[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3694884B2 - Method for growing rare earth silicate single crystals - Google Patents

Method for growing rare earth silicate single crystals Download PDF

Info

Publication number
JP3694884B2
JP3694884B2 JP23022496A JP23022496A JP3694884B2 JP 3694884 B2 JP3694884 B2 JP 3694884B2 JP 23022496 A JP23022496 A JP 23022496A JP 23022496 A JP23022496 A JP 23022496A JP 3694884 B2 JP3694884 B2 JP 3694884B2
Authority
JP
Japan
Prior art keywords
rare earth
single crystal
silicate single
earth silicate
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23022496A
Other languages
Japanese (ja)
Other versions
JPH09142994A (en
Inventor
靖 倉田
和央 蔵重
浩之 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP23022496A priority Critical patent/JP3694884B2/en
Publication of JPH09142994A publication Critical patent/JPH09142994A/en
Application granted granted Critical
Publication of JP3694884B2 publication Critical patent/JP3694884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シンチレ−タ等に用いられる希土類珪酸塩単結晶の育成方法に関する。
【0002】
【従来の技術】
珪酸ガドリニウム単結晶等の希土類珪酸塩単結晶は、シンチレ−タ、蛍光体等として広く用いられている。
この珪酸ガドリニウム単結晶等は、希土類酸化物の酸化ガドリニウムと珪素酸化物の2酸化珪素を原料として、チョクラルスキ−法等の原料融液から単結晶を育成する方法によって育成される。
一般に、蛍光出力等のシンチレ−タ特性には、構成元素以外の希土類元素及び遷移金属等の不純物が悪影響を与えると考えられ、それらの不純物元素を低減した4N以上(99.99重量%以上)の高純度原料(Gd25、SiO2等)を 使用して結晶育成が行われている。
【0003】
【発明が解決しようとする課題】
しかし、従来の原料を使用した場合、結晶中にボイドが発生したりすることによって、安定して良好なシンチレ−タ特性が得られないという問題があった。
本発明は、希土類珪酸塩単結晶を育成する場合に、結晶中にボイドの発生しない良好なシンチレ−タ性能を有する希土類珪酸塩単結晶が安定して得られる希土類珪酸塩単結晶の育成方法を提供するものである。
【0004】
【課題を解決するための手段】
本発明は、希土類珪酸塩単結晶を育成する場合に、特定の不純物元素を低減した希土類酸化物等の原料を使用するものであり、希土類酸化物、珪素酸化物を含む原料の融液から希土類珪酸塩単結晶を育成する方法において、Alの不純物濃度が0.4ppm以下の原料を用いることを特徴とする希土類珪酸塩単結晶の育成方法である。
【0005】
【発明の実施の形態】
本発明者らは、希土類珪酸塩単結晶のボイド発生及びシンチレ−タ特性と、その原料である希土類酸化物等中の不純物濃度係について検討した。その結果、特定の不純物元素の含有量の差が、育成した単結晶の特性に影響することを見いだすことによって、本発明はなされたものである。
珪酸ガドリニウム単結晶を育成する場合において、Alの不純物濃度が少ない希土類酸化物を原料として使用することによって、結晶中のボイド発生が無くなり、シンチレ−タ特性を向上できることがわかった。すなわち結晶中のボイド発生が無くなると、結晶にγ線等の放射線を照射することにより結晶中で生じた蛍光が結晶の一面に接して設けられている光電子増倍管に効率良く到達するため、蛍光出力、エネルギ−分解能が向上し、結果としてシンチレ−タ特性が向上する。
Alの不純物濃度が0.4ppm以下の原料を用いる場合、Alの不純物濃度が0.4ppm以下の希土類酸化物を使用することが好ましい。
【0006】
珪酸ガドリニウム単結晶以外の、一般式
R SiO

Figure 0003694884
で示される希土類珪酸塩単結晶についても、原料中の不純物の影響は同様であり、同様の結果となる。
更に、一般には希土類珪酸塩単結晶に蛍光中心としてCe等の添加物をド−プするが、その場合も効果は同様である。
以上の希土類珪酸塩単結晶は、珪酸ガドリニウム単結晶の結晶構造と同じ結晶構造を持ち、その構造は空間群P21/cに属する。
【0007】
【実施例】
比較例
セリウム付活珪酸ガドリニウム単結晶(Ce:Gd2SiO5、Ce濃度0.5mol%)の場合の例を説明する。原料として酸化ガドリニウム(Gd23)4N(A種)、2酸化珪素(SiO2)4N及び酸化セリウム(CeO2)4Nを使用して、チョクラルスキ−法によって単結晶を育成した。酸化ガドリニウムを2573.5g、2酸化珪素を426.5g、そして酸化セリウムを5.9gを秤量して混合し、1200℃で焼成した後直径100mmのIrるつぼにチャ−ジし、原料融液1950℃、種結晶の回転数30rpm,引き上げ速度2mm/hの条件で、原料の80重量%が結晶化した段階で引き上げを完了し、直径50mmの単結晶を育成した。
育成した単結晶は、インゴット下部に多数のボイドが発生していた。ボイドの発生の度合いには、育成(インゴット)によってばらつきが見られた。育成結晶から10×10×30mm3の試料を採取して、γ線を照射したときの特性につ いて測定した結果を表1に示すが、安定して良好な結果が得られなかった。酸化ガドリニウム、2酸化珪素、酸化セリウム中のAl不純物測定を行った結果、各々13.0ppm、0.016ppm、3.5ppm未満であった。原料中のAl不純物は11.1ppmを越えている。
【0008】
実施例
比較例と同様に、セリウム付活珪酸ガドリニウム単結晶(Ce:Gd2SiO 5、Ce濃度0.5mol%)の場合の例を説明する。原料として酸化ガドリニウム(Gd25)4N(B種)と、比較例で使用したものと全く同じ(精製ロット番号も同じ)2酸化珪素(SiO2)4N及び酸化セリウム(CeO2)4Nを使用して、チョクラルスキ−法によって単結晶を育成した。酸化ガドリニウム2573.5g、2酸化珪素426.5g、そして酸化セリウム5.9gを秤量し、混合して焼成した後、Irるつぼに入れて比較例と同様にして育成を行った。育成の結果、安定して着色やボイドの発生が無い結晶が得られた。育成結晶から10×10×30mm3の試料を採取して、γ線を照射したときの特性につい て測定した結果を同様に表1に示すが、安定して良好な特性を示した。Al不純物の低減により、結晶特性の改善が明確に観測された。酸化ガドリニウム中のAl不純物測定を行った結果、0.35ppmであり、比較例で使用した酸化ガドリニウム原料に比べ、大幅に少ない結果であった。原料中のAl不純物は0.31ppm未満である。
【0009】
【表1】
Figure 0003694884
【0010】
【発明の効果】
本発明の希土類珪酸塩単結晶の育成方法により、結晶中のボイドの発生の無い安定して良好なシンチレ−タ性能を有する希土類珪酸塩単結晶を育成することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for growing rare earth silicate single crystals used in scintillators and the like.
[0002]
[Prior art]
Rare earth silicate single crystals such as gadolinium silicate single crystals are widely used as scintillators, phosphors and the like.
The gadolinium silicate single crystal or the like is grown by a method of growing a single crystal from a raw material melt such as the Czochralski method using gadolinium oxide of rare earth oxide and silicon dioxide of silicon oxide as raw materials.
In general, impurities such as rare earth elements other than constituent elements and transition metals are considered to adversely affect the scintillator characteristics such as fluorescence output, and 4N or more (99.99% by weight or more) in which those impurity elements are reduced. Crystal growth is performed using high-purity raw materials (Gd 2 O 5 , SiO 2, etc.).
[0003]
[Problems to be solved by the invention]
However, when conventional raw materials are used, there is a problem in that good scintillator characteristics cannot be obtained stably due to the generation of voids in the crystal.
The present invention provides a method for growing a rare earth silicate single crystal, which can stably obtain a rare earth silicate single crystal having good scintillator performance in which no void is generated in the crystal when the rare earth silicate single crystal is grown. It is to provide.
[0004]
[Means for Solving the Problems]
The present invention uses a raw material such as a rare earth oxide in which a specific impurity element is reduced when growing a rare earth silicate single crystal, and a rare earth from a melt of the raw material containing the rare earth oxide or silicon oxide. The method for growing a silicate single crystal is a method for growing a rare earth silicate single crystal, wherein a raw material having an impurity concentration of Al of 0.4 ppm or less is used.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors examined the void generation and scintillator characteristics of the rare earth silicate single crystal and the impurity concentration in the rare earth oxide as the raw material. As a result, the present invention has been made by finding that the difference in the content of specific impurity elements affects the characteristics of the grown single crystal.
When growing a gadolinium silicate single crystal, it was found that by using a rare earth oxide having a low impurity concentration of Al as a raw material, void generation in the crystal is eliminated and scintillator characteristics can be improved. That is, when there is no void generation in the crystal, the fluorescence generated in the crystal by irradiating the crystal with radiation such as γ rays efficiently reaches the photomultiplier tube provided in contact with one surface of the crystal. Fluorescence output and energy resolution are improved, and as a result, scintillator characteristics are improved.
When using a raw material having an Al impurity concentration of 0.4 ppm or less, it is preferable to use a rare earth oxide having an Al impurity concentration of 0.4 ppm or less.
[0006]
General formula R SiO other than gadolinium silicate single crystal
Figure 0003694884
The effect of impurities in the raw material is the same for the rare earth silicate single crystal represented by the following, and the same result is obtained.
Further, generally, an additive such as Ce as a fluorescent center is doped into a rare earth silicate single crystal, but the effect is the same in that case.
The above rare earth silicate single crystal has the same crystal structure as that of the gadolinium silicate single crystal, and the structure belongs to the space group P2 1 / c.
[0007]
【Example】
Comparative Example An example in the case of a cerium-activated gadolinium silicate single crystal (Ce: Gd 2 SiO 5 , Ce concentration 0.5 mol%) will be described. Single crystals were grown by the Czochralski method using gadolinium oxide (Gd 2 O 3 ) 4N (type A), silicon dioxide (SiO 2 ) 4N and cerium oxide (CeO 2 ) 4N as raw materials. 2573.5 g of gadolinium oxide, 426.5 g of silicon dioxide, and 5.9 g of cerium oxide were weighed and mixed, fired at 1200 ° C., charged into an Ir crucible having a diameter of 100 mm, and the raw material melt 1950 The pulling was completed when 80% by weight of the raw material was crystallized under the conditions of ° C, the number of rotations of the seed crystal of 30 rpm and the pulling speed of 2 mm / h, and a single crystal having a diameter of 50 mm was grown.
In the grown single crystal, many voids were generated at the bottom of the ingot. There was a variation in the degree of void generation due to growth (ingot). A 10 × 10 × 30 mm 3 sample was collected from the grown crystal and measured for characteristics when irradiated with γ rays. The results are shown in Table 1, but stable and good results were not obtained. As a result of measuring Al impurities in gadolinium oxide, silicon dioxide, and cerium oxide, they were 13.0 ppm, 0.016 ppm, and less than 3.5 ppm, respectively. The Al impurity in the raw material exceeds 11.1 ppm.
[0008]
As in the comparative example, an example in the case of a cerium activated gadolinium silicate single crystal (Ce: Gd 2 SiO 5 , Ce concentration 0.5 mol%) will be described. As raw materials, gadolinium oxide (Gd 2 O 5 ) 4N (type B), silicon dioxide (SiO 2 ) 4N and cerium oxide (CeO 2 ) 4N, which are exactly the same as those used in the comparative examples (same purification lot number), In use, single crystals were grown by the Czochralski method. Gadolinium oxide 2573.5 g, silicon dioxide 426.5 g, and cerium oxide 5.9 g were weighed, mixed and fired, and then placed in an Ir crucible and grown in the same manner as in the comparative example. As a result of the growth, a crystal free from coloring and voids was obtained. A 10 × 10 × 30 mm 3 sample was taken from the grown crystal, and the results of measuring the characteristics when irradiated with γ rays are shown in Table 1 in the same manner. A clear improvement in crystal properties was observed due to the reduction of Al impurities. As a result of measuring the Al impurity in gadolinium oxide, it was 0.35 ppm, which was significantly less than the gadolinium oxide raw material used in the comparative example. The Al impurity in the raw material is less than 0.31 ppm.
[0009]
[Table 1]
Figure 0003694884
[0010]
【The invention's effect】
By the method for growing a rare earth silicate single crystal of the present invention, a rare earth silicate single crystal having stable and good scintillator performance without generation of voids in the crystal can be grown.

Claims (4)

希土類酸化物、珪素酸化物を含む原料の融液から希土類珪酸塩単結晶を育成する方法において、Alの不純物濃度が0.4ppm以下の原料を用いることを特徴とするシンチレータ用希土類珪酸塩単結晶の育成方法。A rare earth silicate single crystal for scintillators characterized by using a raw material having an Al impurity concentration of 0.4 ppm or less in a method for growing a rare earth silicate single crystal from a melt of a raw material containing a rare earth oxide or silicon oxide. How to train. Alの不純物濃度が0.1ppm以下の希土類酸化物を使用する請求項1記載のシンチレータ用希土類珪酸塩単結晶の育成方法。The method for growing a rare earth silicate single crystal for a scintillator according to claim 1, wherein a rare earth oxide having an impurity concentration of Al of 0.1 ppm or less is used. 希土類酸化物が酸化ガドリニウムである請求項1記載のシンチレータ用希土類珪酸塩単結晶の育成方法。The method for growing a rare earth silicate single crystal for a scintillator according to claim 1, wherein the rare earth oxide is gadolinium oxide. 請求項1〜3のいずれか1項記載の方法により製造されたシンチレータ用希土類珪酸塩単結晶。The rare earth silicate single crystal for scintillators manufactured by the method of any one of Claims 1-3.
JP23022496A 1995-08-31 1996-08-30 Method for growing rare earth silicate single crystals Expired - Lifetime JP3694884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23022496A JP3694884B2 (en) 1995-08-31 1996-08-30 Method for growing rare earth silicate single crystals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-223443 1995-08-31
JP22344395 1995-08-31
JP23022496A JP3694884B2 (en) 1995-08-31 1996-08-30 Method for growing rare earth silicate single crystals

Publications (2)

Publication Number Publication Date
JPH09142994A JPH09142994A (en) 1997-06-03
JP3694884B2 true JP3694884B2 (en) 2005-09-14

Family

ID=26525479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23022496A Expired - Lifetime JP3694884B2 (en) 1995-08-31 1996-08-30 Method for growing rare earth silicate single crystals

Country Status (1)

Country Link
JP (1) JP3694884B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839634B2 (en) * 2005-03-01 2011-12-21 日立化成工業株式会社 Scintillator manufacturing method and scintillator
JP5087913B2 (en) * 2006-05-30 2012-12-05 日立化成工業株式会社 Single crystal for scintillator and method for producing the same

Also Published As

Publication number Publication date
JPH09142994A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
CA2741850C (en) Cerium-doped lutetium oxyorthosilicate (lso) scintillators
EP2984213B1 (en) Production of an elpasolite-type scintillator material
CN101945974A (en) Scintillator for neutron detection and neutron detector
US5728213A (en) Method of growing a rare earth silicate single crystal
CN1322173C (en) Preparation method of cerium-doped lutetium disilicate high-temperature scintillation single crystal
JP4851810B2 (en) Single crystal material for scintillator and manufacturing method
JP2011026547A (en) Single crystal for scintillator, method of heat treatment for manufacturing single crystal for scintillator, and method of manufacturing single crystal for scintillator
JPWO2004086089A1 (en) Fluoride single crystal material for thermofluorescence dosimeter and thermofluorescence dosimeter
CN101597796B (en) Growing method of lithium gadolinium borate crystal
CN101377020A (en) Rare earth silicates polycrystal material doped with Ce<3+> and preparing method thereof
US9175420B2 (en) Suppression of crystal growth instabilities during production of rare-earth oxyorthosilicate crystals
Shimura et al. Zr doped GSO: Ce single crystals and their scintillation performance
JP3694884B2 (en) Method for growing rare earth silicate single crystals
CN1259465C (en) Preparation method of trivalent cerium ion doped rare earth silicate scintillation crystal
JP2003300795A (en) Gso single crystal and scintillator for pet
JP4195732B2 (en) Method for growing rare earth silicate single crystals
JP2016056378A (en) Single crystal for scintillator, heat treatment method for producing single crystal for scintillator and method for producing single crystal for scintillator
JP4228609B2 (en) Cerium-activated gadolinium silicate single crystal
JP4228611B2 (en) Cerium-activated gadolinium silicate single crystal
JP2006199727A (en) Scintillator and radiation detector using the same
JPH09157090A (en) Growth method of rare earth silicate single crystal
RU2233916C1 (en) Method of production of scintillation monocrystalline lutecium-yttric aluminate
US6926847B2 (en) Single crystals of silicates of rare earth elements
JP4228610B2 (en) Rare earth silicate single crystal
JP7178043B2 (en) LSO-based scintillator crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term