2016-09-21 | The General Hospital Corporation | Endoscopic imaging probe comprising dual clad fibre |
EP1782020B1 (en) | 2004-08-06 | 2012-10-03 | The General Hospital Corporation | Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography |
EP2272420B1 (en) * | 2004-08-24 | 2013-06-19 | The General Hospital Corporation | Apparatus for imaging of vessel segments |
WO2006024014A2 (en) * | 2004-08-24 | 2006-03-02 | The General Hospital Corporation | Process, system and software arrangement for measuring a mechanical strain and elastic properties of a sample |
JP5215664B2 (ja) | 2004-09-10 | 2013-06-19 | ザ ジェネラル ホスピタル コーポレイション | 光学コヒーレンス撮像のシステムおよび方法 |
EP1804638B1 (en) | 2004-09-29 | 2012-12-19 | The General Hospital Corporation | System and method for optical coherence imaging |
JP2006112913A (ja) * | 2004-10-14 | 2006-04-27 | Toshiba Corp | 欠陥検査装置 |
US8922781B2 (en) * | 2004-11-29 | 2014-12-30 | The General Hospital Corporation | Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample |
EP2085929A1 (en) | 2005-04-28 | 2009-08-05 | The General Hospital Corporation | Evaluating optical coherence tomography information for an anatomical structure |
US9060689B2 (en) | 2005-06-01 | 2015-06-23 | The General Hospital Corporation | Apparatus, method and system for performing phase-resolved optical frequency domain imaging |
EP2267404B1 (en) | 2005-08-09 | 2016-10-05 | The General Hospital Corporation | Apparatus and method for performing polarization-based quadrature demodulation in optical coherence tomography |
WO2007022220A2 (en) * | 2005-08-16 | 2007-02-22 | The General Hospital Corporation | Arrangements and methods for imaging in vessels |
EP2275026A1 (en) | 2005-09-29 | 2011-01-19 | The General Hospital Corporation | Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures |
US20070238955A1 (en) * | 2006-01-18 | 2007-10-11 | The General Hospital Corporation | Systems and methods for generating data using one or more endoscopic microscopy techniques |
US8145018B2 (en) | 2006-01-19 | 2012-03-27 | The General Hospital Corporation | Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements |
JP5384944B2 (ja) | 2006-01-19 | 2014-01-08 | ザ ジェネラル ホスピタル コーポレイション | ビームスキャニングによる上皮性管腔器官の光学的撮像システム |
US20080002211A1 (en) * | 2006-01-20 | 2008-01-03 | The General Hospital Corporation | System, arrangement and process for providing speckle reductions using a wave front modulation for optical coherence tomography |
WO2007149603A2 (en) | 2006-02-01 | 2007-12-27 | The General Hospital Corporation | Apparatus for applying a plurality of electro-magnetic radiations to a sample |
JP5524487B2 (ja) | 2006-02-01 | 2014-06-18 | ザ ジェネラル ホスピタル コーポレイション | コンフォーマルレーザ治療手順を用いてサンプルの少なくとも一部分に電磁放射を放射する方法及びシステム。 |
EP3143926B1 (en) * | 2006-02-08 | 2020-07-01 | The General Hospital Corporation | Methods, arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy |
CN101410691A (zh) | 2006-02-24 | 2009-04-15 | 通用医疗公司 | 执行角分辨傅立叶域光学相干断层成像的方法和系统 |
EP3150110B1 (en) | 2006-05-10 | 2020-09-02 | The General Hospital Corporation | Processes, arrangements and systems for providing frequency domain imaging of a sample |
US7773221B2 (en) * | 2006-06-19 | 2010-08-10 | X-Rite, Inc. | Industrially robust non-contact color measurement device |
WO2008016927A2 (en) * | 2006-08-01 | 2008-02-07 | The General Hospital Corporation | Systems and methods for receiving and/or analyzing information associated with electro-magnetic radiation |
US8838213B2 (en) | 2006-10-19 | 2014-09-16 | The General Hospital Corporation | Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s) |
US7949019B2 (en) * | 2007-01-19 | 2011-05-24 | The General Hospital | Wavelength tuning source based on a rotatable reflector |
WO2008089406A2 (en) * | 2007-01-19 | 2008-07-24 | The General Hospital Corporation | Apparatus and method for simultaneous inspection at different depths based on the principle of frequency domain optical coherence tomography |
WO2008115965A1 (en) * | 2007-03-19 | 2008-09-25 | The General Hospital Corporation | Apparatus and method for providing a noninvasive diagnosis of internal bleeding |
EP2132840A2 (en) * | 2007-03-23 | 2009-12-16 | The General Hospital Corporation | Methods, arrangements and apparatus for utlizing a wavelength-swept laser using angular scanning and dispersion procedures |
US10534129B2 (en) * | 2007-03-30 | 2020-01-14 | The General Hospital Corporation | System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque |
WO2008131082A1 (en) * | 2007-04-17 | 2008-10-30 | The General Hospital Corporation | Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy techniques |
WO2009029843A1 (en) * | 2007-08-31 | 2009-03-05 | The General Hospital Corporation | System and method for self-interference fluoresence microscopy, and computer-accessible medium associated therewith |
WO2009036453A1 (en) * | 2007-09-15 | 2009-03-19 | The General Hospital Corporation | Apparatus, computer-accessible medium and method for measuring chemical and/or molecular compositions of coronary atherosclerotic plaques in anatomical structures |
EP2207469A4 (en) * | 2007-10-12 | 2012-07-11 | Gen Hospital Corp | SYSTEMS AND METHODS FOR OPTICAL IMAGING OF LUMINOUS ANATOMICAL STRUCTURES |
US8628976B2 (en) * | 2007-12-03 | 2014-01-14 | Azbil BioVigilant, Inc. | Method for the detection of biologic particle contamination |
EP2241920A4 (en) * | 2008-01-23 | 2014-04-23 | Nikon Corp | MICROSCOPE SYSTEM |
US7898656B2 (en) | 2008-04-30 | 2011-03-01 | The General Hospital Corporation | Apparatus and method for cross axis parallel spectroscopy |
US8593619B2 (en) * | 2008-05-07 | 2013-11-26 | The General Hospital Corporation | System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy |
WO2009155536A2 (en) * | 2008-06-20 | 2009-12-23 | The General Hospital Corporation | Fused fiber optic coupler arrangement and method for use thereof |
WO2010009136A2 (en) | 2008-07-14 | 2010-01-21 | The General Hospital Corporation | Apparatus and methods for color endoscopy |
DE102008049886B4 (de) * | 2008-09-30 | 2021-11-04 | Carl Zeiss Microscopy Gmbh | Vorrichtung, insbesondere ein Mikroskop, zur Untersuchung von Proben |
ES2957932T3 (es) * | 2008-12-10 | 2024-01-30 | Massachusetts Gen Hospital | Sistemas, aparatos y procedimientos para ampliar el rango de profundidad de imagen de tomografía de coherencia óptica mediante submuestreo óptico |
JP2012515576A (ja) * | 2009-01-20 | 2012-07-12 | ザ ジェネラル ホスピタル コーポレイション | 内視鏡生検装置、システム、及び方法 |
EP2382456A4 (en) | 2009-01-26 | 2012-07-25 | Gen Hospital Corp | SYSTEM, METHOD AND COMPUTER-ACCESSIBLE MEDIUM FOR PROVIDING BROAD FIELD SUPER-RESOLUTION MICROSCOPY |
EP2394336B1 (en) * | 2009-02-04 | 2023-05-24 | The General Hospital Corporation | Apparatus and method for utilization of a high-speed optical wavelength tuning source |
WO2010111649A1 (en) * | 2009-03-26 | 2010-09-30 | Guy Kennedy | Low numerical aperture exclusion imaging |
JP5819823B2 (ja) * | 2009-07-14 | 2015-11-24 | ザ ジェネラル ホスピタル コーポレイション | 血管の内部の流れおよび圧力を測定する装置および装置の作動方法 |
WO2011044301A2 (en) * | 2009-10-06 | 2011-04-14 | The General Hospital Corporation | Apparatus and methods for imaging particular cells including eosinophils |
JP5711260B2 (ja) * | 2009-12-08 | 2015-04-30 | ザ ジェネラル ホスピタル コーポレイション | 光コヒーレンストモグラフィにより声帯襞を分析、診断及び治療モニタリングする方法及び装置 |
HUE051135T2 (hu) | 2010-03-05 | 2021-03-01 | Massachusetts Gen Hospital | Rendszerek mikroszkópikus képek elõállítására legalább egy anatómiai szerkezetrõl adott felbontással |
US9069130B2 (en) | 2010-05-03 | 2015-06-30 | The General Hospital Corporation | Apparatus, method and system for generating optical radiation from biological gain media |
EP2575598A2 (en) | 2010-05-25 | 2013-04-10 | The General Hospital Corporation | Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images |
US9557154B2 (en) | 2010-05-25 | 2017-01-31 | The General Hospital Corporation | Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions |
JP6066901B2 (ja) | 2010-06-03 | 2017-01-25 | ザ ジェネラル ホスピタル コーポレイション | 1つまたは複数の管腔器官内または管腔器官にある構造を撮像するための装置およびデバイスのための方法 |
JP5883018B2 (ja) | 2010-10-27 | 2016-03-09 | ザ ジェネラル ホスピタル コーポレイション | 少なくとも1つの血管内部の血圧を測定するための装置、システム、および方法 |
CN102175656A (zh) * | 2010-12-30 | 2011-09-07 | 深圳大学 | 一种荧光显微成像方法及成像系统 |
US9330092B2 (en) | 2011-07-19 | 2016-05-03 | The General Hospital Corporation | Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography |
US10241028B2 (en) | 2011-08-25 | 2019-03-26 | The General Hospital Corporation | Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures |
EP2769491A4 (en) | 2011-10-18 | 2015-07-22 | Gen Hospital Corp | DEVICE AND METHOD FOR PRODUCING AND / OR PROVIDING RECIRCULATING OPTICAL DELAY (DE) |
WO2013093975A1 (en) * | 2011-12-22 | 2013-06-27 | Sekisui Integrated Research Inc. | Quantitative phase measurement apparatus |
WO2013148306A1 (en) | 2012-03-30 | 2013-10-03 | The General Hospital Corporation | Imaging system, method and distal attachment for multidirectional field of view endoscopy |
JP2015517387A (ja) | 2012-05-21 | 2015-06-22 | ザ ジェネラル ホスピタル コーポレイション | カプセル顕微鏡検査のための装置、デバイスおよび方法 |
WO2014031748A1 (en) | 2012-08-22 | 2014-02-27 | The General Hospital Corporation | System, method, and computer-accessible medium for fabrication minature endoscope using soft lithography |
US9968261B2 (en) | 2013-01-28 | 2018-05-15 | The General Hospital Corporation | Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging |
US10893806B2 (en) | 2013-01-29 | 2021-01-19 | The General Hospital Corporation | Apparatus, systems and methods for providing information regarding the aortic valve |
WO2014121082A1 (en) | 2013-02-01 | 2014-08-07 | The General Hospital Corporation | Objective lens arrangement for confocal endomicroscopy |
JP6378311B2 (ja) | 2013-03-15 | 2018-08-22 | ザ ジェネラル ホスピタル コーポレイション | 物体を特徴付ける方法とシステム |
JP6124774B2 (ja) | 2013-03-22 | 2017-05-10 | オリンパス株式会社 | 位相分布計測方法、及び、位相分布計測装置 |
US9784681B2 (en) | 2013-05-13 | 2017-10-10 | The General Hospital Corporation | System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence |
US10117576B2 (en) | 2013-07-19 | 2018-11-06 | The General Hospital Corporation | System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina |
US11452433B2 (en) | 2013-07-19 | 2022-09-27 | The General Hospital Corporation | Imaging apparatus and method which utilizes multidirectional field of view endoscopy |
WO2015013651A2 (en) | 2013-07-26 | 2015-01-29 | The General Hospital Corporation | System, apparatus and method utilizing optical dispersion for fourier-domain optical coherence tomography |
JP6253400B2 (ja) * | 2013-12-26 | 2017-12-27 | オリンパス株式会社 | 画像形成方法、及び、画像形成装置 |
US9733460B2 (en) | 2014-01-08 | 2017-08-15 | The General Hospital Corporation | Method and apparatus for microscopic imaging |
US10736494B2 (en) | 2014-01-31 | 2020-08-11 | The General Hospital Corporation | System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device |
WO2015153982A1 (en) | 2014-04-04 | 2015-10-08 | The General Hospital Corporation | Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s) |
ES2907287T3 (es) | 2014-07-25 | 2022-04-22 | Massachusetts Gen Hospital | Aparato para imagenología y diagnóstico in vivo |
CN106331442B (zh) * | 2015-07-02 | 2021-01-15 | 松下知识产权经营株式会社 | 摄像装置 |
JP6619025B2 (ja) * | 2015-12-11 | 2019-12-11 | オリンパス株式会社 | 観察装置 |
JP6633650B2 (ja) | 2015-12-18 | 2020-01-22 | オリンパス株式会社 | 観察装置 |
EP3521890A1 (en) | 2016-09-30 | 2019-08-07 | Olympus Corporation | Observation apparatus |
WO2018062215A1 (ja) | 2016-09-30 | 2018-04-05 | オリンパス株式会社 | 観察装置 |
CN109654392B (zh) * | 2017-01-11 | 2020-09-04 | 哈尔滨理工大学 | 第一遮挡板和具有第一遮挡板的鼻孔照明装置 |
DE102017110638B3 (de) * | 2017-05-16 | 2018-09-27 | Leica Microsystems Cms Gmbh | Mikroskop und Mikroskopbeleuchtungsverfahren |
WO2018220670A1 (ja) | 2017-05-29 | 2018-12-06 | オリンパス株式会社 | 観察装置 |
US11287627B2 (en) * | 2017-06-30 | 2022-03-29 | Chrysanthe Preza | Multi-focal light-sheet structured illumination fluorescence microscopy system |
CN112437895A (zh) * | 2018-07-25 | 2021-03-02 | 奥林巴斯株式会社 | 显微镜装置 |
JP7193989B2 (ja) * | 2018-11-19 | 2022-12-21 | 株式会社エビデント | 顕微鏡装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2010540A1 (de) * | 1969-03-12 | 1970-12-17 | Olympus Optical Co. Ltd., Tokio | PR 12.03.69 Japan 21559-69 Fluoreszenzmikroskop |
US3845420A (en) * | 1973-03-02 | 1974-10-29 | Raytheon Co | Surface acoustic wave phase control device |
US4200353A (en) * | 1974-06-05 | 1980-04-29 | Robert Hoffman | Modulation contrast microscope with three regions |
GB1509276A (en) * | 1974-06-05 | 1978-05-04 | Hoffman R | Modulation contrast microscope |
JPS5632116A (en) * | 1979-08-23 | 1981-04-01 | Toshiba Corp | Specimen observing device |
JPS60420A (ja) * | 1983-06-17 | 1985-01-05 | Olympus Optical Co Ltd | 螢光顕微測光装置 |
US5371624A (en) * | 1991-11-29 | 1994-12-06 | Olympus Optical Co., Ltd. | Reflected fluorescence microscope |
JP3289941B2 (ja) * | 1992-03-13 | 2002-06-10 | オリンパス光学工業株式会社 | システム顕微鏡 |
JPH06331894A (ja) * | 1993-05-24 | 1994-12-02 | Olympus Optical Co Ltd | 落射蛍光顕微鏡 |
JP3526489B2 (ja) * | 1995-05-25 | 2004-05-17 | オリンパス株式会社 | 落射蛍光顕微鏡 |
-
1995
- 1995-12-26 JP JP33896395A patent/JP3699761B2/ja not_active Expired - Fee Related
-
1996
- 1996-12-16 US US08/766,132 patent/US6025956A/en not_active Expired - Lifetime
- 1996-12-25 CN CN96123425.3A patent/CN1129804C/zh not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106594553A (zh) * | 2017-01-11 | 2017-04-26 | 哈尔滨理工大学 | 一种新生儿鼻孔照明装置 |
CN106594553B (zh) * | 2017-01-11 | 2019-03-29 | 哈尔滨理工大学 | 一种新生儿鼻孔照明装置 |
Also Published As
Publication number | Publication date |
---|---|
JPH09179034A (ja) | 1997-07-11 |
CN1160216A (zh) | 1997-09-24 |
US6025956A (en) | 2000-02-15 |
CN1129804C (zh) | 2003-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3699761B2 (ja) | 落射蛍光顕微鏡 | |
US5966204A (en) | Near-infrared microscope | |
EP1400780A1 (en) | Microscope system | |
US11513330B2 (en) | Fluorescence microscope apparatus and fluorescence microscope system | |
JPH11352409A (ja) | 蛍光検出装置 | |
US20090108187A1 (en) | Laser scanning microscope | |
JPS61133918A (ja) | フオトメータ | |
US6903869B2 (en) | Illumination system for microscopy and observation or measuring method using the same | |
US20070183029A1 (en) | Microscope and its optical controlling method | |
US6891670B2 (en) | Double confocal scanning microscope | |
EP1882968A1 (en) | Polarization microscope | |
JP2001242383A (ja) | 顕微鏡 | |
US11874450B2 (en) | Oblique plane microscope for imaging a sample | |
US10067059B2 (en) | Device for simultaneous fluorescence contrasting effect in transmitted light and reflected light | |
JPH1020199A (ja) | 複合顕微鏡 | |
CN113671717B (zh) | 光源装置和光学检测设备 | |
JP4686015B2 (ja) | 照明装置 | |
US6995903B1 (en) | Microscope, a method for manufacturing a microscope and a method for operating a microscope | |
JP2946818B2 (ja) | 螢光型顕微鏡の落射螢光照明装置および該装置の照明調整方法 | |
JPH06202046A (ja) | 投影装置 | |
JP2003005080A (ja) | 微分干渉顕微鏡 | |
JP2001188122A (ja) | 誘電体多層膜を有する光学素子及びそれを用いた顕微鏡 | |
JPS5999412A (ja) | 単対物立体視顕微鏡 | |
CN117348225A (zh) | 显微装置 | |
CN117031718A (zh) | 一种基于光谱和偏振联合调制的无标记显微成像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050711 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090715 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100715 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100715 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110715 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120715 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130715 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |