JP3658033B2 - 光学装置 - Google Patents
光学装置 Download PDFInfo
- Publication number
- JP3658033B2 JP3658033B2 JP06510995A JP6510995A JP3658033B2 JP 3658033 B2 JP3658033 B2 JP 3658033B2 JP 06510995 A JP06510995 A JP 06510995A JP 6510995 A JP6510995 A JP 6510995A JP 3658033 B2 JP3658033 B2 JP 3658033B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- optical
- actuator
- solid
- optical member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Focusing (AREA)
- Automatic Focus Adjustment (AREA)
Description
【産業上の利用分野】
本発明は、被写体像を撮影光学部材を介して固体撮像素子に結像させる光学装置に関する。
【0002】
【従来の技術】
一般に、固体撮像素子を用いている光学装置には、所望の撮影範囲が得られるように、ズームレンズ機構が設けられている。
【0003】
この光学装置のズームレンズ機構の構成について図27を参照しながら説明する。図27は従来の光学装置のズームレンズ機構の構成を示す縦断面図である。
【0004】
光学装置は、図27に示すように、第1レンズ群101a,第2レンズ群101b、第3レンズ群101c、第4レンズ群101dからなる複数のレンズ群を備える。第2レンズ群101bおよび第4レンズ群101dは所定の範囲内で光軸方向に沿ってそれぞれ移動される。第2レンズ群101bの移動によってズーム動作が行われ、第4レンズ群101dの移動によって焦点調節が行われる。
【0005】
第4レンズ群101dの後方の光軸上には、光学ローパスフィルタ102およびCCDなどの固体撮像素子103が順次に配置されている。
【0006】
第1レンズ群101a、第3レンズ郡101c、光学ローパスフィルタ102、固体撮像素子103などは筐筒104に保持されている。
【0007】
これに対し、第2レンズ群101bは光学保持部材105に保持されている。光学保持部材105は、光軸方向に平行に伸びるガイドピン106およびねじ部材107によって光軸方向に移動可能に支持されている。ガイドピン106の各端部は筐筒104にそれぞれ支持されている。
【0008】
ねじ部材107には光学保持部材105に係合されるねじ部が形成されている。ねじ部材107の各端部は筐筒104にそれぞれ回転可能に支持され、ねじ部材107にはギア群101を介してステップモータ110からの駆動力が伝達される。ねじ部材107がステップモータ110からの駆動力によって回転されると、ねじ部材107の回転に伴い光学保持部材105は、ガイドピン106に案内されながら光軸方向に移動され、光学保持部材105の移動によって第2レンズ101bによるズーム動作が行われる。ねじ部材107と光学保持部材105との間における遊びは、片寄せばね108と片寄せ部材109とによって取り除かれる。
【0009】
第4レンズ群101dは、第2レンズ群101bと同様に、光学保持部材116に保持されている。光学保持部材116は、光軸方向に平行に伸びるガイドピン117およびねじ部材113によって光軸方向に移動可能に支持されている。ガイドピン117の各端部は筐筒104にそれぞれ支持されている。
【0010】
ねじ部材113には光学保持部材116に係合されるねじ部が形成されている。ねじ部材113の一端部は筐筒104に回転可能に支持されている。ねじ部材113の他端部は、筐筒104に回転可能に支持されるとともに、ステップモータ112の出力軸に直接接続されている。ねじ部材113がステップモータ112からの駆動力によって回転されると、ねじ部材113の回転に伴い光学保持部材116は、ガイドピン117に案内されながら光軸方向に移動され、光学保持部材116の移動によって第4レンズ101dによる焦点調節が行われる。ねじ部材113と光学保持部材116との間における遊びは、片寄せばね108と片寄せ部材109とによって取り除かれる。
【0011】
第2レンズ群102bと第3レンズ群101cとの間には絞り114が配置され、絞り114の開口径は、モータ115からの駆動力によって調節される。
【0012】
【発明が解決しようする課題】
近年、メモリ、マイコンなどの半導体チップの進歩により、携帯型情報機器が普及し、その小型化、高性能化がさらに進められている。この携帯型情報機器には、携帯性が必要条件として要求されているが、その携帯性の中で特に、薄くすることが強く要求されている。
【0013】
このような携帯型情報機器としては、被写体像を撮像する光学装置、またはこの光学装置を含む情報機器などがあるが、この光学装置を薄型化するためには、撮像光学系(例えば、図27に示す各レンズ群、絞りおよび固体撮像素子から構成される系)、機構系(例えば、図27に示すレンズ群を駆動するギア、モータ、絞りを駆動するモータなどから構成される系)を含めて装置全体を薄くしなければならない。
【0014】
しかし、従来の光学装置では、筐筒104内部に、第1レンズ群101a、第2レンズ群101b、第3レンズ郡101c、第4レンズ101d、光学ローパスフィルタ102、固体撮像素子103などが保持され、筐筒104外部に、絞り114を駆動するためのモータ115、第2レンズ群101bを駆動するためのモータ110、第4レンズ群101dを駆動するためのモータ112などが保持されていることにより、筐筒104は3次元的に複雑な形状になるから、通常プラスチックモールドで作成される筐筒用金型製作コストが高くなるとともに、筐筒104成形時、筐筒104の一部の熱収縮によってひけ、そりなどが発生し、高い寸法精度で筐筒104を製作することが困難である。その結果、撮像素子103に対する各レンズ群の位置決めおよびその保持部材の位置決めなどを高い精度で行うことは難しく、各レンズ群の傾き、レンズ群の移動中におけるレンズの揺れなどが発生することがあり、ひいては、撮影画像のぼけ、または撮影画像の揺れなどを招くことになる。
【0015】
また、固体撮像素子を駆動するための撮像素子駆動回路および機構系に含まれるモータを駆動するためのアクチュエータ駆動回路が実装されている電気回路基板と、前記固体撮像素子、前記モータとをリード線、またはフレキシブル基板などで接続する必要があり、組込みに多数の手順が掛かり、組立作業が複雑になる。
【0016】
さらに、機構系に含まれる光学保持部材105は、通常、光軸対称に軸支されているから、筐筒104の外形寸法は、レンズ系に比して大きくなり、また、モータなどは筐筒104の外部に配置されているから、装置全体の外形寸法はさらに大きくなり、光軸に直交する方向の寸法を小さくすること、すなわち光軸に直交する方向に対して薄くすることは非常に困難である。
【0017】
さらに、組立時に、機構部品、電気部品を様々な方向から組み込む必要があるから、組立作業に手間が掛かり、コストが掛かる。
【0018】
本発明の目的は、組立性が良く、コストを低く抑えることができるとともに、厚さを薄くすることができる光学装置を提供することにある。
【0019】
【課題を解決するための手段】
本発明は、被写体像を撮影光学系を介して固体撮像素子に結像させる光学装置において、前記撮影光学系が搭載され、前記固体撮像素子が固定されている基板を有し、前記撮影光学系は前記基板と平行な方向に移動して焦点調節を行う可動光学部材を含む複数の光学部材から構成され、前記可動光学部材が固定された移動部材には前記基板と平行な方向に配列された永久磁石が設けられ、前記基板には、前記永久磁石との間に磁路を形成するヨークとコイルが固定され、前記コイルに電流が供給されることで生じる磁力と電流との相互作用によって前記可動光学部材を前記基板と平行な方向に移動させる駆動力を発生することを特徴とする。
【0036】
【作用】
本発明の構成では、撮影光学系が搭載され、固体撮像素子が固定されている基板を有し、撮影光学系は基板と平行な方向に移動して焦点調節を行う可動光学部材を含む複数の光学部材から構成され、可動光学部材が固定された移動部材には基板と平行な方向に配列された永久磁石が設けられ、基板には、永久磁石との間に磁路を形成するヨークとコイルが固定され、コイルに電流が供給されることで生じる磁力と電流との相互作用によって可動光学部材を基板と平行な方向に移動させる駆動力を発生するから、従来のように、撮影光学系を収容、保持する筐筒を用いる必要がなくなるとともに、撮影光学系、それに含まれる可動光学部材、アクチュエータの構成部材の少なくとも一部および固体撮像素子の基板に対する位置決めを平面的(2次元的)に行うことができる。
【0053】
【実施例】
以下に、本発明の実施例について図を参照しながら説明する。
【0054】
(第1実施例)
図1は本発明の光学装置の第1実施例の構成を示す分解斜視図、図2は図1の光学装置の絞り部の構成を示す分解斜視図、図3は図1の光学装置の光学部材G2のアクチュエータの構成を示す縦断面図、図4は図3のB−B線に沿って得られた断面図、図5は図3のA−A線に沿って得られた断面図、図6は光学部材G2のアクチュエータの他の構成例を示す縦断面図、図7は図1の光学装置の固体撮像素子の周辺を示す縦断面図、図8は図1の光学装置の固体撮像素子の周辺を示す分解斜視図、図9は図1の光学装置の固体撮像素子の基板裏面側の周辺を示す分解斜視図、図10は固体撮像素子の撮像面を保護するガラス部材の他の取付例を示す縦断面図、図11は固体撮像素子の撮像面を保護するガラス部材の他の取付例を示す縦断面図、図12は図1の光学装置の構成を示すブロック図、図13はフォーカシング時の合焦特性図、図14はズームトラッキングカーブを示す図である。
【0055】
光学装置は、図1に示すように、表面に撮像光学系および機構系が搭載されている基板1を備える。基板1には、複数の開口部1a,1b,1cが形成されている。開口部1aは、ガラスなどで密閉部材で光束通過可能に密閉され、基板1とシールドケース49との間に形成された搭載部品の収容空間内にごみ、埃などの侵入が防止されている。
【0056】
基板1に搭載されている撮像光学系は、開口部1aから導かれた被写体の光量を調節する絞り部30と、自由曲面の反射面が形成されているガラス、プラスチックなどのプリズム状の複数の光学部材G1,G2,G3,G4と、光学部材G4から射出された光を受光し、この光を電気信号に変換する固定撮像素子2とを有する。
【0057】
紋り部30は、図2に示すように、開口部1aの軸線に一致する光軸Kを中心に点対称に配置されている2枚の絞り羽根31,32を有する。各絞り羽根31,32は、それぞれに設けられた軸33,34を中心として回転するように構成されている。絞り羽根31の軸33は基板1に設けられている位置決め穴37に回転可能に挿入され、絞り羽根32の軸34が基板1の位置決め穴41に回転可能に挿入されている。各絞り羽根31,32の回転によって絞り閉口量が変化し、光量が調整される。各絞り羽根31,32の回転によって規制される絞り閉口の位置と光軸Kとは一致する。
【0058】
各絞り羽根31,32には、アクチュエータの一部としてそれぞれ永久磁石35,36が設けられている。この永久磁石35,36は、それぞれ紋り羽根31,32の位置を検出するための磁気スケールとしても用いられている。各永久磁石35,36は、各絞り羽根31,32の回転方向に垂直な方向にかつ基板1に対し垂直方向に磁極が配置されるように着磁されている。
【0059】
永久磁石35に対向する基板1上の位置には、コイル38およびヨーク39と位置センサ40とが配置され、永久磁石36に対向する基板1上の位置には、コイル42およびヨーク43と位置センサ44とが配置されている。
【0060】
永久磁石35は、コイル38およびヨーク39と共働して絞り羽根31を駆動するためのアクチュエータを構成する。このアクチュエータにおいては、永久磁石35とヨーク39との間に磁束が通過する状態でコイル38に電流を流すと、前記磁束と電流との相互作用によって永久磁石35すなわち紋り羽根31を、軸33を中心として回転させる。位置センサ40はホールセンサからなり、このホールセンサは、紋り羽根31の回転による永久磁石35の磁界の変化を検出する。位置センサ40による検出値は、所定の紋り値になるように絞り羽根31の回転量を制御するための制御量として用いられる。
【0061】
永久磁石36は、コイル42およびヨーク43と共働して絞り羽根32を駆動するためのアクチュエータを構成する。位置センサ44は、位置センサ42と同様に、紋り羽根32の回転による永久磁石36の磁界の変化を検出するホールセンサからなる。
【0062】
なお、永久磁石35,36をプラスチックマグネットで構成し、プラスチックマグネットを絞り羽根31,32の一部分となるように一体化することもできる。
【0063】
各光学部材G1,G2,G3,G4は、例えば、開口部1aから絞り部30を介して入射された光が、光学部材G1の内部で複数回の反射を繰り返した後に、光学部材G2に導かれるように、複数の球面レンズを組み合わせて構成されたレンズ群と同等の機能を有する。
【0064】
光学部材G1は基板1に固定されている。光学部材G1には、基板1に対する位置決めをするための1対の軸G1aが設けられ、各軸G1aを対応する基板1の開口部1bに嵌合することによって、基板1に対する光学部材G1の位置決め固定が行われている。なお、本実施例では、各軸G1aと対応する開口部1bとの嵌合によって、基板1と光学部材G1との位置決め固定をしているが、これに代えて、基板1に対し光学部材G1を位置決め手段で位置決めをした後に、基板1と光学部材G1とを接着剤で固定する方法を用いることもできる。
【0065】
光学部材G2,G3のそれぞれは、基板1の表面に対し平行に所定の方向(基板1の長手方向)に移動されることによって、ズーミング(焦点距離調整)動作、フォーカシング(焦点調整)動作を行うための光学部材である。
【0066】
光学部材G2は、移動台3に接着剤で固定されている。移動台3は、平板状に形成された鉄などの高透磁率材からなる。移動台3には、それを基板1に対し平行にかつ所定の方向に移動させるためのアクチュエータの一部、移動位置を検出するための位置検出部と、移動方向をガイドするとともに移動位置を規制するための位置規制部とが設けられている。
【0067】
本実施例では、図1、図3ないし図5に示すように、アクチュエータの一部として永久磁石5が、位置検出部として磁気スケール7が、位置規制部として移動方向に垂直な面内においてV字の断面形状を有する溝部9および凹状の溝部11がそれぞれ設けられている。永久磁石5は、光学部材G2移動方向に対して直角方向に着磁された2組の磁石から構成され、各磁石は基板1に平行な方向に配列されている。
【0068】
移動台3、永久磁石5と共働してアクチュエータを構成するコイル17およびヨーク19は基板1に設けられている。
【0069】
磁気スケール7の磁力は、MRセンサ、ホールセンサなどからなる位置センサ21で検出され、この位置センサ21は磁気スケール7に対向するように基板1に設けられている。
【0070】
各溝部9,11に対向する基板1上のそれぞれの位置には、移動台3の移動方向をガイドするとともに移動位置を規制するためのレール部13,14が設けられている。レール部13,14には、移動台3の移動方向に垂直な面内においてV字の断面形状を有する溝が形成されている。各溝部9,11と対応するレール部13,14との間には、ボール46が挿入されている。
【0071】
移動台3、永久磁石5、コイル17、ヨーク19によって構成されたアクチュエータにおいては、コイル17に電流を流すと、後述する磁気回路と電流との相互作用により駆動力が発生し、この駆動力によって移動台3すなわち光学部材G2が光軸方向(図3において紙面と垂直方向)に移動される。具体的には、図5(b)に示すように、永久磁石5、透磁性がある移動台3、ヨーク19の間には図中に点線で示す磁路が形成されている。永久磁石5とヨーク19との間の磁路中に存在するコイル17に電流を流すと、磁力と電流との相互作用により発生する駆動力によって移動台3すなわち光学部材G2は図中に示す矢印方向に移動される。電流の流れ方向を変化させることによって移動台3の移動方向は変化し、例えば、移動台3を図5(b)に示す位置から図5(a)に示す位置へ移動させることができ、移動台3を図5(b)に示す位置から図5(c)に示す位置へ移動させることができる。
【0072】
移動台3の移動時、図4に示すように、永久磁石5とヨーク19との間には磁力による吸引力が働いているから、移動台3とレール部13とはボール46を介してガタなく密着している。移動台3が図4(a)に示す方向に移動するときにはボール46は右回転をし、また図4(c)に示す方向に移動するときにはボール46は左回転をし、移動台3の姿勢はレール部13に対しボール46を介して安定に保持される。また、移動台3に移動中、ボール46は転がるから、ボール46に対して移動台3およびレール部13との接触面に働く転がり摩擦は、従来例で記載したガイドピンとレンズの保持部材の接触部に働くすべり摩按に比べると、無視できるほど小きく、摩擦による光学部材G2の移動時における負荷を低減することができる。移動台3の移動に伴い磁気スケール7の磁界は変化し、その変化は位置センサ21で読み取られる。位置センサ21からの検出値は、移動台3の移動制御に用いられる。
【0073】
本実施例では、基板1に平行な方向に配列されている2組の磁石からなる永久磁石5を用いているが、これに代えて、図6に示すように、それぞれ光軸と垂直方向に着磁されている永久磁石51,52を用い、各永久磁石51,52をバックヨーク53に固着するように構成することもできる。このような構成によって、磁路は最も空間的ギャップが少ない永久磁石51,52の下面とヨーク19との間に集中し、駆動力および磁路の安定化を図ることができる。
【0074】
同様に、光学部材G3は、移動台4に接着剤で固定されている。移動台4は、移動台3と同じ構成を有し、移動台4には、アクチュエータの一部として永久磁石6が、位置検出部として磁気スケール8が、位置規制部として移動台4の移動方向に垂直な面内においてV字の断面形状を有する溝部10および凹状の溝部12がそれぞれ設けられている。
【0075】
移動台4、永久磁石6と共働してアクチュエータを構成するコイル18およびヨーク20は、基板1に設けられている。移動台4、永久磁石6、コイル18、ヨーク20によって構成されたアクチュエータは、上述の永久磁石5、コイル17、ヨーク19によって構成されたアクチュエータと同じ動作を行う。
【0076】
磁気スケール9の磁力は、MRセンサ、ホールセンサなどからなる位置センサ22で検出され、この位置センサ22は磁気スケール9に対向するように基板1に設けられている。
【0077】
各溝部10,12に対向する基板1上のそれぞれの位置には、移動台4の移動方向をガイドするとともに移動位置を規制するためのレール部15,16が設けられている。レール部15,16には、移動台3の移動方向に垂直な面内においてV字の断面形状を有する溝が形成され、各溝部9,11と対応するレール部13,14との間にはボール47が挿入されている。この移動台4の移動に伴い光学部材G3は所定の方向に移動され、移動台4の移動時に溝部10,12と対応するレール部15,16との間に発生する摩擦力は、ボール47の転がりによって低減される。
【0078】
なお、本実施例では、各光学部材G2,G3と各移動台3,4とを接着剤で固定しているが、これに代えて、各光学部材G2,G3を各移動台3,4に対しインサート成形またはアウトサート成形することによって各光学部材G2,G3と各移動台3,4と一体化することもできる。
【0079】
光学部材G4は、基板1に接着剤で固定されている。光学部材G4は、その射出光の光軸が基板1の開口部1cの軸線に一致するように、基板1上に配置されている。光学部材G4には、被写体像に含まれる不要な高周波成分、赤外線を取り除くための光学フィルタ(図示せず)が貼り付られている。なお、この光学フィルタを蒸着によって光学部材G4に一体的に形成することもできる。
【0080】
各光学部材G1,G2,G3,G4で構成される光学系においては、光学部材G1で基板1の開口部1aから絞り部30を介して入射した光を基板1の表面に平行な方向に反射し、その反射された光を光学部材G2,G3で光学部材G4に導き、光学部材G4で光を基板1の表面に対し垂直な方向に射出する。
【0081】
光学部材G4から射出された光は、基板1の開口部1cを介して固体撮像素子2に導かれる。
【0082】
固体撮像素子2は、図1、図7ないし図9に示すように、基板1の裏面に取り付けられている。固体撮像素子2は、図8に示すように、蓄積された信号を出力するための端子、タイミングパルスなどを入力するための端子を含む複数の端子904を有する。各端子904は、固体撮像素子2の撮像面905側に設けられている。固体撮像素子2は、撮像面905の光軸が基板1の開口部1cの軸線に一致するように、基板1の裏面側に配置されている。各端子904は、基板1の裏面に設けられている端子907にそれぞれ直接にはんだ付けなどによって接続されているから、ノイズなどの影響を受け難くなる。
【0083】
固体撮像素子2はその裏面側から樹脂部材903で封止されている。この樹脂部材903によって、固体撮像素子2が保護されるとともに、固体撮像素子2の基板1に対する取付強度が増す。
【0084】
基板1の開口部1cは、ガラス部材50で覆われ、ガラス部材50は、光学部材G4と基板1との間に配置されている。このガラス部材50によって、固体撮像素子2の撮像面905は保護されている。
【0085】
なお、本実施例では、撮像面905を保護するためのガラス部材50が基板1と光学部材G4との間に配置されているが、これに代えて、図10に示すように、固体撮像素子2の撮像面905を保護するためのガラス部材902を基板1の開口部901にはめ込むように構成することもできる。この構成では、ガラス部材902が基板1の表面に突出せず、固体撮像素子2周辺の基板1の厚さ方向に沿う厚さの増大を抑制することができ、ひいては、装置全体の厚さを薄くすることができる。
【0086】
また、ガラス部材50に代えて、図11に示すように、光学部材G4の一部を基板1の開口部901にはめ込むように構成することによって、光学部材G4を固体撮像素子2の撮像面905を保護するためのガラス部材として兼用することもできるとともに、固体撮像素子2に対する光学部材G4に位置決めが容易になる。
【0087】
さらに、本実施例では、撮像面側に電極904が形成されている固体撮像素子2を用いているが、この固体撮像素子2をセラミックなどの基板に予め装着した組立体を用いることもできる。この組立体では、固体撮像素子2の電極904とを接続する電極が設けられ、この電極と基板1の裏面に設けられている電極とを直接接続するようにすることもできる。
【0088】
基板1には、図1に示すように、上述の光学撮像系を構成する部品に加えて、。複数の回路素子45a,45bが搭載されている。各回路素子45aは、光学部材G2,G3を搭載する各移動台3,4のアクチュエータ、絞り部3のアクチュエータ、各位置センサの駆動回路を構成する素子からなる。回路素子45bは、固体撮像素子2の駆動回路および映像信号処理回路を構成する素子からなる。
【0089】
基板1には、各回路素子45a,45bを外部回路に接続するためのコネクタ48が設けられている。
【0090】
基板1には、基板1に搭載されている部品を磁気およぴ外部からの光から遮蔽し、内面反射を抑え、外部からのほこりの侵入を防ぐように、シールドケース49が取り付けられ、シールドケース49は、例えぱ内面を黒く塗装した鉄板などから形成されている。
【0091】
次に、本実施例の光学装置の組立手順について説明する。
【0092】
まず、第1工程では、固接部品の基板1上への配置を行う。この固接部品としては、固体撮像素子2と、光学部材G1,G4と、各光学部材G2,G3のアクチュエータを構成するコイル17,18、ヨーク19,20、レール部13,14,15,16と、位置センサ21,22と、絞り部30のコイル38,42、ヨーク39,43、位置センサ40,44と、各回路素子45a,45bとがある。
【0093】
まず、固体撮像素子2は、基板1の裏面に半田付け、接着などによって固設され、固体撮像素子2の端子905と基板1の端子907とは電気的に接続される。
【0094】
次いで、ガラス部材50が開口部1aを覆うように取り付けられ、光学部材G4が基板1の表面に固定される。光学部材G4は、基板1に対して接着剤などにより固着されている。
【0095】
光学部材G4の取り付け後、光学部材G1の軸G1aは対応する開口部1bに嵌合され、光学部材G1の基板1上での位置が決定される。
【0096】
次いで、他の固設部品が順次に位置決めされ、半田付け、接着などにより基板1に対し固定される。コイル17,18、ヨーク19,20、位置センサ21,22、コイル38,42、ヨーク39,43、位置センサ40,44、各回路素子45a,45bは基板1に形成された配線パターンに接続される。
【0097】
この第1工程の完了に伴い、固設部品の基板1上への搭載、絞り部30の絞り羽根31,32、光学部材G2,G3を搭載する移動台3、4などの可動部材を駆動制御するためのコイル、位置センサなどの電気的接続は完了する。このように、固体撮像素子2を含む基板1と電気的接続が必要な固設部品は、リード線、フレキシブルプリント板を介さずに、直接基板1にハンダなどに電気的に接続されるから、電気配線に要する組立工程が省略され、コストが低減する。
【0098】
次に、第2工程が実行される。この第2工程では、可動部材である絞り羽根31,32が基板1に装着される。具体的には、絞り羽根31の軸33が基板1の穴37に挿入され、同様に、絞り羽根32の軸34が基板1の穴41に挿入される。
【0099】
次に、第3工程が実行される。この第3工程では、撮像光学系である光学部材G2,G3およびそのアクチュエータを構成する可動部材の装着を行う。移動台3,4がそれぞれボール46,47を介してレール部13,…,16に搭載され、移動第3,4に対し光学部材G2,G3の位置が定められる。
【0100】
次に、第4工程が実行され、この第4工程では、シールドケース49の取り付けを行う。このシールドケース49は、基板1の表面を覆うように基板1に置かれ、対応する部位を基板1のグランドパターンにハンダ付けをすることによって、固定が行われる。
【0101】
第4工程の完了によって、基板1上への部品の装着は終了する。
【0102】
このように、従来レンズ等の光学系を保持していた筐体という複雑で高価な部品を用いることなく、また組立工程を簡略化することができ、低コストな撮像光学系を堤供することができる。また、平面的な基板1上に上述の各部材または部品を配置することによって、基板1の厚さ方向の寸法が極力増加しないように各部品の配置、姿勢を決定することが容易になり、その結果、薄型の光学装置を簡単に得ることができる。さらに、固体撮像素子2が装着された基板1に対して各光学部材、光学部材の規制部、絞り部30が配置されるから、それぞれの位置精度を高精度化することができる。
【0103】
なお、本実施例では、各光学部材G1,G2,G3,G4による撮像光学系を例に説明したが、従来例で説明したような屈折光学系によるレンズ群による撮像光学系あるいは屈折光学系によるレンズ群を付け加えた撮像光学系において、これらの光学系を基板上に直接または移動台上に配置することによって可動とするように構成することは可能である。
【0104】
次に、本実施例の構成を電気的に図12を参照しながら説明する。図12は図1の光学装置の構成を示すブロック図である。
【0105】
光学装置は、図12に示すように、撮像光学系601を備える。撮像光学系601は、入射光の光量を制限する絞り部G12(図1に示す絞り部30)と、位置固定の光学部材G1と、位置移動によって撮影倍率を変化させる光学部材G2と、位置移動により焦点調節を行う光学部材G3と、位置固定で、被写体像の不要な高周波成分や赤外線を除去するための光学フィルタが形成されている光学部材G4とからなる。
【0106】
光学部材G4から射出された光は固体撮像素子2に入射され、その入射光は、固体撮像素子2で電気信号に変換される。固体撮像素子2は、撮像素子駆動回路604で駆動され、撮像素子駆動回路604は、クロック回路603が発生するタイミング信号を増幅し、その増幅された信号で固体撮像素子2を駆動する。クロック回路603におけるタイミング信号の発生タイミングは、CPU616によって制御される。
【0107】
固体撮像素子2から出力された電気信号は、前置処理回路605に与えられる。前置処理回路605は、固体撮像素子2からの電気信号に対し増幅、CDS処理などを行う。前置処理回路605からの信号は、A/D変換器606でデジタル信号化され、このデジタル信号はプロセス回路607に与えられる。プロセス回路607は、デジタル信号に対し各種の処理を行い、映像化する。
【0108】
プロセス回路607からの映像信号は、D/A変換器608を介して表示装置609に、D/A変換器610を介してアナログ出力611に、メモリ612に、デジタル出力に、合焦情報検出回路614、輝度情報検出回路615にそれぞれ与えられる。
【0109】
表示装置609は、映像信号が示す映像を表示するLCDからなる。アナログ出力611は、例えばテレビモニタなどに信号を出力するためのアナログ信号出力端子からなる。メモリ612は、映像信号を記録する。デジタル出力613は、例えば外部の記録媒体などに信号を出力するための端子からなる。
【0110】
合焦情報検出回路614は、プロセス回路607からの映像信号に基づき被写体像の合焦状態を検出する。その検出結果は、CPU616に与えられる。
【0111】
輝度情報検出回路615は、プロセス回路607からの映像信号に基づき被写体像の明るさ情報を検出する。その検出結果は、CPU616に与えられる。
【0112】
光学部材G2は、アクチュエータ617で所定の方向に移動される。このアクチュエータ617は、図1に示すように、移動台3、永久磁石5、コイル17、ヨーク19によって構成される。アクチュエータ617の駆動制御はアクチュエータ制御回路619からの制御信号によって行われ、この制御信号はドライブ回路620で増幅された後にアクチュエータ617に与えられる。光学部材G2の位置は位置検出器618で検出され、この位置検出器618は、図1に示す位置センサ21から構成される。位置検出器618からの信号は、増幅器621で増幅された後に、A/D変換器622を介してCPU616に与えられる。
【0113】
光学部材G3は、アクチュエータ623で所定の方向に移動される。このアクチュエータ623は、図1に示すように、移動台4、永久磁石6、コイル18、ヨーク20によって構成される。アクチュエータ623の駆動制御はアクチュエータ制御回路625からの制御信号によって行われ、この制御信号はドライブ回路626で増幅された後にアクチュエータ623に与えられる。光学部材G3の位置は位置検出器624で検出され、この位置検出器624は、図1に示す位置センサ22から構成される。位置検出器624からの信号は、増幅器627で増幅された後に、A/D変換器628を介してCPU616に与えられる。
【0114】
絞り部G12は、アクチュエータ629で所定の絞り量になるように駆動される。このアクチュエータ629は、図1に示すように、絞り羽根31,32、永久磁石35,36、コイル38,42、ヨーク39,43によって構成される。アクチュエータ629の駆動制御はアクチュエータ制御回路631からの制御信号によって行われ、この制御信号はドライブ回路632で増幅された後にアクチュエータ629に与えられる。絞り部G12の絞り量すなわち絞り羽根31,32の回転位置は位置検出器630で検出され、この位置検出器630は、図1に示す位置センサ40,44から構成される。位置検出器630からの信号は、増幅器633で増幅された後に、A/D変換器634を介してCPU616に与えられる。
【0115】
CPU616は、各検出器618,624,630からの検出結果、合焦情報検出回路614からの検出結果、および輝度情報検出回路615からの検出結果に基づき対応するアクチュエータ制御回路620,626,630を制御する。
【0116】
CPU616には、操作部635から操作指示信号が与えられる。操作部635は撮影者による操作に対応する操作指示信号を生成する。
【0117】
このような回路構成において、撮像光学系601とアクチュエータ駆動回路636と固体撮像素子2からの電気信号を処理する映像信号処理回路637とに分類することができる。アクチュエータ駆動回路636には、各アクチュエータ制御回路619,625,631が含まれ、アクチュエータ駆動回路636は、図1に示す回路素子45a内に構成される。映像信号処理回路637は、撮像素子駆動回路604とクロック回路603とともに、図1に示す回路素子45b内に構成される。
【0118】
なお、CPU616、合焦情報検出回路614、輝度情報検出回路615は、基板1上に搭載することも可能であるが、特に、その搭載位置は限定されない。
【0119】
表示装置609、メモリ612および操作部635は、外部に配置されている。
【0120】
次に、光学装置の動作について説明する。
【0121】
まず、撮影者が操作部635を操作することにより、撮影開始の命令がCPU616に入力される。CPU616では、その命令を受けて各回路の電源を入れ、クロック回路603に固体撮像素子2用のタイミング信号の出力を命令する。クロック回路603から出力されたタイミング信号は、撮像素子駆動回路604で、固体撮像素子2を駆動可能な信号に増幅される。この駆動信号により固体撮像素子2に入射された光は電気信号に変換され、この電気信号は前置直処理部回路605に与えられる。前置処理回路605は、固体撮像素子602からの電気信号に対し、例えばCDS処理、非線形化、信号増幅などの処理を行う。前置処理回路605の出力信号は、A/D変換器606でデジタル化された後、プロセス回路607に与えられる。プロセス回路607は、A/D変換器606からのデジタル信号を映像化するための各種処理、例えば原色分離、ホワイトバランス、ガンマ補正、アパーチャ補正、輝度信号、色差信号の生成などの処理を行う。この映像化信号はD/A変換器608でアナログ信号に変換され、アナログ信号が示す映像が表示装置609に表示される。また、映像信号は必要に応じてメモリ612にデジタル信号として記録され、または外部の機器に出力される。
【0122】
次に、撮像光学系601の動作について説明する。
【0123】
フォーカシングは通常、自動的に行われる。合焦情報検出回路614にプロセス回路607からの映像信号が入力されると、合焦情報検出回路614は、入力された映像信号の高域成分の量(以下、合焦情報という)を検出する。合焦情報は、図13に示すように、撮像光学系601が被写体に対して合焦状態にある場合に最大となり、デフォーカスするに従い減少していく特性を示す。
【0124】
CPU616は、光学部材G3を動かしながら合焦情報の変化を検出し、合焦情報が最大となる位置まで以下のように光学部材G3を移動させるようにアクチュエータ制御回路625を制御する。CPU616は、合焦情報より算出される目標レンズ位置と実際のレンズ位置が迫従するようにフォーカスレンズ移動信号を出力する。光学部材G3の実際のレンズ位置は、位置検出器624で検出された位置情報が増幅器627で増幅され、A/D変換器628でデジタル化された後、CPU616に入力され、算出される。
【0125】
アクチュエータ制御回路625はフォーカスレンズ移動信号に基づきアクチュエータ制御信号を発生する。アクチュエータ制御信号はドライブ回路626でアクチュエータ623を駆動可能な信号に増幅され、アクチュエータ623が駆動される。アクチュエータ623の駆動に伴い光学部材G3は移動され、フォーカシングが行われる。
【0126】
ズーミングは撮影者が操作部635を操作することにより行われる。操作部635より入力された指示に従い、CPU616は、光学部材G2の目標位置を算出する。現在の光学部材G2のレンズ位置は、位置検出器618で検出される。位置検出器618の出力信号は増幅器621で増幅され、A/D変換器622に入力される。A/D変換器622でデジタル化された位置検出器618からの出力は、CPU616に入力され、光学部材G2のレンズ位置情報が算出される。CPU616は、目標レンズ位置と実際のレンズ位置が追従するように光学部材G2に対する移動信号を出力する。アクチュエータ制御回路619は、光学部材G2に対する移動信号に基づきアクチュエータ制御信号を発生する。アクチュエータ制御信号は、ドライブ回路620でアクチュエータを駆動可能な信号に増幅され、アクチュエータ617が駆動される。アクチュエータ617の駆動に伴い光学部材G2は移動され、ズーミングが行われる。
【0127】
本実施例のように、インナーフォーカス方式ズームレンズにおいて、被写体にピントがあった状態でズーミングを行うためには、光学部材G2の位置と光学部材G3の位置とは決められた曲線(ズームトラッキングカーブ)上を移動する必要がある。ズームトラッキングカーブの例を図14に示す。図中、0.6m、1.2m、1.0mは、被写体距離を表す。
【0128】
位置検出器618から得られる光学部材G2の位置情報と位置検出器624から得られる光学部材G3の位置情報とから、現在の被写体距離が算出され、ズーミング中は現在の被写体距離に対応するトラッキングカーブに基づき光学部材G3の目標位置が算出される。光学部材G2と同様に、現在の光学部材G3のレンズ位置は位置検出器624で検出され、位置検出器624の出力信号は増幅器627で増幅され、A/D変換器628に人力される。A/D変換器628でデジタル化された位置検出器624の出力は、CPU616に入力され、光学部材G3のレンズ位置情報が算出される。CPU616は、目標レンズ位置と実際のレンズ位置とが迫従するようにフォーカスレンズ移動信号を出力する。アクチュエータ制御回路625はフオーカスレンズ移動信号に基づきアクチュエータ制御信号を発生する。アクチュエータ制御信号はドライブ回路626でアクチュエータを駆動可能な信号に増幅され、アクチュエータ623が駆動され、光学部材G3が移動される。従って、ズーミング中も被写体がぼやけることなく固体撮像素子2に結像される。
【0129】
露光量は、アクチュエータ629で絞り部材G12を制御し、撮像光学系601に対する開口量を変化させることで調節される。通常、この露光量は自動的に行われる。輝度情報検出回路615には、プロセス回路607からの映像信号が入力される。輝度情報検出回路615は入力された映像信号から被写体像の明るさ(以下、輝度情報とい)を検出する。現在の絞り部G12の位置は、位置検出器630で検出される。位置検出器630の出力信号は増幅器633で増幅され、A/D変換器634に入力される。A/D変換器634でデジタル化された位置検出器630の出力は、CPU616に入力され、紋り部G12の絞り位置情報が求められる。CPU616は、入力された被写体像の輝度情報に基づき最適な露光量を算出し、さらに最適な露光量と現在の絞り位置情報とから、目標絞り位置を算出する。この目標絞り位置と実際の紋り位置とが追従するように絞り移動信号が出力される。アクチュエータ制御回路631は、紋り移動信号に基づきアクチュエータ制御信号を発生する。アクチュエータ制御信号は、ドライブ回路632でアクチュエータ629を駆動可能な信号に増幅され、アクチュエータ629が駆動される。アクチュエータ629の駆動に伴い絞り部G12が駆動され、露光量調節が行われる。
【0130】
次に、基板1の構成、製造方法について図を参照しながら説明する。図15は図1の光学装置の基板の構成を示す縦断面図、図16は図1の光学装置の基板の製造方法における工程の一部を示す分解斜視図である。
【0131】
基板1は、図15に示すように、セラミックベース801、鉄ベース801a、およびアルミニウムベース801bから構成される。セラミックベース801の材質には、寸法安定性、放熱性に優れたセラミックが用いられ、セラミックベース801は基板1の骨組を形成するベ一スである。鉄ベース801aの材質には、透磁率の高い鉄が用いられ、鉄ベース801aはアクチュエータの一部を形成するヨーク(図1の19,20、図2の39,44に相当する)を構成する。アルミニウムベース801bは、撮像素子駆動回路または映像信号処理回路を形成し、熱伝導率が高いアルミニウムをベ一スとしている。これらのベース801,801a,801bの材質は、上記のものに限るものではなく、例えば、ベース801aの材質としては、透磁率の高い材質すなわち、電磁軟鉄、パーマロイなどを用いることもできる。ベース801bの材質としては、銅などの熱伝導率が高い材質を用いることもできる。各ベース801,801a,801bの表面には、絶縁層801cが形成されている。
【0132】
次に、基板1の製造方法について図16を参照しながら説明する。
【0133】
図16を参照するに、まず、鉄ベ一ス801aとアルミニウムベース801bに相当する部分に予め穴を形成したセラミックベース801と、鉄ベース801aと、アルミニウムベース801bとが準備される。
【0134】
次いで、セラミックベース801の一方の穴に鉄ベース801aが、他方の穴にアルミニウムベース801bがそれぞれ嵌め込まれる。セラミックベース801と鉄ベース801aとが、セラミックベース801とアルミニウムベース801bとがそれぞれ接着剤で固定され、1枚のベース材が形成される。
【0135】
次いで、樹脂を銅箔に塗布し、ベ一ス材に積層することにより、図15に示すセラミックベース801、鉄ベース801a、アルミニウムベース801bの各表面に絶縁層801cが形成される。なお、この方法に代わる絶縁層801cの形成方法としては、ベース材側に絶縁層を形成する樹脂を塗布した後に銅箔を積層する方法もあるが、連続加工が可能な点で前者の方が優れている。
【0136】
絶縁層801cの形成後、銅箔をエッチングすることにより配線パターンの形成、ソルダーレジストの塗布、露出した銅箔表面へのはんだメッキ、はんだレベラーなどの表面処理が順次に実行される。
【0137】
次いで、固体撮像素子2、コイル17,18,38,42、回路素子45a,45b、位置センサ21,22がそれぞれはんだなどによって基板1に形成された配線パターンと電気的に接続される。コイル17,18,38,42およびレール部13,14,15,16が基板1上に接着剤で接着される。
【0138】
このように、基板1のベース材として一つの部材を用いるのではなく、基板1上に実装される部品が要求する特性に適合した性質を有する材料がベース材として用いられている。すなわち、基板の骨組となり平面性など寸法安定性に優れたセラミックベース材、アクチュエータが形成される部分に透磁率が高い鉄ベ一ス材、電子部品の放熱を必要とする撮像素子駆動回路または映像信号処理回路が実装される部分にアルミニウムあるいは銅べース材と、基板1上のそれぞれの部位において最適な材質を選択することで、それぞれのベース材の長所が生かせる基板を作ることができる。特に、電子部品の放熱に極めて効果があり、電子部品の発熱による基板の変形を未然に防止することができ、基板1の変形に起因よる各光学部材と固体撮像素子2との相対的な位置のずれ、光学部材の倒れなどを抑制することができる。よって、基板1の変形に起因する撮影画像の劣化を未然に防止することができる。
【0139】
なお、本実施例では、コイルとしてシート状のコイルを用い、このコイルを基板1上に接着剤などで接着するようにしたが、基板1上のパターンと同様に、銅箔をエッチングすることによりコイルを形成することも可能である。この場合、コイルの巻数にある程度の限界があるが、配線パターンと同様に形成できるから、シートコイルの接着などの工程を省略することができ、かつシートコイルの基板1に対する位置決め作業をなくすことができる。
【0140】
次に、基板のベース材として1つの部材を用いた場合について図17を参照しながら説明する。図17は図1の光学装置に用いられる他の基板を示す斜視図である。
【0141】
基板802は、図17に示すように、金属板上に絶縁層を介して配線パターンを形成した金属基板からなる。金属の材質は、透磁率が高い鉄、または放熱性に優れたアルミニウムまたは銅などである。絶縁層、配線パターンの形成は前述したものと同様であるから、その説明は省略する。
【0142】
基板802の準備後、まず、撮像素子2は基板802の裏面から、コイル17,18,38,42、回路素子45a,45b、位置センサー21,22は基板802の表面から、それぞれはんだなどによって基板802に形成された配線パターンと電気的に接続され、コイル17,18,38,42、レール部13,…,16は基板802に接着剤などで固着される。本方法によると、1枚の金属板をベースに基板を形成することができるから、低コストで、平面性が良い基板を形成することができるという効果に加え、基板の金属部の材質に応じて、それぞれ以下の効果(a)、(b)を奏する。
【0143】
(a)鉄などの透磁率が高い材料の場合
駆動により光学系を駆動する場合、基板の一部がヨークとして作用するから、部品としてのヨークが不要になり、コストダウンに寄与する。
【0144】
(b)アルミニウムなどの放熱性が良い材料の場合
撮像素子駆動回路または映像信号処理回路の周辺、アクチュエータのコイルなどの周辺で発生した熱が良好に放散され、基板の反りなどの変形を防止することができる。
【0145】
次に、基板上の電子部品の発熱による変形、さらに機械的な変形を防ぐより効果的な方法について図18ないし図20を参照しながら説明する。図18は図1の光学装置に用いられる他の基板を示す斜視図、図19は図1の光学装置に用いられる他の基板を示す斜視図、図20は図19の基板の取付状態を示す図である。
【0146】
この方法としては、図18に示すように、放熱を必要とするCPUなどの電子部品812の周囲に切欠809を設ける方法、図19に示すように、基板の平面性を保つ必要がある光学系全体の周囲にV溝810を設ける方法がある。
【0147】
これらの方法による基板1の機器への取付方法について図18ないし図20を参照しながら説明する。
【0148】
各方法による基板1に四隅には、図18および図19に示すように、取付穴811がそれぞれ設けられている。基板1における発熱が大きいCPUなどの電子部品の搭載領域は、切欠809またはV溝810で区分けされている。
【0149】
これらの基板1の取付方法を図19に示す基板1を例に説明する。
【0150】
基板1は、図20に示すように、取付穴811に挿通されたビス813で機器内部に設けられた基板取付部814に固定される。
【0151】
基板取付部814が機器外部からの力により変形され、または加工の精度により変形しているとき、基板1には外力が作用するが、その外力によってV溝810の部分が変形されるだけで、基板1の他の部分は平面を保つことができる。
【0152】
なお、図18に示す切欠809を設けた基板1の場合も同様の効果を奏する。
【0153】
次に、図18に示す基板1における熱的変形の吸収構造について説明する。
【0154】
具体的には、電子部品812を切欠809と縁部との間の領域に配置することによって、電子部品812の発熱時、その周辺の基板1の反りなどの変形は、前記機械的変形がV溝810で吸収されたとのと同じように、熱的変形は切欠809で吸収され、切欠809からの内方に向かう領域は平面を保つことができる。
【0155】
次に、他の基板構成例について図21および図22を参照しながら説明する。図21は図1の光学装置に用いられる他の基板を示す斜視図、図22は図21の基板を示す縦断面図である。
【0156】
図21および図22を参照するに、基板821は、金属板上に絶縁層を介して配線パターンを形成した2つのザブ基板821a,821bから構成される。
【0157】
アクチュエータを形成するサブ基板821aには透磁率が高い鉄をベースとして、撮像素子駆動回路または映像信号処理回路を形成するサブ基板821bには熱伝導率が高い銅、アルミニウムなどをベースとして用いている。各サブ基板821a,821bの表面には絶縁層821c,821dが形成されている。サブ基板821aおよび絶縁層821cには、同軸上に伸びる開口部829が形成され、サブ基板821bおよび絶縁層821dには、同軸上に伸びる開口部830が形成されている。開口部830には、固体撮像素子2が挿入され、固体撮像素子2はサブ基板821bの裏面に装着されている。固体撮像素子2には、開口部830を介して被写体光が入射される。
【0158】
次に、基板821の製造方法について説明する。
【0159】
まず、アクチュエータを形成する鉄ベースのサブ基板821aと、銅ベースまたはアルミニウムベ一スのサブ基板821bとが準備される。
【0160】
次いで、樹脂を銅箔に塗布し、それぞれのベース材に積層することにより、サブ基板821a,821bの表面に絶縁層821c,821dが形成される。
【0161】
絶縁層821c,821dの形成後,箔をエッチングして、サブ基板821aにはアクチュエータ回路の配線パターンが、サブ基板821bには撮像素子駆動回路または映像信号処理回路の配線パターンがそれぞれ形成される。
【0162】
次いで、ソルダーレジストの塗布、露出した銅箔表面に対するはんだメッキ、はんだレベラーなどの表面処理が順次に行われる。
【0163】
それぞれのサプ基板821a,821bは絶縁性の接着剤を介して積層される。
【0164】
この基板821を用いることによって、図15に示す基板と同様の効果が得られることに加え、ノイズの発生源となるアクチュエータ駆動系すなわち回路素子45aおよびアクチュエータを形成するサブ基板821aに対して、ノイズの影,を受け易い撮像素子駆動回路または映像信号処理のための回路素子45bおよび撮像素子駆動回路または映像信号処理回路を形成するサブ基板821bとを基板821上の全く異なる層に形成することができ、基板821内でのノイズの影響を極力小さくすることができる。なお、上記映像信号処理回路は、図12に示す映像信号処理回路637と等価であるが、その内部構成は限定されることはない。
【0165】
また、基板821の製造においては、先に図16で示した基板1のように、予めベースに形成された穴に他のベースを嵌め込み、1枚のベースとすることをせず、2枚のベースをそれぞれ独立に従来の形成方法で製造することができ、製造工程の簡略化が図れ、製造コストを下げることが可能となる。
【0166】
(第2実施例)
次に、本発明の第2実施例について図23ないし図26を参照しながら説明する。図23は本発明の光学装置の第2実施例の構成を示す分解斜視図、図24は図23の光学装置の第2光学部材の駆動制御部の構成を示す縦断面図、図25は図23の光学装置の絞り羽根の駆動制御部の構成を示す縦断面図、図26は図25のC−C線に沿って得られた断面図である。
【0167】
本実施例は、屈折光学系によるズームレンズ機構を有する光学装置である。
【0168】
光学装置は、図23に示すように、固体撮像素子2が装着された基板1を備える。なお、基板1の構成は、第1実施例の基板の構成と同じように、異なる材質の複数のベース材から構成され、その説明は省略する。
【0169】
基板1には、第1レンズ群60、第2レンズ群61、第3レンズ群62および第4レンズ群63が搭載されている。
【0170】
第1レンズ群60は、基板1に接着剤などで固定されている。第2レンズ群61はズーミング動作を行うためのレンズ群からなり、このレンズ群は基板1に所定範囲内で光軸64方向に移動可能に搭載されている。第3レンズ群62は、第1レンズ群60と同様に、基板1に接着剤などで固定されている。第4レンズ群63はフォーカシング動作を行うためのレンズ群からなり、このレンズ群は基板1に所定範囲内で光軸64方向に移動可能に搭載されている。光軸64は、基板1の表面に平行になるように設定され、すなわち第2レンズ群61、第4レンズ群63の可動方向は、基板1の表面に対して平行になるように設定されているから、可動範囲が長い場合でも基板1の表面と垂直方向の厚さの増大がないズームレンズ機構を実現することができる。
【0171】
第4レンズ群63の後方には、三角プリズムなどの光学部材65が配置されている。光学部材65は、被写体像を撮像素子2に結像させるように、光軸を基板1に対して垂直方向に屈曲させる。なお、固体撮像素子2の基板1への実装構造は、第1実施例と同じであり、その説明は省略する。
【0172】
第2レンズ群61と第3レンズ群62との間には、紋り羽根66が配置されている。絞り羽根66は光軸64に対して垂直方向に駆動し、絞り開口を変化させる。この絞り開口の変化によって、被写体像の光量が調整される。
【0173】
第2レンズ群61は駆動制御部67で、第4レンズ群63は駆動制御部68で、絞り羽根66は駆動制御部69で、それぞれ駆動、制御される。各駆動制御部67,68,69は、アクチュエータ、位置センサなどから構成される。
【0174】
基板1には、各駆動制御部67,68,69を制御するための回路素子、固体撮像素子2を駆動するための回路素子、固体撮像素子2からの信号を処理をするための回路素子などの電子部品71および外部の回路と接続するためのコネクタ部71が設けられている。
【0175】
基板1は、1対のケース部分72,73から構成されるシールドケースに収容されている。各ケース部分72,73は、電磁気およぴ外部からの光を遮蔽し、内面反射を抑え、また外部からのほこりの進人を防ぐように、例えば内面を黒く塗装した鉄板などから構成されている。各ケース部分72,73は、それぞれの対応する部位を基板1上のグランドパターンにはんだ付けすることによって、固定される。
【0176】
次に、第2レンズ群61の駆動制御部67の構成について図24を参照しながら説明する。
【0177】
第2レンズ群61は、図24に示すように、光学保持部材80に保持されている。光学保持部材80には、第2レンズ群61を支持する枠部と、枠部から基板1に平行に光軸64に直交する方向へ突出する平板状の1対の支持部とからなる。一方の支持部の基板1に対向する面には、光軸64に沿って伸びるV溝81が形成され、他方の支持部の基板1に対向する面には、光軸64に沿って伸びる凹状断面の溝82が形成されているとともに、光軸64に沿って伸びる磁気スケール87が取り付けられている。各支持部の基板1に対向する面には、永久磁石83がそれぞれ取り付けられている。
【0178】
基板1には、基板1と光学保持部材80との干渉を避けるように開口部1dが形成されている。
【0179】
基板1には、光軸64に沿って伸びるV溝が形成されている1対のレール部86と、位置センサ88とが取り付けられている。
【0180】
一方のレール部86は、そのV溝が光学保持部材80のV溝81に対向するように配置され、他方のレール部86は、そのV溝が光学保持部材80の溝82に対向するように配置されている。一方のレール部86のV溝とV溝81との間にはボール85が介在し、他方のレール部86のV溝と溝82との間にはボール85が介在している。
【0181】
位置センサ88は、磁気スケール87の磁力を検出するセンサからなる。
【0182】
光学保持部材80、それに設けられた永久磁石83および磁気スケール87と、基板1に設けられたコイル84、ヨーク89、レール部86および位置センサ88と、ボール85とは互いに共働して駆動制御部67を構成する。
【0183】
この駆動制御部67の基本的駆動原理は第1実施例と同じであり、その説明は省略する。
【0184】
次に、絞り羽根66の駆動制御部69の構成について図25および図26を参照しながら説明する。
【0185】
各絞り羽根66は、図25に示すように、光軸に直交する方向(図中の矢印が示す方向)に移動可能な1対の羽根91a,91bから構成される。各羽根91a,91bには、V字状の切欠がそれぞれ形成されている。各羽根91a,91bは互いにその切欠形成部分が重なり合うように配置され、各切欠が共働して絞り開口92を形成する。絞り開口92の開口面積は各羽根91a,91bの移動量に応じて決定される。
【0186】
羽根91aの基板1に対向する面には、図26に示すように、光軸64に直交する方向に伸びるV溝および凹状断面の溝が形成されているとともに、光軸64に直交する方向に伸びる磁気スケール97が取り付けられている。各羽根91a,91bの基板1に対向する面には、永久磁石93がそれぞれ取り付けられている。
【0187】
基板1には、1対のコイル93が装着され、各コイル93は対応する永久磁石93に対向するように基板1上に配置されている。各コイル93の下方位置には、ヨーク95がそれぞれ配置されている。
【0188】
基板1には、光軸64に直交する方向に伸びるV溝が形成されている1対のレール部と、位置センサ98とが取り付けられている。
【0189】
一方のレール部は、そのV溝が羽根91aのV溝に対向するように配置され、他方のレール部は、そのV溝が羽根91aの凹状断面の溝に対向するように配置されている。一方のレール部のV溝と羽根91aのV溝との間にはボール96が介在し、他方のレール部のV溝と羽根91aの凹状断面の溝との間にはボール96が介在している。
【0190】
位置センサ98は、磁気スケール97の磁力を検出するセンサからなる。
【0191】
各羽根91a,91b、それに設けられた永久磁石93および磁気スケール97と、基板1に設けられたコイル94、ヨーク95、レール部および位置センサ98と、ボール96とは互いに共働して絞り羽根66の駆動制御部69を構成する。
【0192】
この駆動制御部69で絞り羽根66を駆動するとき、絞り羽根91a,91bは、永久磁石93に比してべ極めて軽量であるから、永久磁石93、羽根91a,91bからなる可動部の重心は永久磁石93の近辺となり、アクチュエータの駆動力が前記重心に作用する。よって、安定した状態で羽根91a,91bを駆動することができる。
【0193】
以上により、第2実施例では、アクチュエータ部および基板1が光学系に対して厚さ方向に重ならないように構成されているから、光学保持部材80、または光学系である第2レンズ群61の厚さd(この場合は光学保持部材80の直径寸法)が、光学装置全体の厚さtを決定することになり、光学装置の厚さを薄くすることができる。
【0194】
また、固体撮像素子2が装着されている基板1上に光学部材、アクチュエータ、およぴその駆動回路などに代表される機構部材、光学部材、電気部材を配置することによって、従来レンズなどの光学系を保持していた鏡筒という複雑で高価な部品を用いることな〈、また組立工程なども簡略化することができ、低コストな光学装置を堤供することができる。
【0195】
さらに、平面面的に広がる基板1上に上記機構部材、光学部材、電気部材を配置することによって、基板1の厚さ方向に対して極力厚くならないよう各部品の配置、姿勢を決定することが容易になり、その結果、薄型の光学装置を堤供することができる。
【0196】
さらに、固体撮像素子2に対する各光学部材、光学部材の規制部、紋り部を基板に配置することによって、それぞれの位置精度を高精度化することができる。
【0197】
なお、上述の各実施例では、1つの基板を用いているが、同一平面上に配置された複数の分割基板を用いることもできる。
【0198】
【発明の効果】
以上説明したように、本発明によれば、撮影光学系が搭載され、固体撮像素子が固定されている基板を有し、撮影光学系は基板と平行な方向に移動して焦点調節を行う可動光学部材を含む複数の光学部材から構成され、可動光学部材が固定された移動部材には基板と平行な方向に配列された永久磁石が設けられ、基板には、永久磁石との間に磁路を形成するヨークとコイルが固定され、コイルに電流が供給されることで生じる磁力と電流との相互作用によって可動光学部材を基板と平行な方向に移動させる駆動力を発生するから、従来のように、撮影光学系を収容、保持する筐筒を用いる必要がなくなるとともに、撮影光学系、それに含まれる可動光学部材、アクチュエータの構成部材の少なくとも一部および固体撮像素子の基板に対する位置決めを平面的(2次元的)に行うことができる。その結果、組立性が良く、コストを低く抑えることができるとともに、厚さを薄くすることができる。
【図面の簡単な説明】
【図1】本発明の光学装置の第1実施例の構成を示す分解斜視図である。
【図2】図1の光学装置の絞り部の構成を示す分解斜視図である。
【図3】図1の光学装置の光学部材G2のアクチュエータの構成を示す縦断面図である。
【図4】は図3のB−B線に沿って得られた断面図である。
【図5】図3のA−A線に沿って得られた断面図である。
【図6】光学部材G2のアクチュエータの他の構成例を示す縦断面図である。
【図7】図1の光学装置の固体撮像素子の周辺を示す縦断面図である。
【図8】図1の光学装置の固体撮像素子の周辺を示す分解斜視図である。
【図9】図1の光学装置の固体撮像素子の基板裏面側の周辺を示す分解斜視図である。
【図10】固体撮像素子の撮像面を保護するガラス部材の他の取付例を示す縦断面図である。
【図11】固体撮像素子の撮像面を保護するガラス部材の他の取付例を示す縦断面図である。
【図12】図1の光学装置の構成を示すブロック図である。
【図13】フォーカシング時の合焦特性図である。
【図14】ズームトラッキングカーブを示す図である。
【図15】図1の光学装置の基板の構成を示す縦断面図である。
【図16】図1の光学装置の基板の製造方法における工程の一部を示す分解斜視図である。
【図17】図1の光学装置に用いられる他の基板を示す斜視図である。
【図18】図1の光学装置に用いられる他の基板を示す斜視図である。
【図19】図1の光学装置に用いられる他の基板を示す斜視図である。
【図20】図19の基板の取付状態を示す図である。
【図21】図1の光学装置に用いられる他の基板を示す斜視図である。
【図22】図21の基板を示す縦断面図である。
【図23】本発明の光学装置の第2実施例の構成を示す分解斜視図である。
【図24】図23の光学装置の第2光学部材の駆動制御部の構成を示す縦断面図である。
【図25】図23の光学装置の絞り羽根の駆動制御部の構成を示す縦断面図である。
【図26】図25のC−C線に沿って得られた断面図である。
【図27】従来の光学装置の構成を示す縦断面図である。
【符号の説明】
1,802 基板
2 固体撮像素子
3,4 移動台
7 磁気スケール
5,6 永久磁石
13,14,15,16 レール部
17,18 コイル
19,20 ヨーク
21,22 位置センサ
30 絞り部
31,32 絞り羽根
45a,45b 回路素子
46,47 ボール
60 第1光学部材
61 第2光学部材
62 第3光学部材
64 第4光学部材
66 絞り羽根
67,68,69 駆動制御部
G1 光学部材
G2 光学部材
G3 光学部材
G4 光学部材
Claims (1)
- 被写体像を撮影光学系を介して固体撮像素子に結像させる光学装置において、前記撮影光学系が搭載され、前記固体撮像素子が固定されている基板を有し、前記撮影光学系は前記基板と平行な方向に移動して焦点調節を行う可動光学部材を含む複数の光学部材から構成され、前記可動光学部材が固定された移動部材には前記基板と平行な方向に配列された永久磁石が設けられ、前記基板には、前記永久磁石との間に磁路を形成するヨークとコイルが固定され、前記コイルに電流が供給されることで生じる磁力と電流との相互作用によって前記可動光学部材を前記基板と平行な方向に移動させる駆動力を発生することを特徴とする光学装置。
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06510995A JP3658033B2 (ja) | 1995-02-28 | 1995-02-28 | 光学装置 |
US08/606,845 US5825560A (en) | 1995-02-28 | 1996-02-26 | Optical apparatus |
US08/606,824 US6166866A (en) | 1995-02-28 | 1996-02-26 | Reflecting type optical system |
US08/607,175 US6021004A (en) | 1995-02-28 | 1996-02-26 | Reflecting type of zoom lens |
DE69618689T DE69618689T2 (de) | 1995-02-28 | 1996-02-27 | Optisches System mit reflektierenden Flächen |
EP96102914A EP0730180B1 (en) | 1995-02-28 | 1996-02-27 | Reflecting type of zoom lens |
DE69623362T DE69623362T2 (de) | 1995-02-28 | 1996-02-27 | Zoomobjektiv mit reflektierenden Flächen |
EP96102911A EP0730179B1 (en) | 1995-02-28 | 1996-02-27 | Reflecting type of zoom lens |
EP96102915A EP0730169B1 (en) | 1995-02-28 | 1996-02-27 | Reflecting type optical system |
DE69624021T DE69624021T2 (de) | 1995-02-28 | 1996-02-27 | Reflektierende Zoomlinse |
US08/957,118 US5847887A (en) | 1995-02-28 | 1997-10-24 | Optical apparatus |
HK98113439A HK1012437A1 (en) | 1995-02-28 | 1998-12-15 | Reflecting type optical system |
US09/459,861 US6292309B1 (en) | 1995-02-28 | 1999-12-14 | Reflecting type of zoom lens |
US09/612,290 US6366411B1 (en) | 1995-02-28 | 2000-07-07 | Reflecting type optical system |
US09/704,751 US6636360B1 (en) | 1995-02-28 | 2000-11-03 | Reflecting type of zoom lens |
US09/968,515 US6639729B2 (en) | 1995-02-28 | 2001-10-02 | Reflecting type of zoom lens |
US10/043,305 US6785060B2 (en) | 1995-02-28 | 2002-01-14 | Reflecting type optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06510995A JP3658033B2 (ja) | 1995-02-28 | 1995-02-28 | 光学装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08237531A JPH08237531A (ja) | 1996-09-13 |
JP3658033B2 true JP3658033B2 (ja) | 2005-06-08 |
Family
ID=13277410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06510995A Expired - Fee Related JP3658033B2 (ja) | 1995-02-28 | 1995-02-28 | 光学装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3658033B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3884801B2 (ja) * | 1996-10-31 | 2007-02-21 | キヤノン株式会社 | 撮像装置 |
JP3890101B2 (ja) * | 1996-10-31 | 2007-03-07 | キヤノン株式会社 | 撮像装置 |
-
1995
- 1995-02-28 JP JP06510995A patent/JP3658033B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08237531A (ja) | 1996-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5847887A (en) | Optical apparatus | |
US6498624B1 (en) | Optical apparatus and image sensing apparatus mounted on the same surface of a board | |
US6392703B1 (en) | Optical apparatus for forming an object image on a sensing element | |
JP4706105B2 (ja) | 撮影装置 | |
JP6960983B2 (ja) | 手振れ補正機能付き撮像装置 | |
JP5188722B2 (ja) | 像振れ補正装置およびカメラ | |
KR101068181B1 (ko) | 촬상 장치 및 전자 장치 | |
JPWO2007066499A1 (ja) | 像振れ補正装置およびカメラ | |
CN100489589C (zh) | 成像装置和电子设备 | |
JP2008089804A (ja) | 撮像装置 | |
JPWO2007052606A1 (ja) | カメラ | |
JP2006350157A (ja) | 像ぶれ補正装置、該像ぶれ補正装置を備えたレンズ鏡筒、光学機器 | |
JP4500384B2 (ja) | レンズ鏡筒 | |
JP2010231043A (ja) | 像振れ補正装置、撮像レンズユニット、及びカメラユニット | |
JPH08234073A (ja) | 光学装置 | |
JP3696917B2 (ja) | 光学装置 | |
JPWO2007077704A1 (ja) | カメラ | |
JP3658033B2 (ja) | 光学装置 | |
JPH0886948A (ja) | 光学機器 | |
JP3696918B2 (ja) | 光学装置 | |
US20200073202A1 (en) | Image stabilization apparatus, lens apparatus, and camera | |
JP2016184132A (ja) | 光学駆動装置および光学機器 | |
JPH08237554A (ja) | 撮像装置 | |
JPH08234082A (ja) | 光学装置 | |
JPH08237529A (ja) | 光学装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040405 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041126 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050311 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080318 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090318 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100318 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100318 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110318 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120318 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130318 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140318 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |