CN1322173C - Preparation method of cerium-doped lutetium disilicate high-temperature scintillation single crystal - Google Patents
Preparation method of cerium-doped lutetium disilicate high-temperature scintillation single crystal Download PDFInfo
- Publication number
- CN1322173C CN1322173C CNB2004100534382A CN200410053438A CN1322173C CN 1322173 C CN1322173 C CN 1322173C CN B2004100534382 A CNB2004100534382 A CN B2004100534382A CN 200410053438 A CN200410053438 A CN 200410053438A CN 1322173 C CN1322173 C CN 1322173C
- Authority
- CN
- China
- Prior art keywords
- crystal
- temperature
- cerium
- doped
- scintillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 118
- NAEKEHKTSNMBKE-UHFFFAOYSA-N [Si]([O-])([O-])([O-])O[Si]([O-])([O-])[O-].[Lu+3].[Lu+3] Chemical compound [Si]([O-])([O-])([O-])O[Si]([O-])([O-])[O-].[Lu+3].[Lu+3] NAEKEHKTSNMBKE-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title description 7
- 238000000034 method Methods 0.000 claims abstract description 65
- 239000002994 raw material Substances 0.000 claims abstract description 39
- 239000000463 material Substances 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 16
- 150000002500 ions Chemical class 0.000 claims abstract description 12
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 10
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 9
- 229910052684 Cerium Inorganic materials 0.000 claims description 18
- -1 cerium ions Chemical class 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 9
- 238000002425 crystallisation Methods 0.000 claims description 8
- 230000008025 crystallization Effects 0.000 claims description 8
- 239000011812 mixed powder Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052765 Lutetium Inorganic materials 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 claims description 5
- 229910021645 metal ion Inorganic materials 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 230000006698 induction Effects 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 230000001603 reducing effect Effects 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 235000013619 trace mineral Nutrition 0.000 abstract description 4
- 239000011573 trace mineral Substances 0.000 abstract description 4
- 230000005855 radiation Effects 0.000 abstract description 3
- 229910052715 tantalum Inorganic materials 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000003786 synthesis reaction Methods 0.000 abstract 1
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 6
- 238000009206 nuclear medicine Methods 0.000 description 5
- 230000005658 nuclear physics Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 4
- 229910052688 Gadolinium Inorganic materials 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012856 weighed raw material Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Luminescent Compositions (AREA)
Abstract
一种掺铈焦硅酸镥高温闪烁晶体Lu2(1-x-y-z)Re2xCe2yM2zSi2O7的制备方法,本方法的关键是在配制原料的过程中,引入与CeO2等当量强还原性的Si3N4原料,以及引入痕量的Zr、Ta、或Mg等元素,并在升温化料以及晶体生长过程中将CeO2还原成Ce2O3,再与SiO2和Re2O3等氧化物反应合成含有Ce3+离子的焦硅酸镥高温闪烁单晶体。用本发明方法制备掺铈焦硅酸镥高温闪烁晶体中含Ce4+离子最少,具有较好的晶格完整性和抗辐照性能。A method for preparing cerium-doped lutetium disilicate high-temperature scintillation crystal Lu 2(1-xyz) Re 2x Ce 2y M 2z Si 2 O 7. The key of this method is to introduce an equivalent amount of CeO 2 in the process of preparing raw materials. Strongly reducing Si 3 N 4 raw materials, and the introduction of trace elements such as Zr, Ta, or Mg, and reducing CeO 2 to Ce 2 O 3 in the process of heating up the material and crystal growth, and then combining with SiO 2 and Re Synthesis of lutetium disilicate high temperature scintillation single crystal containing Ce 3+ ions by reaction of 2 O 3 and other oxides. The cerium-doped lutetium disilicate high-temperature scintillation crystal prepared by the method of the invention contains the least Ce 4+ ions, and has better crystal lattice integrity and radiation resistance.
Description
技术领域:Technical field:
本发明涉及晶体生长领域,特别涉及掺杂三价铈离子(Ce3+)焦硅酸镥高温闪烁单晶体:Lu2(1-x-y-z)Re2xCe2yM2zSi2O7(其中Re代表除Lu之外的其它稀土元素,如:Y、Gd、Sc、Yb等之一或者多种混合,M表示Zr、Mg、Ta等金属离子;0≤x≤0.3,0.001≤y≤.05,0.00001≤z≤0.0005),及其生长方法。具体涉及在初始氧化物原料(Lu2O3、Re2O3、CeO2、SiO2)中加入与CeO2等摩尔当量的Si3N4原料,采用提拉法、坩埚下降法以及其它熔体生长方法进行制备掺三价铈离子焦硅酸镥高温闪烁晶体。The invention relates to the field of crystal growth, in particular to a high-temperature scintillation single crystal of lutetium disilicate doped with trivalent cerium ions (Ce 3+ ): Lu 2(1-xyz) Re 2x Ce 2y M 2z Si 2 O 7 (wherein Re represents Other rare earth elements other than Lu, such as: Y, Gd, Sc, Yb, etc. or a combination of multiples, M represents metal ions such as Zr, Mg, Ta, etc.; 0≤x≤0.3, 0.001≤y≤.05, 0.00001 ≤z≤0.0005), and its growth method. Specifically, it involves adding Si 3 N 4 raw materials with an equivalent molar equivalent to CeO 2 to the initial oxide raw materials (Lu 2 O 3 , Re 2 O 3 , CeO 2 , SiO 2 ), and adopts the pulling method, crucible falling method and other melting methods. Trivalent cerium-doped lutetium disilicate lutetium high temperature scintillation crystals were prepared by bulk growth method.
背景技术:Background technique:
无机闪烁晶体可以广泛应用于高能物理核物理探测、影像核医学(PET、CT)、工业在线检测、安全稽查、地质考古、天文观测等研究应用领域。BGO闪烁晶体是传统的无机闪烁晶体,其最大的优点是具有较大的密度和有效原子序数(ρ=7.13g/em3,Zeff=74),因此在高能物理核物理以及核医学诊断(PET)等领域具有广泛的应用背景。但BGO晶体存在光输出小(相对光输出约为7-10%Nal(Tl))、衰减时间长(300ns)等缺点,这就大大限制了BGO晶体的应用范围。Inorganic scintillation crystals can be widely used in high-energy physics nuclear physics detection, imaging nuclear medicine (PET, CT), industrial online detection, safety inspection, geological archaeology, astronomical observation and other research and application fields. BGO scintillation crystal is a traditional inorganic scintillation crystal, and its biggest advantage is that it has a large density and effective atomic number (ρ=7.13g/em 3 , Z eff =74), so it is used in high-energy physics, nuclear physics and nuclear medicine diagnosis ( PET) and other fields have a wide range of application background. However, BGO crystals have disadvantages such as low light output (relative light output is about 7-10% Nal(Tl)) and long decay time (300ns), which greatly limits the application range of BGO crystals.
Ce离子掺杂的高温氧化物闪烁晶体如:Ce:GSO,Ce:LSO,Ce:YAP,Ce:LuAP等是出现于上世纪80年代末-90年代的一类新型闪烁晶体材料。和传统的NaI:T1,BGO,BaF2,PWO等低熔点(不超过1500℃)无机闪烁晶体相比,Ce离子掺杂的高温氧化物闪烁晶体兼具有高光输出(约为BGO晶体的2-10倍)和快衰减(约为BGO晶体的1/5-1/20),因此,这类闪烁晶体备受人们的重视,参见:2002年《人工晶体学报》第31卷第3期,第291-297页。其中,Ce:LSO闪烁晶体是目前最受人们关注的闪烁晶体,与BGO晶体相比,Ce:LSO闪烁晶体具有更高的光输出(约为BGO晶体的7倍)、更快的光衰减常数(约为BGO晶体的1/7)及和BGO晶体相当的密度和有效原子序数(ρ=7.4g/cm3,Zeff=66),参见:U.S.Pat.No:4,958,080。但是,Ce:LSO闪烁晶体具有较高的熔点(约为2200℃)、晶体中含有大量的Lu元素具有天然放射性等缺点,所以这种闪烁晶体很难制备而且做成的探测器具有较高的背景噪音。Ce ion-doped high-temperature oxide scintillation crystals such as Ce:GSO, Ce:LSO, Ce:YAP, Ce:LuAP, etc. are a new class of scintillation crystal materials that appeared in the late 1980s-90s. Compared with traditional NaI:T1, BGO, BaF2, PWO and other low-melting (not exceeding 1500°C) inorganic scintillation crystals, Ce ion-doped high-temperature oxide scintillation crystals have both high light output (about 2- 10 times) and fast attenuation (about 1/5-1/20 of BGO crystal), therefore, this kind of scintillation crystal has attracted people's attention, see: 2002 "Journal of Artificial Crystals", Volume 31, Issue 3, No. pp. 291-297. Among them, Ce: LSO scintillation crystal is currently the most concerned scintillation crystal. Compared with BGO crystal, Ce: LSO scintillation crystal has higher light output (about 7 times that of BGO crystal) and faster light decay constant. (about 1/7 of BGO crystal) and comparable density and effective atomic number to BGO crystal (ρ=7.4g/cm 3 , Z eff =66), see: USPat.No: 4,958,080. However, Ce: LSO scintillation crystal has a relatively high melting point (about 2200 ° C), and the crystal contains a large amount of Lu elements, which have natural radioactivity, so this kind of scintillation crystal is difficult to prepare and the detectors made have higher background noise.
最近,人们又发现了铈离子掺杂的焦硅酸镥晶体(Ce:Lu2-xMxSi2O7,简称Ce:LPS)是一种较好的无机闪烁晶体,该晶体属于单斜晶系,晶格参数分别为:a=6.765,b=8.839,c=4.715,β=101.96°,密度和有效原子序数分别为6.23g/cm3和Zeff=64。Ce:LPS闪烁晶体具有较高的光输出约为13000-22000Ph/MeV,较快的光衰减(约为30ns),更吸引人注意的是该晶体的熔点只有1900℃,较LSO晶体降低了约200-300℃,因此较为容易制备,参见:U.S.Pat.No:6,437,336。Recently, it was discovered that lutetium pyrosilicate crystal doped with cerium ions (Ce:Lu 2-x M x Si 2 O 7 , Ce:LPS for short) is a better inorganic scintillation crystal, which belongs to monoclinic Crystal system, lattice parameters are: a=6.765 Ȧ, b=8.839 Ȧ, c=4.715 Ȧ, β=101.96°, density and effective atomic number are 6.23g/cm 3 and Z eff =64. Ce: LPS scintillation crystal has a higher light output of about 13000-22000Ph/MeV, faster light attenuation (about 30ns), and what is more attractive is that the melting point of the crystal is only 1900 ° C, which is lower than that of LSO crystal. 200-300°C, so it is easier to prepare, see: USPat.No: 6,437,336.
铈离子掺杂的高温闪烁晶体属于非本征闪烁晶体,三价铈离子是晶体中的发光中心。其发光机理一般认为是由下列3个步骤完成的,(a)首先闪烁晶体吸收高能射线或粒子,从而在晶格中产生大量的电子空穴对;(b)大量的高能量的电子空穴对通过电子一电子、电子一声子之间的相互作用进行驰豫,最后变为具有禁带宽度能量的热化电子空穴对,热化电子空穴对再将能量传递到Ce3+离子发光中心;(c)Ce3+离子通过5d-4f的跃迁进行发闪烁光。研究表明,晶体中含有Ce4+离子时,将会猝灭Ce3+离子发光中心从而降低闪烁晶体的光输出。参见:Journal ofLuminescience第87-89期,2000年,第266-268页;Journal of Luminescience 60-611994 P963-966;Nuclear Instruments and Methods in Physics Research A第320卷1992年,第263-272页。High-temperature scintillation crystals doped with cerium ions belong to extrinsic scintillation crystals, and trivalent cerium ions are the luminescent centers in the crystals. Its luminescent mechanism is generally considered to be completed by the following three steps, (a) first scintillation crystal absorbs high-energy rays or particles, thereby generating a large number of electron-hole pairs in the lattice; (b) a large number of high-energy electron-hole The electron-electron and electron-phonon interactions are relaxed, and finally become thermalized electron-hole pairs with bandgap energy, and the thermalized electron-hole pairs then transfer energy to Ce 3+ ions to emit light Center; (c) Ce 3+ ion undergoes scintillation through the 5d–4f transition. Studies have shown that when the crystal contains Ce 4+ ions, it will quench the Ce 3+ ion luminescent center and reduce the light output of the scintillation crystal. See: Journal of Luminescience vol. 87-89, 2000, pp. 266-268; Journal of Luminescience 60-611994 P963-966; Nuclear Instruments and Methods in Physics Research A Vol. 320, 1992, pp. 263-272.
在先技术中,铈离子掺杂稀土焦硅酸镥系列闪烁晶体(Ce:Lu2-xMxSi2O7,简称Ce:LPS),在晶体生长过程中,一般直接采用Ce:Lu2-xMxSi2O7化学式中对应的氧化物(Re2O3、SiO2和Ce2O3)原料按摩尔比进行配制合成的多晶料进行生长的,参见U.S.Pat.No:6,437,336。In the prior art, cerium ion doped rare earth lutetium pyrosilicate series scintillation crystals (Ce:Lu 2-x M x Si 2 O 7 , referred to as Ce:LPS), in the crystal growth process, generally directly use Ce:Lu 2 The corresponding oxides (Re 2 O 3 , SiO 2 and Ce 2 O 3 ) in the chemical formula of -x M x Si 2 O 7 are grown by preparing and synthesizing polycrystalline materials in molar ratio, see USPat.No: 6,437,336.
在先技术生长铈离子掺杂的Ce:LPS闪烁晶体具有下列缺点:由于Ce2O3原料在空气气氛或弱氧化气氛中进行烧结时很容易变为稳定的四价态离子,而采用提拉法、浮区法等熔体生长方法均为弱氧化性气氛,最后获得的晶体必将含有一定量的四价铈离子,从而降低了晶体的光输出。Ce:LPS scintillation crystals doped with cerium ions in the prior art have the following disadvantages: since the Ce 2 O 3 raw materials are easily sintered into stable quaternary ions when sintered in an air atmosphere or a weak oxidizing atmosphere, the pulling Melt growth methods such as the method and the floating zone method are weakly oxidizing atmospheres, and the finally obtained crystals must contain a certain amount of tetravalent cerium ions, thereby reducing the light output of the crystals.
另外,在先技术生长的Ce:LPS闪烁晶体中存在较多的晶格缺陷,从而降低了晶体的闪烁性能。In addition, there are many lattice defects in the Ce:LPS scintillation crystal grown by the prior art, which reduces the scintillation performance of the crystal.
发明内容:Invention content:
本发明的目的是克服在先技术的缺点,提供一种掺铈焦硅酸镥高温闪烁晶体的制备方法,该单晶体Lu2(1-x-y-z)Re2xCe2yM2zSi2O7含Ce4+离子最少,具有较好的晶格完整性和抗辐照性能。The purpose of the present invention is to overcome the shortcoming of prior art, provide a kind of preparation method of cerium-doped lutetium disilicate high-temperature scintillation crystal, this single crystal Lu 2 (1-xyz) Re 2x Ce 2y M 2z Si 2 O 7 contains Ce 4 The least + ions have good lattice integrity and radiation resistance.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
本发明的关键是在配制原料的过程中,引入与CeO2等当量强还原性的Si3N4原料,以及引入痕量的Zr、Ta、或Mg等元素,并在升温化料以及晶体生长过程中将CeO2还原成Ce2O3,再与SiO2和Re2O3等氧化物反应合成含有Ce3+离子的焦硅酸镥高温闪烁单晶体。The key of the present invention is that in the process of preparing raw materials, introduce Si 3 N 4 raw materials that are equivalent to CeO 2 and have strong reducibility, and introduce trace elements such as Zr, Ta, or Mg, and increase the temperature of the material and crystal growth During the process, CeO 2 is reduced to Ce 2 O 3 , and then reacted with oxides such as SiO 2 and Re 2 O 3 to synthesize a high-temperature scintillation single crystal of lutetium disilicate containing Ce 3+ ions.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
一种掺铈焦硅酸镥高温闪烁单晶体的制备方法,该方法包括下列步骤::A method for preparing a cerium-doped lutetium disilicate high-temperature scintillation single crystal, the method comprising the following steps:
①按掺杂三价铈离子焦硅酸镥的化学式Lu2(1-x-y-z)Re2xCe2yM2zSi2O7进行配料,其中Re代表除Lu之外的其它稀土元素,M表示Zr、Mg、Ta金属离子;0≤x≤0.3,0.001≤y≤0.05,0.00001≤z≤0.0005,选定x、y、z后,按各组分氧化物对应的摩尔比,即Lu2O3∶Re2O3∶CeO2∶MO2∶SiO2=(1-x-y-z)∶x∶2y∶2z∶2称量初始原料,各初始原料的纯度均大于99.99%,然后再称取和CeO2等当量摩尔的Si3N4原料,即y/6摩尔的Si3N4原料;① According to the chemical formula Lu 2(1-xyz) Re 2x Ce 2y M 2z Si 2 O 7 doped with trivalent cerium ion lutetium disilicate, where Re represents other rare earth elements except Lu, M represents Zr, Mg, Ta metal ions; 0≤x≤0.3, 0.001≤y≤0.05, 0.00001≤z≤0.0005, after selecting x, y, z, according to the molar ratio corresponding to each component oxide, namely Lu 2 O 3 : Re 2 O 3 :CeO 2 :MO 2 :SiO 2 =(1-xyz):x:2y:2z:2 Weigh the initial raw materials, the purity of each initial raw material is greater than 99.99%, and then weigh and CeO 2 etc. Equivalent mole of Si 3 N 4 raw material, i.e. y/6 mole of Si 3 N 4 raw material;
②将各组分原料充分混合成均匀的混合粉料;② Fully mix the raw materials of each component into a uniform mixed powder;
③在1-5Gpa的压力下将混合的粉料压成圆柱状的料饼,在低于500℃的温度下进行低温烧结10-24小时;③ Press the mixed powder into a cylindrical cake under a pressure of 1-5Gpa, and sinter at a temperature lower than 500°C for 10-24 hours;
④将烧好的料块装进炉膛中的铱金坩埚内,将炉膛密封并抽真空,真空度约为10-3-10-4Pa,为了保证CeO2被充分还原,在此真空度下采用中频感应加热方式以300-500℃/hr升温速度进行升温化料;④Put the burnt material into the iridium crucible in the furnace, seal the furnace and evacuate it, the vacuum degree is about 10 -3 -10 -4 Pa, in order to ensure that CeO 2 is fully reduced, under this vacuum degree Adopt intermediate frequency induction heating method to heat up the material at a heating rate of 300-500°C/hr;
⑤当坩埚内的料块升温到1000-1200℃处,在此温度区间进行恒温2-3小时;⑤ When the material block in the crucible is heated up to 1000-1200 ℃, keep the temperature in this temperature range for 2-3 hours;
⑥继续以300-500℃./hr的升温速度升温至1900-2000℃,待料全部熔化后,再在此温度范围内恒温1-2小时;⑥Continue to heat up to 1900-2000°C at a heating rate of 300-500°C./hr. After all the materials are melted, keep the temperature within this temperature range for 1-2 hours;
⑦向炉膛内缓慢充入N2气或者Ar气,使炉膛的气压保持在1-1.25atm,然后,在本发明单晶体的结晶温度下,一般在1850-1950℃范围内,采用提拉法的工艺生长铈离子掺杂的焦硅酸镥高温闪烁晶体,在晶体生长过程中,采用纯Lu2Si2O7籽晶,生长速度为1-5mm/hr,晶体转速为10-80RPM,晶体经过下种、缩径、放肩、等径、收尾和降温程序后,晶体生长完成。7. Slowly charge N2 gas or Ar gas into the furnace to keep the air pressure of the furnace at 1-1.25 atm, then, under the crystallization temperature of the single crystal of the present invention, generally within the range of 1850-1950 ° C, adopt the pulling method The high-temperature scintillation crystal of lutetium pyrosilicate doped with cerium ions is grown by the process. During the crystal growth process, pure Lu 2 Si 2 O 7 seed crystal is used, the growth rate is 1-5mm/hr, and the crystal rotation speed is 10-80RPM. After planting, diameter reduction, shouldering, equal diameter, finishing and cooling procedures, the crystal growth is completed.
所述的升温化料采用石墨坩埚,或者钨坩埚。The heating material used is a graphite crucible or a tungsten crucible.
所述的Lu2Si2O7籽晶方向为a、b、c轴向或者其它结晶方向。The said Lu 2 Si 2 O 7 seed crystal direction is the a, b, c axis or other crystallographic directions.
本发明与在先技术相比,由于在初始原料中通过加入强还原性Si3N4原料,在真空气氛中将稳定的CeO2原料还原为了三价的铈离子而引入到焦硅酸镥高温闪烁晶体中。由于在焦硅酸镥晶体中加入了痕量的Zr,Mg,Ta等元素可以适当矫正晶格的畸变,大大增加了晶体的抗辐照能力。另外,由于在配制原料过程中加入了等当量的Si3N4原料,Si元素相对过量,可以弥补在晶体生长过程中SiO2挥发带来的缺Si元素问题。Compared with the prior art, the present invention reduces the stable CeO2 raw material into trivalent cerium ions in a vacuum atmosphere by adding a strong reducing Si 3 N 4 raw material to the initial raw material and introduces it into the high-temperature lutetium disilicate. in scintillating crystals. Since the addition of trace elements such as Zr, Mg, and Ta in the lutetium disilicate crystal can properly correct the distortion of the crystal lattice, the radiation resistance of the crystal is greatly increased. In addition, due to the addition of an equivalent amount of Si 3 N 4 raw materials in the process of preparing raw materials, the Si element is relatively excessive, which can make up for the lack of Si elements caused by SiO 2 volatilization during the crystal growth process.
具体实施方式:Detailed ways:
本发明所述的引入Si3N4原料后,在升温化料过程中充分利用Si3N4的强还原性,促使熔体和晶体中含有大量的Ce3+离子。同时,由于痕量Zr,Ta,Mg等异价态元素的加入,还可以消除由于价态变化引起的色心,从而大大增加了晶体的抗辐照能力,同时也增加了LPS晶格的完整性。After the Si 3 N 4 raw material is introduced in the present invention, the strong reducing property of Si 3 N 4 is fully utilized in the process of heating up the material, so that the melt and crystal contain a large amount of Ce 3+ ions. At the same time, due to the addition of trace elements such as Zr, Ta, Mg, etc., it can also eliminate the color center caused by the change of valence state, thereby greatly increasing the anti-irradiation ability of the crystal, and also increasing the integrity of the LPS lattice. sex.
在升温化料过程中原料中将发生如下的化学反应:During the heating process, the following chemical reactions will occur in the raw materials:
Si3N4+12CeO2→6Ce2O3+3SiO2+2N2 ↑ (1)Si 3 N 4 +12CeO 2 →6Ce 2 O 3 +3SiO 2 +2N 2 ↑ (1)
本发明所述的掺杂三价铈离子(Ce3+)焦硅酸镥高温闪烁单晶体:Lu2(1-x-y-z)Re2xCe2yM2zSi2O7(其中Re代表除Lu之外的其它稀土元素,如:Y、Gd、Sc、Yb等之一或者多种混合,M表示Zr、Mg、Ta等金属离子;0≤x≤0.3,0.001≤y≤0.05,0.00001≤z≤0.0005)的具体制备工艺技术方案如下:The high-temperature scintillation single crystal of lutetium disilicate doped with trivalent cerium ions (Ce 3+ ) according to the present invention: Lu 2(1-xyz) Re 2x Ce 2y M 2z Si 2 O 7 (wherein Re represents Other rare earth elements, such as: Y, Gd, Sc, Yb, etc. one or more mixed, M represents Zr, Mg, Ta and other metal ions; 0≤x≤0.3, 0.001≤y≤0.05, 0.00001≤z≤0.0005) The specific preparation technology scheme is as follows:
<1>按掺杂三价铈离子焦硅酸镥化学式Lu2(1-x-y-z)Re2xCe2yM2zSi2O7中各组分氧化物对应的摩尔比进行称量初始原料,各初始原料的纯度均大于99.99%。即所称取的各组分原料及其摩尔配比如下:Lu2O3∶Re2O3∶CeO2∶MO2∶SiO2=(1-x-y-z)∶x∶2y∶2z∶2。然后再称取和CeO2等当量摩尔的Si3N4原料,即y/6摩尔的Si3N4原料加入上述的氧化物原料中。<1> Weigh the initial raw materials according to the molar ratios corresponding to the oxides of each component in the chemical formula Lu 2(1-xyz) Re 2x Ce 2y M 2z Si 2 O 7 doped with trivalent cerium ions, and each initial The purity of raw materials is greater than 99.99%. That is, the weighed raw materials of each component and their molar ratios are as follows: Lu 2 O 3 :Re 2 O 3 :CeO 2 :MO 2 :SiO 2 =(1-xyz):x:2y:2z:2. Then weigh the Si 3 N 4 raw material equivalent to the CeO 2 in moles, that is, add y/6 moles of the Si 3 N 4 raw material to the above-mentioned oxide raw material.
<2>将上述称取各组分原料充分混合成均匀的混合粉料;<2> fully mix the raw materials of each component weighed above into a uniform mixed powder;
<3>将混合均匀原料,在1-5Gpa的压力下将混合的粉料压成圆柱状的料饼(料饼直径略小于坩埚容器直径),在低于500℃的温度下进行低温烧结10-24小时以除去原料中的有机物、水及低熔点杂质;<3> Mix the raw materials uniformly, press the mixed powder into a cylindrical cake (the diameter of the cake is slightly smaller than the diameter of the crucible container) under a pressure of 1-5Gpa, and carry out low-temperature sintering at a temperature lower than 500°C for 10 -24 hours to remove organic matter, water and low melting point impurities in raw materials;
<4>将烧好的料块装进炉膛中的Ir金坩埚内,将炉膛密封并抽真空,真空度约为10-3-10-4Pa。为了保证CeO2被充分还原,在此真空度下采用中频感应加热方式以300-500℃/hr升温速度进行升温化料;<4>Put the burnt block into the Ir gold crucible in the furnace, seal the furnace and evacuate it, the vacuum degree is about 10 -3 -10 -4 Pa. In order to ensure that CeO 2 is fully reduced, medium-frequency induction heating is used to raise the temperature of the material at a heating rate of 300-500°C/hr under this vacuum degree;
<5>当坩埚内的料块升温到1000-1200℃处,为了使得上述方程式(1)反应充分,在此温度区间进行恒温2-3小时;<5> When the material block in the crucible is heated to 1000-1200°C, in order to make the above equation (1) react fully, keep the temperature in this temperature range for 2-3 hours;
<6>继续以300-500℃./hr的升温速度升温至1900-2000℃,待料全部熔化后,为了保证原料的充分反应以及混合均匀,再在此温度范围内恒温1-2小时;<6> Continue to heat up to 1900-2000°C at a heating rate of 300-500°C./hr. After all the materials are melted, in order to ensure the full reaction and uniform mixing of the raw materials, keep the temperature within this temperature range for 1-2 hours;
<7>向炉膛内缓慢充入N2气或者Ar气保护气体,使炉膛的气压保持在1-1.25atm。然后,在掺杂三价铈离子(Ce3+)焦硅酸镥高温闪烁单晶体:Lu2(1-x-y-z)Re2xCe2yM2zSi2O7(其中Re代表除Lu之外的其它稀土元素,如:Y、Gd、Sc、Yb等之一或者多种混合,M表示Zr、Mg、Ta等金属离子;0≤x≤0.3,0.001≤y≤0.05,0.00001≤z≤0.0005)的结晶温度下(一般在1850-1950℃范围内),采用提拉法的工艺生长铈离子掺杂的焦硅酸镥高温闪烁晶体,在晶体生长过程中,采用纯Lu2Si2O7籽晶,生长速度为1-5mm/hr,晶体转速约为10-80RPM。晶体经过下种、缩径、放肩、等径、收尾,降温等程序后,晶体生长完成。<7> Slowly fill the furnace with N 2 gas or Ar gas protection gas to keep the pressure of the furnace at 1-1.25atm. Then, high-temperature scintillation single crystals were doped with trivalent cerium ions (Ce 3+ ) lutetium disilicate: Lu 2(1-xyz) Re 2x Ce 2y M 2z Si 2 O 7 (where Re represents other rare earths except Lu Elements, such as: Y, Gd, Sc, Yb, etc., or a combination of multiples, M represents Zr, Mg, Ta and other metal ions; 0≤x≤0.3, 0.001≤y≤0.05, 0.00001≤z≤0.0005) crystallization Under the temperature (generally in the range of 1850-1950 ℃), the high-temperature scintillation crystal of lutetium disilicate doped with cerium ions is grown by the pulling method. During the crystal growth process, the pure Lu 2 Si 2 O 7 seed crystal is used. The growth rate is 1-5mm/hr, and the crystal rotation speed is about 10-80RPM. After the crystal has undergone the procedures of seeding, diameter reduction, shouldering, equal diameter, finishing, and cooling, the crystal growth is completed.
本发明上述工艺步骤<4>中所述的升温化料还可以采用石墨加热,或者W加热等方式进行升温化料;The heating chemical material described in the above-mentioned process step <4> of the present invention can also be heated by graphite, or the heating chemical material can be carried out in modes such as W heating;
本发明上述工艺步骤<7>中所述的铈离子掺杂焦硅酸镥闪烁晶体的结晶温度范围在1800℃-2000℃,结晶温度主要取决于铈离子掺杂焦硅酸镥高温闪烁晶体Lu2(1-x-y-z)Re2xCe2yM2zSi2O7中Re所代表的元素及其含量的多少而不同,一般随着Re元素含量的增加焦硅酸镥高温晶体的熔点将从1950℃降低至1850℃。The crystallization temperature of the cerium ion-doped lutetium disilicate scintillation crystal described in the above process step <7> of the present invention ranges from 1800°C to 2000°C, and the crystallization temperature mainly depends on the cerium ion-doped lutetium disilicate high-temperature scintillation crystal Lu The elements represented by Re in 2(1-xyz) Re 2x Ce 2y M 2z Si 2 O 7 and their content are different. Generally, with the increase of Re element content, the melting point of lutetium disilicate high-temperature crystal will increase from 1950℃ to Reduced to 1850°C.
本发明上述工艺步骤<7>中所述Lu2Si2O7籽晶一般采用a、b、c轴向或者其它特殊结晶方向进行结晶生长。The Lu 2 Si 2 O 7 seed crystals described in the above-mentioned process step <7> of the present invention generally use a, b, c axes or other special crystallographic directions for crystal growth.
下面通过实施例对本发明的制备过程作说明,但不应以此限制其保护范围。The following examples illustrate the preparation process of the present invention, but should not limit its protection scope.
例1:制备Lu1.99798Ce0.002Zr0.00002Si2O7焦硅酸镥闪烁晶体Example 1: Preparation of Lu 1.99798 Ce 0.002 Zr 0.00002 Si 2 O 7 scintillation crystals of lutetium disilicate
按照上述工艺步骤<1>按上述化学式分别称取纯度为99.999%的干燥的0.99899mol Lu2O3,2mol SiO2,0.002mol CeO2,0.00002mol ZrO2和0.00016mol Si3N4原料,共1500g;按上述工艺步骤<2>将上述称取的组分充分混合成均匀的粉料;按上述工艺步骤<3>将混合均匀原料,在1Gpa的压力下将混合的粉料压成φ78×10mm3的料饼,在500℃的温度下烧结15小时以除去原料中的有机物、水及低熔点杂质;按上述工艺步骤<4>将烧好的料块装入φ80×60mm3的Ir金坩埚内,并装入提拉炉内,密封炉膛并抽真空至5×10-3Pa。在此真空度下采用中频感应加热方式以400℃/hr升温速度进行升温化料;按上述工艺步骤<5>当坩埚内的料块升温到1000℃时,恒温2.5小时;按上述工艺步骤<6>继续以400℃./hr的升温速度升温至2000℃,待料全部熔化后,为了保证原料的充分反应以及混合均匀,再在此温度范围内恒温1.5小时;按上述工艺步骤<7>向炉膛内缓慢充入N2气,使炉膛的气压保持在1.25atm。然后在结晶温度1950℃下,采用b轴向的Lu2Si2O7籽晶,采用提拉法生长晶体。在晶体生长过程中,生长速度为2mm/hr,晶体转速约为30RPM。晶体经过下种、缩径、放肩、等径、收尾,降温等程序后,晶体生长完成,即可获得φ35×50mm结晶完整不开裂的Lu1.99798Ce0.002Zr0.00002Si2O7无色透明的晶体,可以广泛应用于高能物理核物理以及影像核医学等领域中。According to the above process step <1>, weigh dry 0.99899mol Lu 2 O 3 , 2mol SiO 2 , 0.002mol CeO 2 , 0.00002mol ZrO 2 and 0.00016mol Si 3 N 4 raw materials with a purity of 99.999% according to the above chemical formula. 1500g; According to the above process step <2>, fully mix the above-mentioned components into a uniform powder; according to the above process step <3>, mix the raw materials uniformly, and press the mixed powder into φ78× under the pressure of 1Gpa 10mm 3 cake, sintered at 500°C for 15 hours to remove organic matter, water and low melting point impurities in the raw material; according to the above process step <4>, put the fired block into φ80×60mm 3 Ir gold Crucible, and put it into the pulling furnace, seal the furnace and evacuate to 5×10 -3 Pa. Under this vacuum degree, use medium frequency induction heating method to heat up the material at a heating rate of 400 °C/hr; according to the above process step <5> when the material block in the crucible is heated to 1000 °C, keep the temperature constant for 2.5 hours; according to the above process step <6> Continue to heat up to 2000°C at a heating rate of 400°C./hr. After all the materials are melted, in order to ensure the full reaction and uniform mixing of the raw materials, keep the temperature within this temperature range for 1.5 hours; follow the above process step <7> Slowly fill the furnace with N 2 gas to keep the pressure of the furnace at 1.25atm. Then, at a crystallization temperature of 1950° C., a b-axis Lu 2 Si 2 O 7 seed crystal is used to grow crystals by a pulling method. During the crystal growth process, the growth rate was 2 mm/hr, and the crystal rotation speed was about 30 RPM. After the crystal is planted, reduced in diameter, shouldered, equal in diameter, terminated, and cooled, the crystal growth is completed, and the φ35×50mm crystals with complete and uncracked Lu 1.99798 Ce 0.002 Zr 0.00002 Si 2 O 7 are colorless and transparent Crystals can be widely used in fields such as high-energy physics, nuclear physics, and imaging nuclear medicine.
例2:制备Lu1.389Ce0.010Gd0.6Mg0.001Si2O7焦硅酸镥闪烁晶体Example 2: Preparation of Lu 1.389 Ce 0.010 Gd 0.6 Mg 0.001 Si 2 O 7 lutetium disilicate scintillation crystal
按照上述实施例1中工艺步骤<1>按上述化学式Lu1.389Ce0.005Gd0.6Si2O7分别称取纯度为99.999%的干燥的0.6945mol Lu2O3,2mol SiO2,0.01mol CeO2,0.001mol MgO和0.00083mol Si3N4原料,共1500g;重复上述实施例1中工艺步骤<2><3><4>和<5>;按上述实施例1中工艺步骤<6>继续以400℃./hr的升温速度升温至1980℃,待料全部熔化后,在此温度范围内恒温1.5小时;按上述实施例1中工艺步骤<7>向炉膛内缓慢充入N2气,使炉膛的气压保持在1.25atm。然后在结晶温度1870℃下,采用b轴向的Lu2Si2O7籽晶,采用提拉法生长晶体。在晶体生长过程中,生长速度为2.5mm/hr,晶体转速约为40RPM。晶体经过下种、缩径、放肩、等径、收尾,降温等程序后,晶体生长完成。最后可以获得φ35×50mm结晶完整不开裂的无色透明晶体,可以广泛应用于高能物理核物理以及影像核医学等领域中。According to the process step <1> in the above-mentioned Example 1, according to the above-mentioned chemical formula Lu 1.389 Ce 0.005 Gd 0.6 Si 2 O 7 , respectively weigh dry 0.6945mol Lu 2 O 3 , 2mol SiO 2 , 0.01mol CeO 2 with a purity of 99.999%, 0.001mol MgO and 0.00083mol Si 3 N 4 raw materials, 1500g altogether; Repeat process step <2><3><4> and <5> in the above-mentioned embodiment 1; Continue by process step <6> in the above-mentioned embodiment 1 Raise the temperature to 1980°C at a heating rate of 400°C./hr. After all the materials are melted, keep the temperature within this temperature range for 1.5 hours; slowly fill the furnace with N2 gas according to the process step <7> in the above-mentioned Example 1, so that The air pressure in the furnace is maintained at 1.25atm. Then, at a crystallization temperature of 1870° C., a b-axis Lu 2 Si 2 O 7 seed crystal is used to grow crystals by a pulling method. During the crystal growth process, the growth rate was 2.5 mm/hr, and the crystal rotation speed was about 40 RPM. After the crystal has undergone the procedures of seeding, diameter reduction, shouldering, equal diameter, finishing, and cooling, the crystal growth is completed. Finally, a colorless and transparent crystal with a φ35×50mm crystal integrity and no cracks can be obtained, which can be widely used in the fields of high-energy physics, nuclear physics and imaging nuclear medicine.
例3:制备Lu1.789Ce0.010(Y0.5Gd0.5)0.2Zr0.001Si2O7焦硅酸镥闪烁晶体Example 3: Preparation of Lu 1.789 Ce 0.010 (Y0.5Gd 0.5 ) 0.2 Zr 0.001 Si 2 O 7 lutetium disilicate scintillation crystal
按照上述实施例2中工艺步骤<1>按上述化学式Lu1.789Ce0.010(Y0.5Gd0.5)0.2Zr0.001Si2O7分别称取纯度为99.999%的干燥的0.8945mol Lu2O3,2mol SiO2,0.01molCeO2,0.001mol ZrO2和0.00083mol Si3N4原料,共1500g;重复上述实施例1中工艺步骤<2>><3><4>和<5>;按上述实施例2中工艺步骤<6>继续以400℃./hr的升温速度升温至1950℃,待料全部熔化后,在此温度范围内恒温2小时;按上述实施例2中工艺步骤<7>向炉膛内缓慢充入Ar气,使炉膛的气压保持在1atm。然后在结晶温度1900℃下,采用b轴向的Lu2Si2O7籽晶,采用提拉法生长晶体。在晶体生长过程中,生长速度为1mm/hr,晶体转速约为25RPM。晶体经过下种、缩径、放肩、等径、收尾,降温等程序后,晶体生长完成。最后可以获得φ35×50mm结晶完整焦硅酸镥晶体,晶体无色透明,可以广泛应用于高能物理核物理以及影像核医学等领域中。According to the process step <1> in the above example 2, according to the above chemical formula Lu 1.789 Ce 0.010 (Y 0.5 Gd 0.5 ) 0.2 Zr 0.001 Si 2 O 7 , weigh 0.8945mol Lu 2 O 3 , 2mol SiO with a purity of 99.999% respectively 2 , 0.01molCeO 2 , 0.001mol ZrO 2 and 0.00083mol Si 3 N 4 raw materials, a total of 1500g; repeat the process steps <2>><3><4> and <5> in the above-mentioned embodiment 1; according to the above-mentioned embodiment 2 Process step <6> continues to heat up to 1950 °C at a heating rate of 400 °C./hr. After all the materials are melted, keep the temperature within this temperature range for 2 hours; Slowly fill in Ar gas to keep the pressure in the furnace at 1 atm. Then, at a crystallization temperature of 1900° C., a b-axis Lu 2 Si 2 O 7 seed crystal is used to grow crystals by a pulling method. During the crystal growth process, the growth rate was 1 mm/hr, and the crystal rotation speed was about 25 RPM. After the crystal has undergone the procedures of seeding, diameter reduction, shouldering, equal diameter, finishing, and cooling, the crystal growth is completed. Finally, a φ35×50mm crystalline complete lutetium pyrosilicate crystal can be obtained. The crystal is colorless and transparent, and can be widely used in the fields of high-energy physics, nuclear physics and imaging nuclear medicine.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100534382A CN1322173C (en) | 2004-08-04 | 2004-08-04 | Preparation method of cerium-doped lutetium disilicate high-temperature scintillation single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100534382A CN1322173C (en) | 2004-08-04 | 2004-08-04 | Preparation method of cerium-doped lutetium disilicate high-temperature scintillation single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1587447A CN1587447A (en) | 2005-03-02 |
CN1322173C true CN1322173C (en) | 2007-06-20 |
Family
ID=34602854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100534382A Expired - Fee Related CN1322173C (en) | 2004-08-04 | 2004-08-04 | Preparation method of cerium-doped lutetium disilicate high-temperature scintillation single crystal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1322173C (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102021651B (en) * | 2009-09-11 | 2013-01-02 | 中国科学院上海硅酸盐研究所 | Cerium-doped rare earth borate scintillating crystal and Bridgman preparation method thereof |
CN102268734B (en) * | 2010-06-01 | 2013-12-11 | 中国科学院上海硅酸盐研究所 | LPS:Ce luminescent material and preparation method thereof |
CN103774282B (en) * | 2012-10-23 | 2016-01-06 | 中国科学院上海硅酸盐研究所 | One mixes cerium lutetium pyrosilicate scintillating fiber and electrostatic spinning synthetic method thereof |
CN104046984B (en) * | 2013-03-14 | 2016-03-23 | 中国科学院上海硅酸盐研究所 | A method for preparing cerium-doped lutetium disilicate scintillation film |
CN104861976A (en) * | 2015-05-26 | 2015-08-26 | 中山大学 | Rare earth silicate double salt scintillating material and preparation method thereof |
CN105969354A (en) * | 2016-05-18 | 2016-09-28 | 上海大学 | Cerium-doped gadolinium disilicate luminescent material and preparation method thereof |
CN106222750A (en) * | 2016-09-30 | 2016-12-14 | 中国电子科技集团公司第二十六研究所 | A kind of gallium-lanthanum silicate serial crystal growing method |
JP2019043820A (en) * | 2017-09-05 | 2019-03-22 | 国立大学法人東北大学 | Crystal material, radiation detector, nondestructive testing device, and imaging device |
CN109020543B (en) * | 2018-09-28 | 2021-04-06 | 浙江梵彼斯特轻纺发展有限公司 | Cerium-doped lutetium scandium pyrosilicate scintillating ceramic and preparation method thereof |
WO2021031135A1 (en) * | 2019-08-21 | 2021-02-25 | 眉山博雅新材料有限公司 | Crystals capable of simultaneously detecting neutrons and y/x-rays and preparation method thereof |
US12054848B2 (en) | 2019-08-21 | 2024-08-06 | Meishan Boya Advanced Materials Co., Ltd. | Crystals for detecting neutrons, gamma rays, and x rays and preparation methods thereof |
CN113089096A (en) * | 2019-08-21 | 2021-07-09 | 眉山博雅新材料有限公司 | Crystal |
US12018399B2 (en) | 2019-08-21 | 2024-06-25 | Meishan Boya Advanced Materials Co., Ltd. | Crystals for detecting neutrons, gamma rays, and x rays and preparation methods thereof |
US11827826B2 (en) | 2019-08-21 | 2023-11-28 | Meishan Boya Advanced Materials Co., Ltd. | Methods and devices for growing scintillation crystals |
CN112062472B (en) * | 2020-08-31 | 2021-12-17 | 华南理工大学 | A kind of high hardness Lu2Si2O7 transparent glass-ceramic and preparation method thereof |
CN113176604A (en) * | 2021-04-30 | 2021-07-27 | 中国电子科技集团公司第二十六研究所 | Scintillation crystal array anti-irradiation reinforcing structure and anti-irradiation reinforcing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4958080A (en) * | 1988-10-06 | 1990-09-18 | Schlumberger Technology Corporation | Lutetium orthosilicate single crystal scintillator detector |
CN1250526A (en) * | 1998-01-12 | 2000-04-12 | Tasr有限公司 | Scintillating substance and scintillating wave-guide element |
US6437336B1 (en) * | 2000-08-15 | 2002-08-20 | Crismatec | Scintillator crystals and their applications and manufacturing process |
US6624420B1 (en) * | 1999-02-18 | 2003-09-23 | University Of Central Florida | Lutetium yttrium orthosilicate single crystal scintillator detector |
-
2004
- 2004-08-04 CN CNB2004100534382A patent/CN1322173C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4958080A (en) * | 1988-10-06 | 1990-09-18 | Schlumberger Technology Corporation | Lutetium orthosilicate single crystal scintillator detector |
CN1250526A (en) * | 1998-01-12 | 2000-04-12 | Tasr有限公司 | Scintillating substance and scintillating wave-guide element |
US6624420B1 (en) * | 1999-02-18 | 2003-09-23 | University Of Central Florida | Lutetium yttrium orthosilicate single crystal scintillator detector |
US6437336B1 (en) * | 2000-08-15 | 2002-08-20 | Crismatec | Scintillator crystals and their applications and manufacturing process |
Non-Patent Citations (1)
Title |
---|
硅酸镥闪烁晶体的研究进展及发展方向 秦来顺 任国浩,人工晶体学报,第32卷第4期 2003 * |
Also Published As
Publication number | Publication date |
---|---|
CN1587447A (en) | 2005-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1322173C (en) | Preparation method of cerium-doped lutetium disilicate high-temperature scintillation single crystal | |
CN102286286A (en) | Chloride scintillator for radiation detection | |
CN101377020A (en) | Rare earth silicates polycrystal material doped with Ce<3+> and preparing method thereof | |
CN107354509B (en) | Yttrium-doped barium fluoride crystal and preparation method and application thereof | |
CN105969354A (en) | Cerium-doped gadolinium disilicate luminescent material and preparation method thereof | |
CN114561704A (en) | Flux growth method and application of large-size bismuth tungstate crystal | |
CN105332056A (en) | Divalent metal cation and cerium co-doped lutetium aluminum garnet crystal for laser illumination and preparation method thereof | |
Fu et al. | Ce3+: Lu3Al5O12–Al2O3 optical nanoceramic scintillators elaborated via a low-temperature glass crystallization route | |
CN102534775A (en) | Method for growing cerium-doped lanthanum bromide scintillation crystal by using out-of-phase seed crystal | |
CN108441959A (en) | Mix Cerium aluminate gadolinium lutetium garnet crystal preparation method | |
CN108441960A (en) | Divalent metal is co-doped with lutetium aluminum carbuncle crystal preparation method with cerium | |
CN106149054A (en) | Mix Cerium aluminate gadolinium yttrogarnet high temperature scintillation crystal and preparation method thereof | |
CN106048725B (en) | Silicon ytterbium ion is co-doped with YAG fast flashing crystal and preparation method thereof | |
CN1259465C (en) | Preparation method of trivalent cerium ion doped rare earth silicate scintillation crystal | |
CN105908257A (en) | Calcium and ytterbium ion co-doped YAG ultra-fast scintillation crystal and preparation method thereof | |
He et al. | Growth and optical properties of YBa3B9O18: Ce crystals | |
CN108893779A (en) | A kind of calcium ions and magnesium ions and cerium co-doped yttrium aluminium garnet scintillation crystal and preparation method thereof | |
CN106048724B (en) | Sodium barium ytterbium ion is co-doped with YAG fast flashing crystal and preparation method thereof | |
CN100500953C (en) | New scintillation crystal doped cerium vanadate crystal material | |
CN113512757B (en) | A kind of bulk high-quality scintillation crystal and its preparation method and application | |
CN112390278B (en) | Strong electron-withdrawing element doped rare earth orthosilicate scintillation material and preparation method and application thereof | |
CN104058578B (en) | Ce is prepared in a kind of air atmosphere3+Activate the preparation method of scintillation glass | |
CN105297136A (en) | Cerium-doped gadolinium lutecium aluminate garnet crystal for laser illumination and preparation method thereof | |
Ping et al. | Hydrothermal synthesis of Ce: Lu2SiO5 scintillator powders | |
CN108396383B (en) | Gallium ytterbium ion is co-doped with YAG fast flashing crystal and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070620 Termination date: 20110804 |