JP3519069B2 - Rare earth sintered magnet - Google Patents
Rare earth sintered magnetInfo
- Publication number
- JP3519069B2 JP3519069B2 JP2001358260A JP2001358260A JP3519069B2 JP 3519069 B2 JP3519069 B2 JP 3519069B2 JP 2001358260 A JP2001358260 A JP 2001358260A JP 2001358260 A JP2001358260 A JP 2001358260A JP 3519069 B2 JP3519069 B2 JP 3519069B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- powder
- metal
- rare earth
- sintered magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 63
- 150000002910 rare earth metals Chemical class 0.000 title claims description 62
- 239000000843 powder Substances 0.000 claims description 230
- 229910052751 metal Inorganic materials 0.000 claims description 121
- 239000002184 metal Substances 0.000 claims description 121
- 238000007747 plating Methods 0.000 claims description 97
- 239000000126 substance Substances 0.000 claims description 60
- 229910001111 Fine metal Inorganic materials 0.000 claims description 38
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 229910044991 metal oxide Inorganic materials 0.000 claims description 11
- 150000004706 metal oxides Chemical class 0.000 claims description 11
- 229910052725 zinc Inorganic materials 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 229910052745 lead Inorganic materials 0.000 claims description 5
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052740 iodine Inorganic materials 0.000 claims 1
- 238000000034 method Methods 0.000 description 97
- 239000010410 layer Substances 0.000 description 87
- 239000011248 coating agent Substances 0.000 description 39
- 238000000576 coating method Methods 0.000 description 39
- 229910045601 alloy Inorganic materials 0.000 description 36
- 239000000956 alloy Substances 0.000 description 36
- 239000006247 magnetic powder Substances 0.000 description 36
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 30
- 239000011347 resin Substances 0.000 description 30
- 229920005989 resin Polymers 0.000 description 30
- 239000010949 copper Substances 0.000 description 27
- 238000005259 measurement Methods 0.000 description 26
- 239000000203 mixture Substances 0.000 description 25
- 230000007797 corrosion Effects 0.000 description 23
- 238000005260 corrosion Methods 0.000 description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 239000011701 zinc Substances 0.000 description 18
- 239000002994 raw material Substances 0.000 description 17
- 239000007788 liquid Substances 0.000 description 16
- 125000004429 atom Chemical group 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 230000006866 deterioration Effects 0.000 description 12
- 238000010298 pulverizing process Methods 0.000 description 12
- 229910052796 boron Inorganic materials 0.000 description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 239000011247 coating layer Substances 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- 238000009713 electroplating Methods 0.000 description 9
- 238000010303 mechanochemical reaction Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000010791 quenching Methods 0.000 description 8
- 230000000171 quenching effect Effects 0.000 description 8
- 239000007822 coupling agent Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 238000000748 compression moulding Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000003618 dip coating Methods 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 4
- 239000004327 boric acid Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000007739 conversion coating Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 4
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 4
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 4
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 4
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 4
- 238000010979 pH adjustment Methods 0.000 description 4
- VVPXMNQHQWODAR-UHFFFAOYSA-N phosphoric acid titanium Chemical compound [Ti].OP(O)(O)=O VVPXMNQHQWODAR-UHFFFAOYSA-N 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- SDKTUKJXHDZWMB-UHFFFAOYSA-N phosphoric acid zirconium Chemical compound [Zr].P(O)(O)(O)=O SDKTUKJXHDZWMB-UHFFFAOYSA-N 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- 229910002796 Si–Al Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 241000221535 Pucciniales Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000005260 alpha ray Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- IQBJFLXHQFMQRP-UHFFFAOYSA-K calcium;zinc;phosphate Chemical compound [Ca+2].[Zn+2].[O-]P([O-])([O-])=O IQBJFLXHQFMQRP-UHFFFAOYSA-K 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 150000003609 titanium compounds Chemical group 0.000 description 1
- JUWGUJSXVOBPHP-UHFFFAOYSA-B titanium(4+);tetraphosphate Chemical compound [Ti+4].[Ti+4].[Ti+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JUWGUJSXVOBPHP-UHFFFAOYSA-B 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/026—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
- Chemically Coating (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Hard Magnetic Materials (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、めっき被膜などの
耐食性被膜の形成を高い膜厚寸法精度で行うことができ
る希土類系焼結磁石に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-based sintered magnet capable of forming a corrosion resistant coating such as a plating coating with high film thickness dimensional accuracy.
【0002】[0002]
【従来の技術】Nd−Fe−B系永久磁石に代表される
R−Fe−B系永久磁石などの希土類系永久磁石は、S
m−Co系永久磁石に比べて、資源的に豊富で安価な材
料が用いられ、かつ、高い磁気特性を有している。従っ
て、特に、R−Fe−B系永久磁石は、今日様々な分野
で使用されている。しかし、希土類系永久磁石は、大気
中で酸化腐食されやすいRを含む。それ故、表面処理を
行わずに使用した場合には、わずかな酸やアルカリや水
分などの影響によって表面から腐食が進行して錆が発生
し、それに伴って、磁気特性の劣化やばらつきを招くこ
とになる。さらに、錆が発生した磁石を磁気回路などの
装置に組み込んだ場合、錆が飛散して周辺部品を汚染す
る恐れがある。この問題点を解消すべく、例えば、電気
めっき処理によって、希土類焼結磁石表面に耐食性被膜
としてめっき被膜を形成する方法が実用に供せられてい
る。磁石表面に優れた耐食性などを有するめっき被膜を
形成するためには磁石表面全体に導電性が付与されてい
ることが肝要である。希土類系焼結磁石の表面は基本的
に導電性があるので、なんらの方法を講じなくてもその
表面にめっき被膜を形成することができるが、磁石表面
全体に均一にしかも強固に導電層を形成する方法は有用
性が高く、そのような方法の出現が望まれている。2. Description of the Related Art Rare-earth permanent magnets such as R-Fe-B permanent magnets represented by Nd-Fe-B permanent magnets are
Compared with the m-Co permanent magnet, a resource-rich and inexpensive material is used, and it has high magnetic characteristics. Therefore, in particular, R-Fe-B based permanent magnets are used in various fields today. However, the rare earth-based permanent magnet contains R, which is easily oxidized and corroded in the atmosphere. Therefore, when it is used without surface treatment, corrosion progresses from the surface due to the influence of slight acid, alkali and moisture, and rust occurs, which causes deterioration and dispersion of magnetic properties. It will be. Furthermore, when a magnet with rust is incorporated in a device such as a magnetic circuit, the rust may scatter to contaminate peripheral parts. In order to solve this problem, a method of forming a plating film as a corrosion resistant film on the surface of a rare earth sintered magnet by, for example, electroplating is put into practical use. In order to form a plating film having excellent corrosion resistance on the surface of the magnet, it is essential that the entire surface of the magnet has conductivity. Since the surface of the rare earth-based sintered magnet is basically conductive, it is possible to form a plating film on the surface without any measures, but a conductive layer is uniformly and firmly formed on the entire magnet surface. The method of forming is highly useful, and the advent of such a method is desired.
【0003】ところで、ボンド磁石表面全体に導電性を
付与して電気めっき処理を行う方法が各種提案されてい
る。これらの方法は焼結磁石に対しても応用可能な方法
である。例えば、特開平5−302176号公報には、
ボンド磁石と少なくとも部分的に未硬化の状態にある樹
脂と導電性粉体とスチールボールなどの被膜形成媒体を
容器内に入れ、それらに振動または攪拌を加えることに
より、導電性粉体を含む樹脂被膜を磁石表面に形成し、
その表面にめっき被膜を形成する方法が記載されてい
る。特開平7−161516号公報には、ボンド磁石表
面の全体または一部に未硬化樹脂層を形成した後、振動
ボールミルのメディアである銅製ボールを用いてその表
面に金属粉体からなる導電層を形成し、さらにその導電
層表面にめっき被膜を形成する方法が記載されている。
特開平11−3811号公報には、金属粉末を添加した
カップリング剤の溶液中にボンド磁石を浸漬し、磁石表
面に金属粉末を付着させた後、さらにステンレスボール
などのブラストメディアの打撃力で磁石表面に金属粉末
を充填・被覆し、その後、その表面にめっき被膜を形成
する方法が記載されている。また、特開平8−1860
16号公報には、ボンド磁石表面に樹脂と導電性材料粉
末との混合物を塗装して導電性被膜層を形成した後、表
面平滑処理を行い、その表面にめっき被膜を形成する方
法が記載されている。By the way, various methods have been proposed for imparting conductivity to the entire surface of the bonded magnet and performing electroplating. These methods are also applicable to sintered magnets. For example, in Japanese Patent Laid-Open No. 5-302176,
A resin containing conductive powder by placing a bond magnet, a resin in an uncured state at least partially, a conductive powder, and a film-forming medium such as a steel ball in a container and applying vibration or stirring to them. Form a coating on the magnet surface,
A method for forming a plating film on the surface is described. Japanese Unexamined Patent Publication (Kokai) No. 7-161516 discloses that an uncured resin layer is formed on the whole or a part of the surface of a bonded magnet, and then a conductive layer made of metal powder is formed on the surface using copper balls which are media of a vibrating ball mill. It describes a method of forming and further forming a plating film on the surface of the conductive layer.
Japanese Patent Laid-Open No. 11-3811 discloses that a bonded magnet is immersed in a solution of a coupling agent to which a metal powder is added, the metal powder is attached to the surface of the magnet, and then the impact force of a blast medium such as a stainless ball is applied. It describes a method of filling and coating a metal surface with a metal powder, and then forming a plating film on the surface. In addition, JP-A-8-1860
Japanese Unexamined Patent Publication No. 16 describes a method of forming a conductive coating layer by coating a mixture of resin and conductive material powder on the surface of a bonded magnet, and then performing a surface smoothing treatment to form a plating coating on the surface. ing.
【0004】ボンド磁石表面にめっき被膜以外の耐食性
被膜を形成する方法としては、以下のような方法が提案
されている。例えば、特開平7−302705号公報に
は、ボンド磁石の表面を未硬化樹脂で被覆した後、これ
を金属粉末とアルミナ製ボールなどの被覆形成媒体とと
もに容器内に入れ、容器を振動および/または攪拌する
ことにより未硬化樹脂表面に金属粉末を付着させ、その
表面にクロメート被膜を形成する方法が記載されてい
る。特開平10−226890号公報には、金属粉末を
添加したカップリング剤の溶液中にボンド磁石を浸漬し
た後、その表面に予め金属粉末を付着させた状態で、ス
テンレスボールなどのブラストメディアによる金属粉末
の付着工程を行い、その表面に樹脂被膜を形成する方法
が記載されている。また、特開平9−205013号公
報には、ボンド磁石表面の空隙部にスチールボールなど
のブラストメディアの攻撃力によって金属粉末を充填
し、その表面に樹脂被膜を形成する方法が記載されてい
る。The following methods have been proposed as a method for forming a corrosion resistant coating other than the plated coating on the surface of the bonded magnet. For example, in Japanese Patent Application Laid-Open No. 7-302705, after the surface of a bond magnet is coated with an uncured resin, the bonded magnet is placed in a container together with a metal powder and a coating forming medium such as an alumina ball, and the container is vibrated and / or vibrated. It describes a method of adhering metal powder to the surface of an uncured resin by stirring and forming a chromate film on the surface. Japanese Unexamined Patent Application Publication No. 10-226890 discloses a method in which a bond magnet is immersed in a solution of a coupling agent to which a metal powder is added, and then the metal powder is attached to the surface of the bonded magnet in advance by using a blast medium such as a stainless ball. A method of forming a resin film on the surface of a powder is described. Further, Japanese Patent Application Laid-Open No. 9-205013 describes a method in which a void is formed on the surface of a bonded magnet by filling a metal powder with an attacking force of a blast medium such as a steel ball and forming a resin film on the surface.
【0005】[0005]
【発明が解決しようとする課題】特開平5−30217
6号公報などに記載の方法は、基本的に金属粉末を用い
てボンド磁石表面全体に導電性を付与するものである。
また、特開平7−302705号公報と特開平10−2
26890号公報に記載の方法によっても、ボンド磁石
表面全体に導電性を付与することができる。しかし、い
ずれの方法も樹脂やカップリング剤などの第三の成分の
粘着性を利用して金属粉末を磁石表面に付着させるもの
である。このような方法では、第三の成分を必要とする
ことから、コストの上昇を招く他、導電層を磁石表面全
体に均一に形成することが困難になるので、結果的に高
い寸法精度での表面処理が困難になる。また、未硬化樹
脂の硬化工程などが必要となるので製造工程が煩雑にな
る。さらに、金属粉末の付着手段として、スチールボー
ル、銅製ボール、ステンレスボール、アルミナ製ボール
などの媒体を用いた場合、ボンド磁石の割れや欠けを招
いてしまう恐れがある。特開平9−205013号公報
に記載の方法によれば、樹脂やカップリング剤などの第
三の成分を用いずに磁石表面の空隙部に金属粉末を充填
することが可能となる。しかし、この方法は、本来的に
磁石表面を構成する磁性粉上に金属粉末を付着させよう
とするものではない。従って、磁性粉上に金属粉末が付
着しても、その付着力は必然的に弱いものなので、磁性
粉上に金属粉末を強固に付着させることはできない。ま
た、この方法では、磁性粉上に弱く付着した過剰の金属
粉末を洗浄により除去する工程が必要になるので、製造
工程の煩雑化を招く。そこで本発明は、樹脂やカップリ
ング剤などの第三の成分を用いることなく、磁石表面全
体に均一にしかも強固に導電層を形成することにより、
めっき被膜などの耐食性被膜の形成を高い膜厚寸法精度
で行うことができる希土類系焼結磁石を提供することを
目的とする。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method described in Japanese Patent No. 6 or the like basically uses metal powder to impart conductivity to the entire surface of the bonded magnet.
In addition, JP-A-7-302705 and JP-A-10-2
Also by the method described in Japanese Patent No. 26890, conductivity can be imparted to the entire surface of the bonded magnet. However, in any of the methods, the metal powder is attached to the surface of the magnet by utilizing the adhesiveness of the third component such as the resin and the coupling agent. In such a method, since the third component is required, the cost is increased and it is difficult to uniformly form the conductive layer on the entire magnet surface, resulting in high dimensional accuracy. Surface treatment becomes difficult. Moreover, since a curing process for the uncured resin is required, the manufacturing process becomes complicated. Furthermore, when a medium such as a steel ball, a copper ball, a stainless steel ball, or an alumina ball is used as a means for attaching the metal powder, the bonded magnet may be cracked or chipped. According to the method described in Japanese Patent Application Laid-Open No. 9-205013, it is possible to fill the voids on the surface of the magnet with the metal powder without using the third component such as the resin and the coupling agent. However, this method does not try to adhere the metal powder onto the magnetic powder that originally constitutes the magnet surface. Therefore, even if the metal powder adheres to the magnetic powder, the adhesive force is inevitably weak, so that the metal powder cannot firmly adhere to the magnetic powder. In addition, this method requires a step of removing excess metal powder that weakly adheres to the magnetic powder by washing, which complicates the manufacturing process. Therefore, the present invention forms a conductive layer uniformly and firmly on the entire magnet surface without using a third component such as a resin or a coupling agent.
An object of the present invention is to provide a rare earth-based sintered magnet capable of forming a corrosion resistant coating such as a plating coating with high film thickness dimensional accuracy.
【0006】[0006]
【課題を解決するための手段】本発明者らは、酸化など
がされていない無垢な金属表面(新鮮表面)が引き起こ
す特異な表面化学反応であるメカノケミカル(mech
anochemical)反応に着目し、種々の検討を
行った結果、希土類系永久磁石と金属微粉生成物質を処
理容器内に入れ、処理容器内にて、両者に振動を加え、
および/または両者を攪拌すると、金属微粉生成物質か
ら新鮮表面を有する金属微粉が生成し、磁石表面を構成
する金属上に、金属微粉からなる被着層が強固にかつ高
密度に形成されることを知見した。MEANS TO SOLVE THE PROBLEMS The inventors of the present invention have mechanochemical (mechchemical) which is a unique surface chemical reaction caused by a solid metal surface (fresh surface) which has not been oxidized.
As a result of various studies focusing on the (anochemical) reaction, as a result, the rare earth-based permanent magnet and the metal fine powder generating substance were put in the processing container, and both were vibrated in the processing container.
When and / or both are agitated, metal fine powder having a fresh surface is produced from the metal fine powder producing substance, and an adhered layer of the metal fine powder is strongly and densely formed on the metal constituting the magnet surface. I found out.
【0007】本発明は、かかる知見に基づき成されたも
ので、本発明の希土類系焼結磁石は、請求項1記載の通
り、希土類系焼結磁石と大きさが0.3mm〜10mm
の金属微粉生成物質を処理容器内に入れ、処理容器内に
て、両者に振動を加え、および/または両者を攪拌する
ことにより、金属微粉生成物質から長径が0.001μ
m〜5μmの金属微粉を生成させるとともに、磁石表面
を構成する金属上に生成した金属微粉を被着させること
で得られる、磁石表面を構成する金属上に実質的に金属
微粉のみからなる被着層を有することを特徴とする。ま
た、請求項2記載の希土類系焼結磁石は、請求項1記載
の希土類系焼結磁石において、金属微粉がCu、Fe、
Ni、Co、Crから選ばれる少なくとも一種の金属成
分を含んでなることを特徴とする。また、請求項3記載
の希土類系焼結磁石は、請求項1記載の希土類系焼結磁
石において、金属微粉のヴィッカース硬度値が60以下
であることを特徴とする。また、請求項4記載の希土類
系焼結磁石は、請求項1記載の希土類系焼結磁石におい
て、金属微粉がSn、Zn、Pb、Cd、In、Au、
Ag、Alから選ばれる少なくとも一種の金属成分を含
んでなることを特徴とする。また、請求項5記載の希土
類系焼結磁石は、請求項1記載の希土類系焼結磁石にお
いて、希土類系焼結磁石がR−Fe−B系焼結磁石であ
ることを特徴とする。また、請求項6記載の希土類系焼
結磁石は、請求項2記載の希土類系焼結磁石において、
被着層の膜厚が0.001μm〜0.2μmであること
を特徴とする。また、請求項7記載の希土類系焼結磁石
は、請求項3記載の希土類系焼結磁石において、被着層
の膜厚が0.001μm〜100μmであることを特徴
とする。また、本発明の希土類系焼結磁石は、請求項8
記載の通り、請求項1記載の希土類系焼結磁石の実質的
に金属微粉のみからなる被着層の表面にめっき被膜を有
することを特徴とする。また、本発明の希土類系焼結磁
石は、請求項9記載の通り、請求項1記載の希土類系焼
結磁石の実質的に金属微粉のみからなる被着層の表面に
金属酸化物被膜を有することを特徴とする。また、本発
明の希土類系焼結磁石は、請求項10記載の通り、請求
項1記載の希土類系焼結磁石の実質的に金属微粉のみか
らなる被着層の表面に化成処理被膜を有することを特徴
とする。The present invention has been made on the basis of such findings, and the rare earth sintered magnet of the present invention has a size of 0.3 mm to 10 mm with the rare earth sintered magnet as described in claim 1.
Put the metal fine powder generating substance of into the processing container and put it in the processing container.
And vibrate both, and / or stir both
As a result, the major axis is 0.001μ from the fine metal powder generating substance.
The surface of the magnet is generated while producing metal powder of m-5 μm.
Depositing the fine metal powder generated on the metal forming the
It is characterized in that it has an adherend layer consisting essentially of fine metal powder on the metal constituting the magnet surface obtained in (1 ). The rare earth-based sintered magnet according to claim 2 is the rare earth-based sintered magnet according to claim 1, wherein the fine metal powder is Cu, Fe,
It is characterized by containing at least one metal component selected from Ni, Co and Cr. Further, the rare earth metal-based sintered magnet of claim 3, wherein, in the rare earth metal-based sintered magnet of claim 1, wherein Vickers hardness values of metal fines, characterized in that 60 or less. The rare earth-based sintered magnet according to claim 4 is the rare earth-based sintered magnet according to claim 1, wherein the fine metal powder is Sn, Zn, Pb, Cd, In, Au,
It is characterized by containing at least one metal component selected from Ag and Al. A rare earth-based sintered magnet according to a fifth aspect is the rare earth-based sintered magnet according to the first aspect, wherein the rare earth-based sintered magnet is an R—Fe—B based sintered magnet. Further, the rare earth-based sintered magnet according to claim 6 is the rare earth-based sintered magnet according to claim 2,
The film thickness of the deposition layer is 0.001 μm to 0.2 μm. Further, the rare earth metal-based sintered magnet of claim 7, wherein, in the rare earth metal-based sintered magnet of claim 3, wherein the thickness of the deposited layer is 0.001Myuemu~100myuemu. Further, the rare earth metal-based sintered magnet of the present invention, according to claim 8
As described above, the rare earth-based sintered magnet according to claim 1 is characterized in that it has a plating film on the surface of the adhered layer which is substantially composed of only metal fine powder. Further, the rare earth metal-based sintered magnet of the present invention have claim 9 as described, substantially metal oxide film on the surface of the adherend layer consisting only of fine metal powder of a rare earth-based sintered magnet of claim 1, wherein It is characterized by Further, the rare earth-based sintered magnet of the present invention has a chemical conversion treatment coating on the surface of the adherend layer of the rare earth-based sintered magnet according to claim 1, which is substantially composed of only fine metal powder, as described in claim 10. Is characterized by.
【0008】[0008]
【発明の実施の形態】本発明は、磁性粉を所要のバイン
ダーによって結合成形したボンド磁石、磁性粉を焼結さ
せた焼結磁石など、種々の構成からなる希土類系永久磁
石を対象とすることができるが、本発明は焼結磁石を対
象とする。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is intended for rare earth-based permanent magnets having various configurations such as a bonded magnet obtained by binding and molding magnetic powder with a required binder and a sintered magnet obtained by sintering magnetic powder. However, the present invention is directed to sintered magnets.
【0009】希土類系焼結磁石としては、Nd−Fe−
B系焼結磁石に代表されるR−Fe−B系焼結磁石、S
m−Fe−N系焼結磁石に代表されるR−Fe−N系焼
結磁石などが挙げられる。焼結磁石の原料となる磁性粉
は、例えば、従来から採用されている溶解粉砕法、直接
還元拡散法などによって得ることができる。このような
方法の他では、特に、特許第2665590号公報に記
載されている、溶湯急冷法によって板厚方向に成長させ
た柱状結晶組織を有する合金薄板を粉砕することで得ら
れる磁性粉を用いることによって、高磁気特性の焼結磁
石を得ることができる。焼結磁石の原料となる磁性粉の
組成は、以下に述べる範囲から選定することができる。
なお、焼結磁石は、公知の粉末冶金法を採用することで
容易に得ることができる。異方性の付与は、磁気的異方
性を有する磁性粉を磁界中配向成形することで実現する
ことができる。これらの焼結磁石においては、原料とな
る磁性粉の組成や異方性の有無によって本発明の効果が
異なるものではなく、目的とする効果を得ることができ
る。As a rare earth type sintered magnet, Nd-Fe-
R-Fe-B system sintered magnet represented by B system sintered magnet, S
Examples thereof include R-Fe-N-based sintered magnets represented by m-Fe-N-based sintered magnets. The magnetic powder, which is a raw material for the sintered magnet, can be obtained by, for example, the conventionally-dissolved pulverization method or the direct reduction diffusion method. In addition to such a method, in particular, a magnetic powder obtained by crushing an alloy thin plate having a columnar crystal structure grown in a plate thickness direction by a melt quenching method described in Japanese Patent No. 2665590 is used. As a result, a sintered magnet with high magnetic properties can be obtained. The composition of the magnetic powder used as the raw material of the sintered magnet can be selected from the range described below.
The sintered magnet can be easily obtained by adopting a known powder metallurgy method. The anisotropy can be imparted by magnetically orienting magnetic powder having magnetic anisotropy in a magnetic field. In these sintered magnets, the effect of the present invention does not differ depending on the composition of the magnetic powder as the raw material and the presence or absence of anisotropy, and the desired effect can be obtained.
【0010】希土類系焼結磁石を構成する磁性粉は、希
土類系永久磁石合金を溶解し、鋳造後に粉砕する溶解粉
砕法、一度焼結磁石を作成した後、これを粉砕する焼結
体粉砕法、Ca還元にて直接磁性粉を得る直接還元拡散
法、溶解ジェットキャスターで希土類系永久磁石合金の
リボン箔を得、これを粉砕・焼純する急冷合金法、希土
類系永久磁石合金を溶解し、これをアトマイズで粉末化
して熱処理するアトマイズ法、原料金属を粉末化した
後、メカニカルアロイングにて微粉末化して熱処理する
メカニカルアロイ法などの方法で得ることができる。ま
た、R−Fe−N系焼結磁石を構成する磁性粉は、希土
類系永久磁石合金を粉砕し、これを窒素ガス中またはア
ンモニアガス中で窒化した後、微粉末化するガス窒化法
などの方法でも得ることができる。以下、R−Fe−B
系焼結磁石用の磁性粉の製造を例にとって各方法の概略
を説明する。The magnetic powder constituting the rare earth-based sintered magnet is a melting and pulverizing method in which a rare earth-based permanent magnet alloy is melted and crushed after casting, and a sintered body crushing method in which a sintered magnet is prepared and then crushed. , A direct reduction diffusion method for directly obtaining magnetic powder by Ca reduction, a ribbon jet of a rare earth permanent magnet alloy with a melting jet caster, a quenching alloy method for crushing and refining this, melting a rare earth permanent magnet alloy, This can be obtained by a method such as an atomizing method in which this is powdered by atomization and heat treatment, or a mechanical alloy method in which the raw material metal is powdered and then finely powdered by mechanical alloying and heat treated. The magnetic powder that constitutes the R—Fe—N-based sintered magnet is obtained by pulverizing a rare earth-based permanent magnet alloy, nitriding the same in nitrogen gas or ammonia gas, and then pulverizing the powder into a fine powder. You can also get by method. Below, R-Fe-B
An outline of each method will be described by taking the production of magnetic powder for a system sintered magnet as an example.
【0011】(溶解粉砕法)原料を溶解して鋳造後に機
械的粉砕する工程による製造法である。例えば、出発原
料として、電解鉄、Bを含有し残部はFeおよびAl、
Si、Cなどの不純物からなるフェロボロン合金、希土
類金属、あるいはさらに、電解Coを配合した原料粉
を、高周波溶解し、その後水冷銅鋳型に鋳造し、水素吸
蔵粉砕するか、スタンプミルなどの通常の機械的な粉砕
により粗粉砕する。次の微粉砕のプロセスとしては、ボ
ールミル、ジェットミルなどの乾式粉砕ならびに種々の
溶媒を用いる湿式粉砕などが採用できる。本方法によ
り、主相が正方晶で、実質的に単結晶ないし数個の結晶
粒からなる平均粒度1μm〜500μmの微粉末を得る
ことができる。また、所要組成の3μm以下の微粉砕粉
を、磁界中配向成形した後、解砕し、さらに800℃〜
1100℃で熱処理した後、解砕することにより、高保
磁力を有した磁性粉を得ることができる。(Melting and pulverizing method) A manufacturing method in which raw materials are melted and mechanically pulverized after casting. For example, as a starting material, electrolytic iron, B is contained, and the balance is Fe and Al,
Ferroboron alloy made of impurities such as Si and C, rare earth metal, or raw material powder mixed with electrolytic Co is high-frequency melted, then cast in a water-cooled copper mold, hydrogen-absorbed and crushed, or a normal stamp mill or the like. Coarsely pulverize by mechanical pulverization. As the next fine pulverization process, dry pulverization such as a ball mill or jet mill and wet pulverization using various solvents can be adopted. According to this method, a fine powder having a tetragonal main phase and having an average particle size of 1 μm to 500 μm, which is substantially composed of single crystals or several crystal grains, can be obtained. Further, a finely pulverized powder having a required composition of 3 μm or less is subjected to orientation molding in a magnetic field, then crushed, and further 800 ° C.
A magnetic powder having a high coercive force can be obtained by crushing after heat treatment at 1100 ° C.
【0012】(焼結体粉砕法)所要のR−Fe−B系合
金を焼結し、再度粉砕して磁性粉を得る方法である。例
えば、出発原料として、電解鉄、Bを含有し残部はFe
およびAl、Si、Cなどの不純物からなるフェロボロ
ン合金、希土類金属、あるいはさらに、電解Coを配合
した原料粉を、不活性ガス雰囲気下、高周波溶解などで
合金化し、スタンプミルなどを用いて粗粉砕、さらに、
ボールミルなどにより微粉砕する。得られた微粉末を磁
界下または磁界をかけずに加圧成形し、非酸化性雰囲気
である真空中や不活性ガス中で焼結し、再度粉砕して、
平均粒度0.3μm〜100μmの微粉末を得る。この
後、保磁力を高めるために、500℃〜1000℃で、
熱処理を施してもよい。(Sintered body crushing method) This is a method in which the required R-Fe-B alloy is sintered and crushed again to obtain magnetic powder. For example, as a starting material, electrolytic iron, B is contained, and the balance is Fe.
And a ferroboron alloy consisting of impurities such as Al, Si and C, a rare earth metal, or a raw material powder further mixed with electrolytic Co is alloyed by high frequency melting in an inert gas atmosphere and coarsely crushed using a stamp mill or the like. ,further,
Finely pulverize with a ball mill. The obtained fine powder is pressure-molded under a magnetic field or without applying a magnetic field, sintered in a non-oxidizing atmosphere such as vacuum or inert gas, and pulverized again.
A fine powder having an average particle size of 0.3 μm to 100 μm is obtained. After that, in order to increase the coercive force, at 500 ° C to 1000 ° C,
You may heat-process.
【0013】(直接還元拡散法)フェロボロン粉、フェ
ロニッケル粉、コバルト粉、鉄粉、希土類酸化物粉など
からなる少なくとも1種の金属粉および/または酸化物
粉からなる原料粉を所望する原料合金粉末の組成に応じ
て選定し、上記原料粉に、金属CaあるいはCaH2を
上記希土類酸化物粉の還元に要する化学量論的必要量の
1.1倍〜4.0倍(重量比)混合し、不活性ガス雰囲
気中で900℃〜1200℃に加熱し、得られた反応生
成物を水中に投入して反応副生成物を除去することによ
り、粗粉砕が不要な10μm〜200μmの平均粒度を
有する粉末を得る。得られた粉末は、さらに、ボールミ
ル、ジェットミルなどの乾式粉砕を行い微粉砕するのも
よい。また、所要組成の3μm以下の微粉砕粉を、磁界
中配向成形した後、解砕し、さらに800℃〜1100
℃で熱処理した後、解砕することにより、高保磁力を有
した磁性粉を得ることができる。(Direct Reduction Diffusion Method) A raw material alloy for which a raw material powder made of at least one metal powder and / or oxide powder made of ferroboron powder, ferronickel powder, cobalt powder, iron powder, rare earth oxide powder or the like is desired It is selected according to the composition of the powder, and the raw material powder is mixed with metal Ca or CaH 2 by 1.1 times to 4.0 times (the weight ratio) the stoichiometric amount required for the reduction of the rare earth oxide powder. Then, by heating to 900 ° C. to 1200 ° C. in an inert gas atmosphere and adding the obtained reaction product to water to remove a reaction by-product, an average particle size of 10 μm to 200 μm that does not require coarse pulverization. To obtain a powder having The obtained powder may be further finely pulverized by dry pulverization using a ball mill, jet mill or the like. Further, finely pulverized powder having a required composition of 3 μm or less is subjected to orientation molding in a magnetic field, then crushed, and further 800 ° C. to 1100.
A magnetic powder having a high coercive force can be obtained by crushing after heat treatment at ℃.
【0014】(急冷合金法)所要のR−Fe−B系合金
を溶解し、ジェットキャスターでメルトスピンさせて2
0μm厚み程度のリボン箔を得てこれを粉砕した後、焼
鈍熱処理し、0.5μm以下の微細結晶粒を有する粉末
となす。また、上記のリボン箔から得た微細結晶粒を有
する粉末をホットプレス・温間据え込み加工して、異方
性を付与したバルク磁石を得、これを微粉砕するのもよ
い。(Quenched alloy method) The required R-Fe-B type alloy is melted and melt-spun with a jet caster to obtain 2
A ribbon foil having a thickness of about 0 μm is obtained, and the ribbon foil is crushed and then annealed and heat-treated to obtain a powder having fine crystal grains of 0.5 μm or less. Further, the powder having fine crystal grains obtained from the above ribbon foil may be hot-pressed and warm upset to obtain an anisotropic bulk magnet, which may be finely pulverized.
【0015】(アトマイズ法)所要のR−Fe−B系合
金を溶解し、細いノズルより溶湯を落下させ、高速の不
活性ガスまたは液体でアトマイズし、これを篩分けまた
は粉砕後、乾燥または焼鈍熱処理して磁性粉を得る方法
である。また、上記の微細結晶粒を有する粉末をホット
プレス・温間据え込み加工して、異方性を付与したバル
ク磁石を得、これを微粉砕するのもよい。(Atomizing method) The required R-Fe-B type alloy is melted, the molten metal is dropped from a thin nozzle, atomized with a high-speed inert gas or liquid, and this is sieved or crushed, then dried or annealed. This is a method of obtaining magnetic powder by heat treatment. It is also possible to subject the powder having the above-mentioned fine crystal grains to hot pressing and warm upsetting to obtain an anisotropic bulk magnet, which is then finely pulverized.
【0016】(メカニカルアロイ法)所要の原料粉末
を、ボールミル、振動ミル、乾式アトライターなどによ
り、不活性ガス中で、原子レベルで混合、非晶質化し、
その後、焼鈍熱処理して磁性粉を得る方法である。ま
た、上記の微細結晶粒を有する粉末をホットプレス・温
間据え込み加工して、異方性を付与したバルク磁石を
得、これを微粉砕するのもよい。(Mechanical alloy method) The required raw material powders are mixed at an atomic level in an inert gas by a ball mill, a vibration mill, a dry attritor, or the like to be made amorphous.
Then, it is a method of obtaining a magnetic powder by annealing heat treatment. It is also possible to subject the powder having the above-mentioned fine crystal grains to hot pressing and warm upsetting to obtain an anisotropic bulk magnet, which is then finely pulverized.
【0017】また、バルクや磁性粉に対して磁気的異方
性を付与する方法として、急冷合金法によって得られた
合金粉をホットプレスなどにより低温で焼結し、さらに
温間据え込み加工によって磁気的異方性を付与したバル
ク状磁石体を粉砕する温間加工・粉砕法(特公平4−2
0242号公報参照)、急冷合金法によって得られた合
金粉をそのまま金属製容器に充填封入し、温間圧延など
の塑性加工によって磁気的異方性を付与するパック圧延
法(特許第2596835号公報参照)、合金鋳塊を熱
間で塑性加工し、その後に粉砕して磁気的異方性を有す
る磁性粉を得るインゴット熱間加工・粉砕法(特公平7
−66892号公報参照)、希土類系永久磁石合金を水
素中で加熱して水素を吸蔵させた後、脱水素処理し、次
いで冷却することによって磁性粉を得るHDDR法(特
公平6−82575号公報参照)などを採用することが
できる。なお、磁気的異方性の付与は、上記の原料合金
と異方化手段の組合せに限られるものではなく、適宜組
み合わせることができる。As a method of imparting magnetic anisotropy to bulk or magnetic powder, alloy powder obtained by a quenching alloy method is sintered at a low temperature by hot pressing or the like, and further warm upset processing is performed. Warm working and crushing method for crushing bulk magnets with magnetic anisotropy (Japanese Patent Publication 4-2
No. 0242), the alloy powder obtained by the quenching alloy method is directly filled and sealed in a metal container, and magnetic anisotropy is imparted by plastic working such as warm rolling (Patent No. 2596835). Hot-working and crushing method for hot-plasticizing an alloy ingot and then crushing it to obtain magnetic powder having magnetic anisotropy (Japanese Patent Publication No.
-66892), a rare earth-based permanent magnet alloy is heated in hydrogen to occlude hydrogen, dehydrogenated, and then cooled to obtain magnetic powder. HDDR method (Japanese Patent Publication No. 6-82575). (See) can be adopted. The magnetic anisotropy is not limited to the combination of the above-mentioned raw material alloy and the anisotropic means, but can be appropriately combined.
【0018】上記の方法により得られる磁性粉の組成と
しては、例えば、R:8原子%〜30原子%(但しRは
Yを含む希土類元素の少なくとも1種、望ましくはN
d、Prなどの軽希土類を主体として、あるいはNd、
Prなどとの混合物を用いる)、B:2原子%〜28原
子%(Bの一部をCで置換することもできる)、Fe:
65原子%〜84原子%(Feの一部を、Feの50%
以下のCo、Feの8%以下のNi、のうち少なくとも
1種で置換したものを含む)が挙げられる。The composition of the magnetic powder obtained by the above method is, for example, R: 8 atom% to 30 atom% (where R is at least one rare earth element containing Y, preferably N).
Mainly light rare earths such as d and Pr, or Nd,
A mixture with Pr or the like), B: 2 atomic% to 28 atomic% (a part of B can be replaced by C), Fe:
65 atom% to 84 atom% (a part of Fe is 50% of Fe
The following Co, and Ni containing 8% or less of Fe are substituted).
【0019】また、得られる焼結磁石の高保磁力化、耐
食性向上のために、原料粉末に、Cu:3.5原子%以
下、S:2.5原子%以下、Ti:4.5原子%以下、
Si:15原子%以下、V:9.5原子%以下、Nb:
12.5原子%以下、Ta:10.5原子%以下、C
r:8.5原子%以下、Mo:9.5原子%以下、W:
9.5原子%以下、Mn:3.5原子%以下、Al:
9.5原子%以下、Sb:2.5原子%以下、Ge:7
原子%以下、Sn:3.5原子%以下、Zr:5.5原
子%以下、Hf:5.5原子%以下、Ca:8.5原子
%以下、Mg:8.5原子%以下、Sr:7原子%以
下、Ba:7原子%以下、Be:7原子%以下、Ga:
10原子%以下、のうち少なくとも1種を添加含有させ
ることができる。In order to increase the coercive force and the corrosion resistance of the obtained sintered magnet, the raw material powder contains Cu: 3.5 atomic% or less, S: 2.5 atomic% or less, and Ti: 4.5 atomic%. Less than,
Si: 15 atomic% or less, V: 9.5 atomic% or less, Nb:
12.5 atomic% or less, Ta: 10.5 atomic% or less, C
r: 8.5 atom% or less, Mo: 9.5 atom% or less, W:
9.5 atom% or less, Mn: 3.5 atom% or less, Al:
9.5 atom% or less, Sb: 2.5 atom% or less, Ge: 7
Atomic% or less, Sn: 3.5 atomic% or less, Zr: 5.5 atomic% or less, Hf: 5.5 atomic% or less, Ca: 8.5 atomic% or less, Mg: 8.5 atomic% or less, Sr : 7 atom% or less, Ba: 7 atom% or less, Be: 7 atom% or less, Ga:
At least one of 10 atomic% or less can be added and contained.
【0020】本発明において、磁石表面を構成する金属
とは、焼結磁石表面に位置する磁性結晶相などを意味す
る。即ち、磁石表面を構成する金属は、メカノケミカル
反応によって金属微粉を強固に被着させることができる
ものであれば、その形態や材質に特段の制限や限定はな
く、得られる効果が大きく異なるものでもない。本発明
は、磁石表面での酸化腐食による発錆の要因となる金属
のすべてを対象とするものであるので、磁石の製造方法
などによって磁石表面を構成する金属の存在形態や配置
形態が異なっていても、メカノケミカル反応によって金
属微粉を強固に被着させることができるものであればよ
く、後述する実施例によって制限や限定を受けるもので
もない。In the present invention, the metal forming the magnet surface means a magnetic crystal phase or the like located on the surface of the sintered magnet. That is, as long as the metal constituting the magnet surface can firmly adhere the fine metal powder by the mechanochemical reaction, there is no particular limitation or restriction on the form or material, and the effect obtained is greatly different. not. Since the present invention is intended for all the metals that cause rusting due to oxidative corrosion on the magnet surface, the existence form and arrangement form of the metal forming the magnet surface differ depending on the method of manufacturing the magnet. However, as long as the fine metal powder can be firmly adhered by the mechanochemical reaction, it is not limited or restricted by the examples described later.
【0021】金属微粉としては、Cu、Fe、Ni、C
o、Crなどの金属成分からなるもの、展延性が大き
な、例えば、Sn、Zn、Pb、Cd、In、Au、A
g、Alなどの金属成分からなるヴィッカース硬度値が
60以下のものが挙げられる。なお、ヴィッカース硬度
は、材料の硬さを示す指標の一つであり、その測定試験
は、例えば、ヴィッカース硬度試験器(JISB772
5)を用いたヴィッカース硬度試験方法(JISZ22
44)に基づいて行うことができる。As the metal fine powder, Cu, Fe, Ni, C
Materials composed of metal components such as o and Cr, and having high malleability, for example, Sn, Zn, Pb, Cd, In, Au, A
Examples thereof include those having a Vickers hardness value of 60 or less, which are made of metal components such as g and Al. The Vickers hardness is one of the indices showing the hardness of the material, and the measurement test is performed by, for example, a Vickers hardness tester (JISB772
5) Vickers hardness test method (JISZ22
44).
【0022】金属微粉は、上記の各々単一の金属成分か
らなるものであっても、二種以上の金属成分を含有する
合金からなるものであってもよい。また、これらの金属
成分を主成分とし、他の金属成分を含有する合金からな
るものであってもよい。このような合金を用いる場合、
要求される展延性などに応じて適切な金属成分の組み合
わせを選定することが望ましい。なお、金属微粉は、工
業的生産上不可避な不純物を含有するものであっても差
し支えない。The fine metal powder may be composed of the above-mentioned single metal component or an alloy containing two or more kinds of metal components. Further, it may be made of an alloy containing these metal components as main components and containing other metal components. When using such alloys,
It is desirable to select an appropriate combination of metal components depending on the required ductility. The fine metal powder may contain impurities that are unavoidable in industrial production.
【0023】本発明では、金属の新鮮表面が引き起こす
特異な表面化学反応であるメカノケミカル反応を利用し
て、希土類系焼結磁石表面を構成する金属上に、金属微
粉からなる被着層を効率よく形成させる。メカノケミカ
ル反応によって形成された被着層は、磁石表面を構成す
る金属上に強固にかつ高密度に形成されているので、手
で表面を擦った程度では除去することができない。従っ
て、被着層形成後の洗浄工程など、電気めっき処理を完
了するまでの種々の取り扱い時に被着層が脱落すること
はない。よって、樹脂やカップリング剤などの第三の成
分を用いなくても、磁石表面全体に均一にしかも強固に
導電層を形成できるので、密着強度の高いめっき被膜を
高い膜厚寸法精度で形成することができる。In the present invention, a mechanochemical reaction, which is a unique surface chemical reaction caused by a fresh metal surface, is utilized to efficiently form a deposition layer made of fine metal powder on the metal constituting the surface of the rare earth-based sintered magnet. Well formed. The adhered layer formed by the mechanochemical reaction is firmly and densely formed on the metal forming the magnet surface, and therefore cannot be removed by rubbing the surface with a hand. Therefore, the adhered layer does not fall off during various handlings such as a cleaning step after the formation of the adhered layer until the electroplating treatment is completed. Therefore, a conductive layer can be uniformly and firmly formed on the entire magnet surface without using a third component such as a resin or a coupling agent, so that a plating film with high adhesion strength can be formed with high film thickness dimensional accuracy. be able to.
【0024】なお、磁石表面を構成する金属上に形成さ
れた被着層は、金属微粉生成物質から生成した直後の形
状を保持した金属微粉、磁石表面を構成する金属上に被
着した金属微粉が処理容器内の内容物(その多くは金属
微粉生成物質である)との衝突によって変形(例えば展
延)した金属微粉、金属微粉上に被着した後に変形した
金属微粉、金属微粉の集合体、該集合体の変形物(例え
ば展延されて鱗片状になったもの)、該集合体の積層物
などから構成されている。よって、本発明における金属
微粉からなる被着層は、金属微粉生成物質から生成した
金属微粉を形成源として形成された被着層を意味するも
のとする。The adhered layer formed on the metal constituting the magnet surface is a metal fine powder which retains the shape immediately after being produced from the metal fine powder producing substance, or a metal fine powder deposited on the metal constituting the magnet surface. Is a metal fine powder that has been deformed (for example, spread) by collision with the contents in the processing container (most of which are metal fine powder-producing substances), a metal fine powder that has been deformed after being deposited on the metal fine powder, or an aggregate of metal fine powder , A deformed body of the aggregate (for example, a scale-like product that has been spread), a laminated body of the aggregate, and the like. Therefore, the adhered layer made of the fine metal powder in the present invention means the adhered layer formed by using the fine metal powder generated from the fine metal powder-forming substance as a formation source.
【0025】メカノケミカル反応は、上述のように金属
の新鮮表面が引き起こす反応であるので、いかに金属の
新鮮表面を生じさせるのかが重要となる。本発明におい
ては、希土類系焼結磁石と金属微粉生成物質を処理容器
内に入れ、処理容器内にて、両者に振動を加え、および
/または両者を攪拌することでこの目的を達成すること
ができる。そのメカニズムとしては、希土類系焼結磁石
と金属微粉生成物質に対する、振動および/または攪拌
により、まず、金属微粉生成物質から金属微粉が生成す
る。この生成直後の金属微粉は、酸化されておらず、新
鮮表面を有していることが挙げられる。さらに、上記の
操作は、磁石表面を構成する金属や、磁石表面を構成す
る金属上に被着した金属微粉などに対しても、処理容器
内の内容物との衝突によって新鮮表面を生じさせること
が挙げられる。その結果として、メカノケミカル反応を
連続的に引き起こすのに非常に都合がよいと考えられ
る。Since the mechanochemical reaction is a reaction caused by a fresh metal surface as described above, how to produce a fresh metal surface is important. In the present invention, this object can be achieved by placing the rare earth-based sintered magnet and the fine metal powder generating substance in the processing container, and applying vibration to both and / or stirring both in the processing container. it can. As the mechanism, by vibrating and / or stirring the rare earth-based sintered magnet and the metal fine powder generating substance, first, the metal fine powder is generated from the metal fine powder generating substance. It can be mentioned that the metal fine powder immediately after the generation is not oxidized and has a fresh surface. Furthermore, the above-mentioned operation causes a fresh surface to be produced by the collision with the contents in the processing container, even for the metal that constitutes the magnet surface and the fine metal powder that is deposited on the metal that constitutes the magnet surface. Is mentioned. As a result, it is considered to be very convenient for continuously causing mechanochemical reactions.
【0026】ちなみに、本発明者らの検討において、金
属微粉生成物質の代わりに市販の金属微粉を容器内に入
れて同様の操作を行っても、磁石表面を構成する金属上
に金属微粉を被着させることはできないことが判明して
いる。これは、市販の金属微粉は、通常、その表面が酸
化されており、新鮮表面を持たないことに加え、鋭利な
端部を有していないことから、金属微粉と磁石表面を構
成する金属との衝突では、磁石表面を構成する金属に対
して効率よく新鮮表面を生じさせることができず、ま
た、金属微粉自体も互いの衝突や磁石表面を構成する金
属との衝突によっては新鮮表面が生じないからであると
考えられる。Incidentally, in the study by the present inventors, even if a commercially available metal fine powder is put in the container instead of the metal fine powder generating substance and the same operation is performed, the metal fine powder is coated on the metal constituting the magnet surface. It has been found that it cannot be dressed. This is because the commercially available metal fine powder is usually oxidized on its surface and does not have a fresh surface and has no sharp edges. Collision, it is not possible to efficiently produce a fresh surface for the metal that constitutes the magnet surface, and the fine metal particles themselves also produce a fresh surface due to collisions with each other or with the metal that constitutes the magnet surface. It is thought that it is because there is no.
【0027】新鮮表面を有する金属微粉の生成源となる
金属微粉生成物質としては、所望する金属のみからなる
金属片、異種金属からなる芯材に所望する金属を被覆し
た複合金属片などが用いられる。これらの金属片は、針
状(ワイヤー状)、円柱状、塊状など様々な形状を有す
るが、金属微粉を効率よく生成させるためや、磁石表面
を構成する金属に対して新鮮表面を効率よく生じさせる
ためなどの観点からは、末端が鋭利な針状や円柱状のも
のを用いることが望ましい。このような望ましい形状
は、公知のワイヤーカット技術を採用することで容易に
得ることができる。As the metal fine powder producing substance which is a production source of the metal fine powder having a fresh surface, a metal piece consisting of only a desired metal, a composite metal piece obtained by coating a core material made of a different metal with the desired metal, and the like are used. . These metal pieces have various shapes such as needle-like (wire-like), columnar, and lump-like shapes. However, in order to efficiently produce fine metal powder, a fresh surface is efficiently produced against the metal that constitutes the magnet surface. From the viewpoint of, for example, it is desirable to use a needle-shaped or columnar one having a sharp end. Such a desired shape can be easily obtained by adopting a known wire cutting technique.
【0028】金属微粉生成物質の大きさ(長径)は、金
属微粉を効率よく生成させること、磁石表面を構成する
金属に対して効果的に新鮮表面を生じさせることなどの
観点から、0.3mm〜10mmとする。望ましくは
0.3mm〜5mmであり、より望ましくは0.5mm
〜3mmである。金属微粉生成物質は、同一形状・同一
寸法のものを用いてもよく、異形状・異寸法のものを混
合して用いてもよい。The size (major axis) of the metal fine powder generating material is gold.
Efficiently generate fine metal powder and configure the magnet surface
Such as effectively creating a fresh surface for metal
From a perspective,0.3 mm to 10 mm.Preferably
0.3 mm to 5 mm,More desirably0.5 mm
~ 3 mm. The same fine metal powder generation material has the same shape
Sizes may be used, and different shapes and sizes may be mixed.
You may use together.
【0029】市販の金属微粉のみでは、磁石表面を構成
する金属上に金属微粉を被着させることができないこと
は上述の通りであるが、市販の金属微粉を、上述の金属
微粉生成物質とともに処理容器内に入れれば、金属微粉
生成物質などとの衝突によって、金属微粉にも新鮮表面
を生じさせることができるので、該金属微粉も被着層の
形成に寄与することが期待される。As described above, it is not possible to deposit the metal fine powder on the metal constituting the magnet surface with only the commercially available metal fine powder, but the commercially available metal fine powder is treated with the above-mentioned metal fine powder producing substance. When placed in a container, a fresh surface can be generated in the metal fine powder due to collision with the metal fine powder generating substance and the like, so that the metal fine powder is also expected to contribute to the formation of the adhered layer.
【0030】本発明において使用しうる処理容器は、該
処理容器内にて、希土類系焼結磁石と金属微粉生成物質
に振動を加え、および/または両者を攪拌することがで
きるものであれば特段限定されるものではない。具体的
な処理容器としては、例えば、被処理物の表面を加工す
るために用いられるバレル装置の処理槽、被処理物を粉
砕するために用いられるボールミル装置の処理槽などが
挙げられる。バレル装置は、回転式をはじめ、振動式
や、遠心式など、公知の装置を用いることができる。回
転式の場合、その回転数は20rpm〜50rpmとす
ることが望ましい。振動式の場合、その振動数は50H
z〜100Hz、振動振幅は0.3mm〜10mmとす
ることが望ましい。遠心式の場合、その回転数は70r
pm〜200rpmとすることが望ましい。The treatment vessel usable in the present invention is particularly limited as long as it can vibrate the rare earth-based sintered magnet and the metal fine powder generating substance and / or agitate both in the treatment vessel. It is not limited. Specific processing containers include, for example, a processing tank of a barrel device used to process the surface of the object to be processed, a processing tank of a ball mill device used to crush the object to be processed, and the like. As the barrel device, known devices such as a rotary type, a vibration type, and a centrifugal type can be used. In the case of the rotary type, it is desirable that the number of rotations is 20 rpm to 50 rpm. In case of vibration type, the frequency is 50H
It is desirable to set z to 100 Hz and the vibration amplitude to 0.3 mm to 10 mm. In case of centrifugal type, the rotation speed is 70r
It is desirable to set it to pm to 200 rpm.
【0031】希土類系焼結磁石と金属微粉生成物質に対
する、振動および/または攪拌は、両者が酸化腐食され
やすいことを考慮して乾式的に行うことが望ましい。処
理容器内に投入する希土類系焼結磁石と金属微粉生成物
質の量は、処理容器内容積の20vol%〜90vol
%が望ましい。20vol%未満では、処理量が少なす
ぎて実用的でなく、90vol%を越えると、磁石への
金属微粉の被着が効率よく起こらなくなる恐れがあるか
らである。また、容器内に投入する希土類系焼結磁石と
金属微粉生成物質との比率は、容積比率(磁石/金属微
粉生成物質)にして3以下が望ましい。容積比率が3を
越えると、金属微粉の被着に時間を要して実用的でない
ことに加え、磁石同士の衝突が頻繁に起こり、磁石の割
れや、磁石表面からの磁性粉の脱粒などを引き起こす恐
れがあるからである。また、処理時間は、処理量にも依
存するが、一般的には1時間程度〜10時間程度であ
る。Vibration and / or agitation of the rare earth-based sintered magnet and the fine metal powder generating material are preferably performed dry in consideration of the fact that both are easily oxidized and corroded. The amount of the rare earth-based sintered magnet and the fine metal powder generating substance to be charged into the processing container is 20 vol% to 90 vol of the internal volume of the processing container.
% Is desirable. If it is less than 20 vol%, the treatment amount is too small to be practical, and if it exceeds 90 vol%, the fine metal powder may not be efficiently deposited on the magnet. Further, the ratio of the rare earth-based sintered magnet and the metal fine powder generating substance to be put into the container is preferably 3 or less in terms of volume ratio (magnet / metal fine powder generating substance). If the volume ratio exceeds 3, not only is it impractical to deposit the fine metal powder on a time-consuming basis, but collisions between magnets frequently occur, resulting in magnet cracking and magnetic powder shedding from the magnet surface. This is because it may cause it. The treatment time is generally about 1 hour to 10 hours, although it depends on the treatment amount.
【0032】金属微粉生成物質から生成する金属微粉の
大きさや形状は様々であるが、概して、超微粉(長径
0.001μm〜0.1μmの微粉)はメカノケミカル
反応を引き起こすのに都合がよいようである。Cu、F
e、Ni、Co、Crなどの金属成分からなる微粉は、
磁石表面を構成する金属上に、膜厚が0.001μm〜
0.2μmの、強固でかつ高密度な被着層を形成する。
展延性が大きな、例えば、Sn、Zn、Pb、Cd、I
n、Au、Ag、Alなどの金属成分からなるヴィッカ
ース硬度値が60以下の微粉は、その集合体が積層する
ようにして強固でかつ高密度な被着層を形成する。従っ
て、処理時間を延長すれば、100μm程度の膜厚を有
する被着層を形成することも可能である。しかし、磁石
表面に十分な導電性を付与し、かつ磁石の小型化の要請
に応えるためには、被着層の膜厚は0.001μm〜1
μmであることが望ましい。The size and shape of the metal fine powder produced from the metal fine powder producing substance vary, but in general, ultrafine powder (fine powder having a major axis of 0.001 μm to 0.1 μm) seems to be suitable for causing mechanochemical reaction. Is. Cu, F
Fine powder composed of metal components such as e, Ni, Co, Cr,
On the metal that constitutes the magnet surface, the film thickness is 0.001 μm
A strong and dense adherend layer of 0.2 μm is formed.
Highly malleable, such as Sn, Zn, Pb, Cd, I
Fine powder having a Vickers hardness value of 60 or less, which is composed of a metal component such as n, Au, Ag, and Al, forms a strong and high-density adhered layer by stacking the aggregates. Therefore, if the processing time is extended, it is possible to form an adherend layer having a film thickness of about 100 μm. However, in order to impart sufficient conductivity to the magnet surface and meet the demand for miniaturization of the magnet, the thickness of the adherend layer is 0.001 μm to 1 μm.
μm is desirable.
【0033】このようにして磁石表面全体に導電性が付
与された希土類系焼結磁石に対しては、公知の電気めっ
き処理などを行うことが可能である。しかも、樹脂やカ
ップリング剤などの第三の成分を含んだ導電層を形成す
ることが不要となるので、磁石表面上に高い膜厚寸法精
度でめっき被膜を形成させることができる。従って、本
発明の構成を採用することによって、めっき被膜形成後
の磁石寸法精度の向上を図ることが可能となる。A known electroplating treatment or the like can be performed on the rare earth-based sintered magnet in which conductivity is imparted to the entire surface of the magnet in this manner. Moreover, since it is not necessary to form a conductive layer containing a third component such as a resin or a coupling agent, it is possible to form a plating film on the magnet surface with high film thickness dimensional accuracy. Therefore, by adopting the configuration of the present invention, it is possible to improve the magnet dimensional accuracy after forming the plating film.
【0034】このようにして得られるめっき被膜を有す
るリング状焼結磁石をモータに利用した場合、磁石自体
の磁気特性を最大限に活用でき、エネルギー効率の向上
を図ることが可能となる。また、モータの小型化を図る
ことも可能となる。なお、いずれの金属微粉からなる被
着層であっても、その表面にめっき被膜を形成すること
は可能であるが、電気Niめっき処理の容易性やコスト
の点においては、Cu微粉を用いて形成された被着層が
望ましい。When the ring-shaped sintered magnet having the plating film thus obtained is used in a motor, the magnetic characteristics of the magnet itself can be utilized to the maximum extent, and the energy efficiency can be improved. It is also possible to reduce the size of the motor. It should be noted that it is possible to form a plating film on the surface of any adhered layer made of metal fine powder, but in terms of easiness and cost of the electric Ni plating treatment, Cu fine powder is used. The deposited layer formed is desirable.
【0035】また、メカノケミカル反応によって形成さ
れた金属微粉からなる被着層は、磁石表面を構成する金
属上に強固にかつ高密度に形成されているので、被着層
自体が磁石の発錆を防ぐ効果を有する。勿論、高い耐食
性を付与するためには、電気めっき処理などを行う必要
がある。しかし、樹脂埋め込み型モータ用磁石などのよ
うに、部品の製造完了時までの耐食性が保証されていれ
ばよいような磁石に対しては、金属微粉からなる被着層
自体が、磁石の防錆層としての効果によって十分な工業
的価値を有する。Al微粉からなる被着層は、その表面
に酸化被膜を形成し、防錆作用も優れているので、上記
のような簡易的防錆の点においてAl微粉は望ましいも
のである。Further, since the adhered layer made of fine metal powder formed by the mechanochemical reaction is firmly and densely formed on the metal constituting the magnet surface, the adhered layer itself rusts the magnet. Has the effect of preventing. Of course, in order to impart high corrosion resistance, it is necessary to perform electroplating treatment or the like. However, for magnets such as resin-embedded motor magnets whose corrosion resistance is required until the completion of the manufacturing of parts, the adhered layer itself made of fine metal powder is used to prevent the magnets from rusting. It has sufficient industrial value due to its effect as a layer. The adhered layer made of Al fine powder forms an oxide film on the surface thereof and has an excellent rust preventive action. Therefore, the Al fine powder is desirable from the viewpoint of simple rust prevention as described above.
【0036】磁石表面上にめっき被膜を形成するための
代表的な電気めっき処理法としては、例えば、Ni、C
u、Sn、Co、Zn、Cr、Ag、Au、Pb、Pt
などから選ばれた少なくとも1つの金属または金属の合
金(B、S、Pを含有していてもよい)を用いためっき
法などが挙げられる。また、用途に応じて、上記の金属
とともに他の金属を含有する合金を用いためっき法を採
用することも可能である。めっき厚は、50μm以下、
望ましくは10μm〜30μmである。As a typical electroplating method for forming a plating film on the magnet surface, for example, Ni, C
u, Sn, Co, Zn, Cr, Ag, Au, Pb, Pt
A plating method using at least one metal or an alloy of metals (which may contain B, S, and P) selected from the above, and the like can be given. It is also possible to adopt a plating method using an alloy containing the above metal in addition to the above metal depending on the application. Plating thickness is 50 μm or less,
It is preferably 10 μm to 30 μm.
【0037】電気Niめっき処理を行う場合、洗浄、電
解Niめっき、洗浄、乾燥の工程で行うことが望まし
い。めっき浴槽は磁石の形状に応じて種々の浴槽が使用
でき、例えば、リング形状の焼結磁石の場合には、ひっ
かけめっき処理用浴槽やバレルめっき処理用浴槽を用い
ることが望ましい。めっき浴としては、ワット浴、スル
ファミン酸浴、ウッド浴などの公知のめっき浴を用いれ
ばよい。陽極には電解Ni板を用いるが、Niの溶出を
安定させるために、電解Ni板としてSを含有したエス
トランドニッケルチップを使用することが望ましい。When performing the electric Ni plating treatment, it is desirable to perform the washing, electrolytic Ni plating, washing and drying steps. As the plating bath, various baths can be used depending on the shape of the magnet. For example, in the case of a ring-shaped sintered magnet, it is desirable to use a catch plating bath or a barrel plating bath. As the plating bath, a known plating bath such as a Watt bath, a sulfamic acid bath, or a wood bath may be used. An electrolytic Ni plate is used as the anode, but in order to stabilize the elution of Ni, it is desirable to use an estrand nickel chip containing S as the electrolytic Ni plate.
【0038】電気Cuめっき処理を行う場合、洗浄、電
解Cuめっき、洗浄、乾燥の工程で行うことが望まし
い。めっき浴槽は磁石の形状に応じて種々の浴槽が使用
でき、例えば、リング形状の焼結磁石の場合には、ひっ
かけめっき処理用浴槽やバレルめっき処理用浴槽を用い
ることが望ましい。めっき浴としては、硫酸銅浴、ピロ
リン酸胴浴などの公知のめっき浴を用いればよい。When performing the electric Cu plating treatment, it is desirable to perform the washing, electrolytic Cu plating, washing and drying steps. As the plating bath, various baths can be used depending on the shape of the magnet. For example, in the case of a ring-shaped sintered magnet, it is desirable to use a catch plating bath or a barrel plating bath. As the plating bath, a known plating bath such as a copper sulfate bath or a pyrophosphoric acid shell bath may be used.
【0039】なお、Alの微粉からなる被着層上に電気
めっき処理を施す場合、電気めっき処理時におけるAl
の溶解流出を防止するために亜鉛置換処理を行うことが
望ましい。亜鉛置換処理は公知の方法に準じて行えばよ
く、例えば、水酸化ナトリウム、酸化亜鉛、塩化第二
鉄、ロッシェル塩、硝酸ナトリウムを含む亜鉛置換液を
用いて、浴温10℃〜25℃にて、10秒〜120秒浸
漬すればよい。When the electroplating treatment is performed on the adhered layer made of fine Al powder, Al during the electroplating treatment is applied.
It is desirable to carry out a zinc substitution treatment in order to prevent the dissolution and outflow of The zinc replacement treatment may be carried out according to a known method, for example, using a zinc replacement solution containing sodium hydroxide, zinc oxide, ferric chloride, Rochelle salt, sodium nitrate, at a bath temperature of 10 ° C to 25 ° C. Then, it may be immersed for 10 seconds to 120 seconds.
【0040】また、金属微粉からなる被着層上には、め
っき被膜の他にも種々の耐食性被膜、例えば、金属酸化
物被膜や化成処理被膜を形成することができる。該被着
層は、磁石表面全体に均一にしかも強固に形成されてい
るので、高い膜厚寸法精度での被膜形成が可能となる。In addition to the plating film, various corrosion resistant films such as a metal oxide film and a chemical conversion film can be formed on the adhered layer made of fine metal powder. Since the adhered layer is uniformly and strongly formed on the entire surface of the magnet, it is possible to form a film with high film thickness dimensional accuracy.
【0041】金属酸化物被膜を形成する方法としては、
CVD法、スパッタリング法、塗布熱分解法、ゾルゲル
成膜法など公知の方法を用いることができる。しかし、
金属酸化物被膜の構成源となる金属化合物の、加水分解
反応や重合反応などによって得られたゾル液を、磁石表
面に塗布した後、熱処理することによって被膜形成を行
うゾルゲル成膜法を用いることが望ましい。ゾルゲル成
膜法に使用されるゾル液は比較的安定であり、被膜形成
を比較的低温で行えるので、高温による磁石自体の磁気
特性への影響を回避できることなどの利点がある。金属
酸化物被膜は、単一の金属酸化物成分からなる被膜であ
ってもよいし、複数の金属酸化物成分からなる複合被膜
であってもよい。金属酸化物被膜は、膜厚が0.01μ
m以上であれば優れた耐食性を発揮する。膜厚の上限は
特段限定されるものではないが、磁石自体の小型化に基
づく要請から、10μm以下、望ましくは5μm以下が
実用面において適した膜厚である。被着層を形成する金
属成分と同一の金属成分を含む金属酸化物被膜を被着層
上に形成した場合(例えば、Al微粉からなる被着層上
へのAlを含む金属酸化物被膜の形成)、両者の界面で
の密着性がより強固なものになる点において都合がよ
い。As a method for forming a metal oxide film,
Known methods such as a CVD method, a sputtering method, a coating thermal decomposition method, and a sol-gel film forming method can be used. But,
Use a sol-gel film formation method in which a sol solution obtained by a hydrolysis reaction or a polymerization reaction of a metal compound that is a constituent source of a metal oxide film is applied to the surface of a magnet and then heat-treated to form a film. Is desirable. The sol liquid used in the sol-gel film forming method is relatively stable, and since the film can be formed at a relatively low temperature, there are advantages such as avoiding the influence of the high temperature on the magnetic characteristics of the magnet itself. The metal oxide coating may be a coating made of a single metal oxide component or a composite coating made of a plurality of metal oxide components. The metal oxide film has a thickness of 0.01μ
If it is m or more, excellent corrosion resistance is exhibited. Although the upper limit of the film thickness is not particularly limited, a film thickness of 10 μm or less, preferably 5 μm or less is a practically suitable film in view of a request based on miniaturization of the magnet itself. When a metal oxide coating containing the same metal component as the metal component forming the deposition layer is formed on the deposition layer (for example, formation of a metal oxide coating containing Al on the deposition layer made of Al fine powder). ), It is convenient in that the adhesion at the interface between the two becomes stronger.
【0042】ゾル液は、金属アルコキシド(アルコキシ
ル基の一部をアルキル基などで置換したものであっても
よい)などの金属化合物、硝酸や塩酸などの触媒、所望
する場合はβ−ジケトンなどの安定化剤、水などを有機
溶媒中で調整し、金属化合物の加水分解反応や重合反応
などにより得られるコロイドが分散した溶液を用いる。
また、ゾル液には無機質微粒子などを分散させてもよ
い。ゾル液の塗布方法としては、ディップコーティング
法、スプレー法、スピンコーティング法などが挙げられ
る。ゾル液塗布後の熱処理は、ゾル液中の有機溶媒の沸
点や磁石の耐熱性などを考慮して80℃〜200℃で行
うことが望ましい。なお、通常、熱処理時間は1分〜1
時間である。所望する膜厚を有する被膜を得るために、
塗布と熱処理を繰り返して行ってもよいことは言うまで
もない。The sol solution contains a metal compound such as a metal alkoxide (which may be substituted with an alkyl group for a part of the alkoxyl group), a catalyst such as nitric acid or hydrochloric acid, and a β-diketone if desired. A solution in which a stabilizer, water and the like are adjusted in an organic solvent and a colloid obtained by a hydrolysis reaction or a polymerization reaction of a metal compound is dispersed is used.
Inorganic fine particles may be dispersed in the sol liquid. Examples of the method of applying the sol solution include a dip coating method, a spray method, a spin coating method and the like. The heat treatment after coating the sol solution is preferably performed at 80 ° C to 200 ° C in consideration of the boiling point of the organic solvent in the sol solution and the heat resistance of the magnet. The heat treatment time is usually 1 minute to 1
It's time. In order to obtain a film having a desired film thickness,
It goes without saying that the coating and the heat treatment may be repeated.
【0043】化成処理被膜を形成する方法としては、ク
ロメート処理、リン酸処理、リン酸亜鉛処理、リン酸マ
ンガン処理、リン酸カルシウム処理、リン酸亜鉛カルシ
ウム処理、チタン−リン酸系化成処理、ジルコニウム−
リン酸系化成処理などの公知の方法を用いることができ
る。Al微粉からなる被着層の耐食性を向上させる場合
には、クロメート処理、チタン−リン酸系化成処理、ジ
ルコニウム−リン酸系化成処理などが望ましく、とりわ
け、処理液や被膜の環境への負荷が小さい、チタン−リ
ン酸系化成処理、ジルコニウム−リン酸系化成処理が望
ましい。As the method for forming the chemical conversion coating, chromate treatment, phosphoric acid treatment, zinc phosphate treatment, manganese phosphate treatment, calcium phosphate treatment, zinc phosphate calcium treatment, titanium-phosphate chemical conversion treatment, zirconium-
A known method such as phosphoric acid-based chemical conversion treatment can be used. In order to improve the corrosion resistance of the adhered layer made of Al fine powder, chromate treatment, titanium-phosphoric acid chemical conversion treatment, zirconium-phosphoric acid chemical conversion treatment, etc. are desirable, and above all, the load on the environment of the treatment liquid and the coating film is increased. Smaller titanium-phosphoric acid type chemical conversion treatment and zirconium-phosphoric acid type chemical conversion treatment are preferable.
【0044】チタン−リン酸系化成処理を行う際の処理
液は、フルオロチタン酸などのチタン化合物、リン酸や
縮合リン酸、上記のフルオロチタン酸やフッ化水素酸な
どのフッ素化合物などを水に溶解して調整する。磁石表
面への処理液の塗布方法としては、ディップコーティン
グ法、スプレー法、スピンコーティング法などが挙げら
れる。処理液を塗布する際の処理液温度は20℃〜80
℃、処理時間は10秒〜10分が望ましい。処理液塗布
後の乾燥温度は、50℃〜200℃、乾燥時間は5秒〜
1時間である。ジルコニウム−リン酸系化成処理を行う
場合、チタン−リン酸系化成処理の方法に準じればよ
い。形成される被膜中には、チタンやジルコニウムが磁
石表面1m2上に形成される被膜あたり0.1mg〜1
00mg含有されていることが望ましい。The treatment liquid for the titanium-phosphoric acid chemical conversion treatment is a titanium compound such as fluorotitanic acid, phosphoric acid or condensed phosphoric acid, or a fluorine compound such as fluorotitanic acid or hydrofluoric acid described above. Dissolve in and adjust. Examples of the method of applying the treatment liquid on the surface of the magnet include a dip coating method, a spray method and a spin coating method. The temperature of the treatment liquid when applying the treatment liquid is 20 ° C. to 80 ° C.
It is desirable that the temperature and the treatment time be 10 seconds to 10 minutes. The drying temperature after applying the treatment liquid is 50 ° C to 200 ° C, and the drying time is 5 seconds to
It's an hour. When the zirconium-phosphoric acid type chemical conversion treatment is performed, the method of the titanium-phosphoric acid type chemical conversion treatment may be applied. In the formed film, titanium or zirconium is contained in an amount of 0.1 mg to 1 per film formed on 1 m 2 of the magnet surface.
It is desirable that the content is 00 mg.
【0045】[0045]
【実施例】以下、本発明の詳細を具体的実施例に基づい
て説明する。なお、以下の実施例において、金属微粉か
らなる被着層の膜厚の測定には電子線マイクロアナライ
ザー(EPMA)(EPM−810:島津製作所社製)
を用いた。めっき被膜の膜厚の測定には蛍光X線膜厚計
(SFT−7100:セイコー電子社製)を用いた。化
成処理被膜中の金属含量の測定には蛍光X線強度測定装
置(RIX−3000:理学電機社製)を用いた。EXAMPLES The details of the present invention will be described below based on specific examples. In the following examples, the electron beam microanalyzer (EPMA) (EPM-810: manufactured by Shimadzu Corporation) was used to measure the film thickness of the adhered layer made of fine metal powder.
Was used. A fluorescent X-ray film thickness meter (SFT-7100: manufactured by Seiko Instruments Inc.) was used to measure the film thickness of the plating film. A fluorescent X-ray intensity measuring device (RIX-3000: manufactured by Rigaku Denki Co., Ltd.) was used to measure the metal content in the chemical conversion coating.
【0046】実施例1:
(工程A)例えば、米国特許4770723号公報に記
載されているようにして、公知の鋳造インゴットを粉砕
し、微粉砕後に成形、焼結、熱処理、表面加工を行うこ
とによって17Nd−1Pr−75Fe−7B組成の縦
23mm×横10mm×高さ6mm寸法の焼結磁石を作
製した。この磁石を、80℃、相対湿度90%の条件下
に放置したところ、6時間で点錆が発生した(表面状況
についての30倍の顕微鏡観察による)。Example 1 (Step A) For example, as described in US Pat. No. 4,770,723, a known casting ingot is crushed, and after fine pulverization, molding, sintering, heat treatment, and surface processing are performed. Thus, a sintered magnet having a composition of 17Nd-1Pr-75Fe-7B and having a size of 23 mm length × 10 mm width × 6 mm height was produced. When this magnet was left under the conditions of 80 ° C. and relative humidity of 90%, spot rust occurred in 6 hours (according to a microscope observation of the surface condition of 30 times).
【0047】(工程B)工程Aで得られた磁石30個
(見かけ容積0.1l、重量320g)と見かけ容積2
lの直径0.8mm、長さ1mmの短円柱状Al微粉生
成物質(ワイヤーをカットしたもの)を容積3.5lの
振動バレル装置の処理槽に投入し(合計投入量は処理槽
内容積の60vol%)、振動数60Hz、振動振幅
1.5mmの条件にて乾式的に処理を5時間行った。こ
の操作により生成したAl微粉は、長径が0.1μm以
下の超微粉から最も大きいもので長径が5μm程度であ
った。上記の処理によって得られた磁石について、標準
試料を用いてAlKα線強度測定を行ったところ、磁石
表面には膜厚0.6μmのAl微粉からなる被着層が形
成されていることがわかった。この磁石表面全体にAl
微粉からなる被着層を有する磁石を、80℃、相対湿度
90%の条件下に放置しても、24時間までは発錆を招
くことはなかった(表面状況についての30倍の顕微鏡
観察による)。(Step B) 30 magnets obtained in step A (apparent volume 0.1 l, weight 320 g) and apparent volume 2
1 column of 0.8 mm diameter and 1 mm length of a short columnar Al fine powder producing substance (wire is cut) is charged into a treatment tank of a vibrating barrel device having a volume of 3.5 liter (total amount of treatment is the volume of the treatment tank). 60 vol%), a frequency of 60 Hz, and a vibration amplitude of 1.5 mm were dry-processed for 5 hours. The Al fine powder generated by this operation was the largest from the ultrafine powder having a major axis of 0.1 μm or less, and the major axis was about 5 μm. With respect to the magnet obtained by the above treatment, AlKα ray intensity measurement was performed using a standard sample, and it was found that a coating layer made of Al fine powder having a film thickness of 0.6 μm was formed on the surface of the magnet. . Al on the entire surface of this magnet
Even if a magnet having an adhered layer made of fine powder was left under the conditions of 80 ° C. and 90% relative humidity, rust did not occur up to 24 hours (according to a microscope observation of the surface condition of 30 times). ).
【0048】参考例1:
(工程A)急冷合金法で作製した、Nd12原子%、F
e77原子%、B6原子%、Co5原子%の組成からな
る平均粒径150μmの合金粉末にエポキシ樹脂を2w
t%加えて混練し、686N/mm2の圧力で圧縮成形
した後、170℃で1時間キュアし、外径22mm×内
径20mm×高さ3mmのリング状ボンド磁石を作製し
た。得られたリング状ボンド磁石(素材上がり)の特性
を表1に示す。Reference Example 1: (Step A) Nd of 12 atomic% and F produced by a quenching alloy method
2w of an epoxy resin is added to an alloy powder having an average particle size of 150 μm, which is composed of 77 atomic% B, 6 atomic% B, and 5 atomic% Co.
After t% was added and kneaded, and compression molding was performed at a pressure of 686 N / mm 2 , curing was performed at 170 ° C. for 1 hour, and a ring-shaped bonded magnet having an outer diameter of 22 mm × an inner diameter of 20 mm × height of 3 mm was produced. Table 1 shows the characteristics of the obtained ring-shaped bonded magnet (raw material).
【0049】(工程B)工程Aで得られた磁石50個
(見かけ容積0.15l、重量71g)と直径1mm、
長さ1mmの短円柱状Cu微粉生成物質(ワイヤーをカ
ットしたもの)10kg(見かけ容積2l)を容積3.
5lの振動バレル装置の処理槽に投入し(合計投入量は
処理槽内容積の61vol%)、振動数70Hz、振動
振幅3mmの条件にて乾式的に処理を3時間行った。こ
の操作により生成したCu微粉は、長径が0.1μm以
下の超微粉から最も大きいもので長径が5μm程度であ
った。上記の処理によって得られた磁石について、標準
試料を用いてCuKα線強度測定を行ったところ、磁石
表面の磁性粉上には膜厚0.1μmのCu微粉からなる
被着層が形成されていることがわかった。さらに、磁石
表面の樹脂部分は、Cu微粉からなる被着層で被覆され
ていることがわかった。(Step B) 50 magnets obtained in step A (apparent volume 0.15 l, weight 71 g) and diameter 1 mm,
A short columnar Cu fine powder generating substance (having a wire cut) of 10 mm (apparent volume 2 liters) having a length of 1 mm has a volume of 3.
The mixture was charged into a treatment tank of a 5 l vibrating barrel device (the total amount of the mixture was 61 vol% of the inner volume of the treatment tank), and the treatment was performed dry for 3 hours under conditions of a frequency of 70 Hz and a vibration amplitude of 3 mm. The Cu fine powder generated by this operation was the largest from the ultrafine powder having a major axis of 0.1 μm or less, and the major axis was about 5 μm. With respect to the magnet obtained by the above treatment, CuKα ray intensity measurement was performed using a standard sample. As a result, an adhered layer made of Cu fine powder having a film thickness of 0.1 μm was formed on the magnetic powder on the surface of the magnet. I understood it. Further, it was found that the resin portion on the surface of the magnet was covered with the adhered layer made of Cu fine powder.
【0050】参考例2:参考例1で得られた磁石表面全
体にCu微粉からなる被着層を有する磁石を洗浄した
後、ひっかけめっき方式で電気Niめっき処理を行っ
た。該処理は、電流密度2A/dm2、めっき時間60
分、pH4.2、浴温55℃、めっき液組成(硫酸ニッ
ケル240g/l、塩化ニッケル45g/l、炭酸ニッ
ケル適量(pH調整)、ほう酸30g/l)の条件にて
行った。得られためっき被膜は、外径側膜厚が22μ
m、内径側膜厚が20μmであった。このめっき被膜を
有する磁石について、80℃、相対湿度90%、500
時間の条件にて環境試験(耐湿試験)を行い、耐湿試験
後の表面状況観察(30倍の顕微鏡観察)と磁気特性劣
化率測定を行った。また、内径側膜厚の寸法精度を測定
した(n=50)。その結果を表2および表3に示す。
表2および表3から明らかなように、このめっき被膜を
有する磁石は優れた耐食性を示すとともに、高い膜厚寸
法精度にて成膜されていた。この結果は、参考例1で用
いた短円柱状Cu微粉生成物質の末端が鋭利であるの
で、処理容器内の内容物との衝突により新鮮表面を有す
るCu微粉を効率よく生成させたことや、磁石表面の磁
性粉に対しても新鮮表面を効率よく生じさせたことなど
により、メカノケミカル反応が非常に都合がよく引き起
こされ、強固でかつ高密度なCu微粉からなる被着層を
形成できたことに起因するものと思われる。また、磁石
表面の樹脂部分もCu微粉からなる被着層で被覆するこ
とができたことから、磁石表面全体に均一にしかも強固
に導電層を形成できたことに起因するものと思われる。Reference Example 2: The magnet obtained in Reference Example 1 was washed with a magnet having an adhered layer of fine Cu powder on the entire surface of the magnet, and then electro-Ni plating was performed by a hook plating method. The treatment is performed with a current density of 2 A / dm 2 and a plating time of 60.
Min, pH 4.2, bath temperature 55 ° C., plating solution composition (nickel sulfate 240 g / l, nickel chloride 45 g / l, nickel carbonate proper amount (pH adjustment), boric acid 30 g / l). The plating film obtained had an outer diameter side film thickness of 22μ.
m, and the film thickness on the inner diameter side was 20 μm. About the magnet having this plating film, 80 ° C, relative humidity 90%, 500
An environmental test (humidity resistance test) was performed under the conditions of time, and the surface condition was observed (30 times microscope observation) and the magnetic property deterioration rate was measured after the humidity resistance test. Further, the dimensional accuracy of the film thickness on the inner diameter side was measured (n = 50). The results are shown in Tables 2 and 3.
As is clear from Tables 2 and 3, the magnet having this plating film had excellent corrosion resistance and was formed with high film thickness dimensional accuracy. This result shows that the short columnar Cu fine powder generating substance used in Reference Example 1 has a sharp end, so that Cu fine powder having a fresh surface was efficiently generated by collision with the contents in the processing container, Efficiently causing mechanochemical reaction because a fresh surface was efficiently generated even with respect to the magnetic powder on the magnet surface, and a strong and high-density adhered layer of Cu fine powder could be formed. It seems to be due to that. Also, since the resin portion on the magnet surface could be covered with the adhered layer made of Cu fine powder, it is considered that the conductive layer could be uniformly and strongly formed on the entire magnet surface.
【0051】参考例3:
(工程A)急冷合金法で作製した、Nd13原子%、F
e76原子%、B6原子%、Co5原子%の組成からな
る平均粒径150μmの合金粉末にエポキシ樹脂を2w
t%加えて混練し、686N/mm2の圧力で圧縮成形
した後、180℃で2時間キュアし、外径21mm×内
径18mm×高さ4mmのリング状ボンド磁石を作製し
た。得られたリング状ボンド磁石(素材上がり)の特性
を表1に示す。Reference Example 3: (Step A) Nd of 13 atomic% and F produced by a quenching alloy method
2w of an epoxy resin is added to an alloy powder having an average particle size of 150 μm and having a composition of 76 atomic% B, 6 atomic% B, and 5 atomic% Co.
After t% was added and kneaded, and compression molding was performed at a pressure of 686 N / mm 2 , curing was performed at 180 ° C. for 2 hours to prepare a ring-shaped bonded magnet having an outer diameter of 21 mm × an inner diameter of 18 mm × height of 4 mm. Table 1 shows the characteristics of the obtained ring-shaped bonded magnet (raw material).
【0052】(工程B)工程Aで得られた磁石50個
(見かけ容積0.15l、重量132g)と見かけ容積
2lの直径1mm、長さ0.8mmの短円柱状Fe微粉
生成物質(ワイヤーをカットしたもの)を容積3.0l
の振動バレル装置の処理槽に投入し(合計投入量は処理
槽内容積の72vol%)、振動数60Hz、振動振幅
2mmの条件にて乾式的に処理を2時間行った。この操
作により生成したFe微粉は、最も大きいもので長径が
5μm程度であった。上記の処理によって得られた磁石
について、標準試料を用いてFeKα線強度測定を行っ
たところ、磁石表面の磁性粉上には膜厚0.1μmのF
e微粉からなる被着層が形成されていることがわかっ
た。さらに、磁石表面の樹脂部分は、Fe微粉からなる
被着層で被覆されていることがわかった。(Step B) 50 magnets (apparent volume 0.15 l, weight 132 g) obtained in step A and a short columnar Fe fine powder generating substance (apparent volume 2 l, diameter 1 mm, length 0.8 mm, wire) Cut volume) 3.0l
Was charged into the processing tank of the vibrating barrel device (total volume of 72 vol% of the inner volume of the processing tank), and the dry treatment was performed for 2 hours under the conditions of a frequency of 60 Hz and a vibration amplitude of 2 mm. The fine Fe powder generated by this operation was the largest and had a major axis of about 5 μm. With respect to the magnet obtained by the above treatment, the FeKα ray intensity was measured using a standard sample.
e It was found that the adhered layer made of fine powder was formed. Further, it was found that the resin portion on the magnet surface was covered with the adhered layer made of Fe fine powder.
【0053】参考例4:参考例3で得られた磁石表面全
体にFe微粉からなる被着層を有する磁石を洗浄した
後、ひっかけめっき方式で電気Niめっき処理を行っ
た。該処理は、電流密度2.2A/dm2、めっき時間
60分、pH4.2、浴温50℃、めっき液組成(硫酸
ニッケル240g/l、塩化ニッケル45g/l、炭酸
ニッケル適量(pH調整)、ほう酸30g/l)の条件
にて行った。得られためっき被膜は、外径側膜厚が21
μm、内径側膜厚が18μmであった。このめっき被膜
を有する磁石について、参考例2と同様にして、耐湿試
験後の表面状況観察と磁気特性劣化率測定、内径側膜厚
の寸法精度測定を行った。その結果、表2および表3か
ら明らかなように、このめっき被膜を有する磁石は、優
れた耐食性を示すとともに、高い膜厚寸法精度にて成膜
されていた。Reference Example 4: The magnet obtained in Reference Example 3 having the adhered layer made of Fe fine powder on the entire surface of the magnet was washed and then electro-Ni-plated by the hook plating method. The treatment is carried out at a current density of 2.2 A / dm 2 , a plating time of 60 minutes, a pH of 4.2, a bath temperature of 50 ° C., a plating solution composition (nickel sulfate 240 g / l, nickel chloride 45 g / l, nickel carbonate suitable amount (pH adjustment)). , Boric acid 30 g / l). The plating film thus obtained had an outer diameter side film thickness of 21.
μm, and the film thickness on the inner diameter side was 18 μm. With respect to the magnet having this plating film, the surface condition after the moisture resistance test, the magnetic property deterioration rate measurement, and the dimensional accuracy measurement of the inner diameter side film thickness were performed in the same manner as in Reference Example 2. As a result, as is clear from Tables 2 and 3, the magnet having this plating film had excellent corrosion resistance and was formed with high film thickness dimensional accuracy.
【0054】参考例5:参考例3の工程Aと同様の方法
で作製されたリング状ボンド磁石(特性を表1に示す)
を用い、工程Bの短円柱状Fe微粉生成物質を同じ大き
さの短円柱状Ni微粉生成物質に代えたこと以外は参考
例3の工程Bと同様にして処理を行った。この操作によ
り生成したNi微粉は、最も大きいもので長径が5μm
程度であった。上記の処理によって得られた磁石につい
て、標準試料を用いてNiKα線強度測定を行ったとこ
ろ、磁石表面の磁性粉上には膜厚0.1μmのNi微粉
からなる被着層が形成されていることがわかった。さら
に、磁石表面の樹脂部分は、Ni微粉からなる被着層で
被覆されていることがわかった。Reference Example 5: Ring-shaped bonded magnet manufactured by the same method as in Step A of Reference Example 3 (characteristics are shown in Table 1).
Was used in the same manner as in Step B of Reference Example 3 except that the short columnar Fe fine powder producing substance in Step B was replaced with a short columnar Ni fine powder producing substance of the same size. The fine Ni powder generated by this operation is the largest and has a major axis of 5 μm.
It was about. When the NiKα ray intensity of the magnet obtained by the above treatment was measured using a standard sample, an adhered layer made of Ni fine powder having a film thickness of 0.1 μm was formed on the magnetic powder on the surface of the magnet. I understood it. Further, it was found that the resin portion on the magnet surface was covered with the adhered layer made of Ni fine powder.
【0055】参考例6:参考例5で得られた磁石表面全
体にNi微粉からなる被着層を有する磁石に対し、参考
例4と同一の条件にて電気Niめっき処理を行った。得
られためっき被膜は、外径側膜厚が21μm、内径側膜
厚が18μmであった。このめっき被膜を有する磁石に
ついて、参考例2と同様にして、耐湿試験後の表面状況
観察と磁気特性劣化率測定、内径側膜厚の寸法精度測定
を行った。その結果、表2および表3から明らかなよう
に、このめっき被膜を有する磁石は、優れた耐食性を示
すとともに、高い膜厚寸法精度にて成膜されていた。Reference Example 6: The magnet obtained in Reference Example 5 having an adhered layer of Ni fine powder on the entire surface of the magnet was subjected to electric Ni plating under the same conditions as in Reference Example 4. The obtained plated coating had an outer diameter side film thickness of 21 μm and an inner diameter side film thickness of 18 μm. With respect to the magnet having this plating film, the surface condition after the moisture resistance test, the magnetic property deterioration rate measurement, and the dimensional accuracy measurement of the inner diameter side film thickness were performed in the same manner as in Reference Example 2. As a result, as is clear from Tables 2 and 3, the magnet having this plating film had excellent corrosion resistance and was formed with high film thickness dimensional accuracy.
【0056】参考例7:参考例3の工程Aと同様の方法
で作製されたリング状ボンド磁石(特性を表1に示す)
を用い、工程Bの短円柱状Fe微粉生成物質を同じ大き
さの短円柱状Co微粉生成物質に代えたこと以外は参考
例3の工程Bと同様にして処理を行った。この操作によ
り生成したCo微粉は、最も大きいもので長径が5μm
程度であった。上記の処理によって得られた磁石につい
て、標準試料を用いてCoKα線強度測定を行ったとこ
ろ、磁石表面の磁性粉上には膜厚0.1μmのCo微粉
からなる被着層が形成されていることがわかった。さら
に、磁石表面の樹脂部分は、Co微粉からなる被着層で
被覆されていることがわかった。Reference Example 7: Ring-shaped bonded magnet manufactured by the same method as in Step A of Reference Example 3 (characteristics are shown in Table 1).
Was used, and the short columnar Fe fine powder producing substance in step B was replaced with a short columnar Co fine powder producing substance of the same size, and the treatment was performed in the same manner as in step B of Reference Example 3. The fine Co powder produced by this operation is the largest and has a major axis of 5 μm.
It was about. When the CoKα ray intensity of the magnet obtained by the above treatment was measured using a standard sample, an adhered layer of Co fine powder having a film thickness of 0.1 μm was formed on the magnetic powder on the surface of the magnet. I understood it. Further, it was found that the resin portion on the surface of the magnet was covered with the adhered layer made of Co fine powder.
【0057】参考例8:参考例7で得られた磁石表面全
体にCo微粉からなる被着層を有する磁石に対し、参考
例4と同一の条件にて電気Niめっき処理を行った。得
られためっき被膜は、外径側膜厚が21μm、内径側膜
厚が18μmであった。このめっき被膜を有する磁石に
ついて、参考例2と同様にして、耐湿試験後の表面状況
観察と磁気特性劣化率測定、内径側膜厚の寸法精度測定
を行った。その結果、表2および表3から明らかなよう
に、このめっき被膜を有する磁石は、優れた耐食性を示
すとともに、高い膜厚寸法精度にて成膜されていた。Reference Example 8: The magnet obtained in Reference Example 7 having the adhered layer of Co fine powder on the entire surface of the magnet was subjected to electric Ni plating under the same conditions as in Reference Example 4. The obtained plated coating had an outer diameter side film thickness of 21 μm and an inner diameter side film thickness of 18 μm. With respect to the magnet having this plating film, the surface condition after the moisture resistance test, the magnetic property deterioration rate measurement, and the dimensional accuracy measurement of the inner diameter side film thickness were performed in the same manner as in Reference Example 2. As a result, as is clear from Tables 2 and 3, the magnet having this plating film had excellent corrosion resistance and was formed with high film thickness dimensional accuracy.
【0058】参考例9:参考例3の工程Aと同様の方法
で作製されたリング状ボンド磁石(特性を表1に示す)
を用い、工程Bの短円柱状Fe微粉生成物質を同じ大き
さの短円柱状Cr微粉生成物質に代えたこと以外は参考
例3の工程Bと同様にして処理を行った。この操作によ
り生成したCr微粉は、最も大きいもので長径が5μm
程度であった。上記の処理によって得られた磁石につい
て、標準試料を用いてCrKα線強度測定を行ったとこ
ろ、磁石表面の磁性粉上には膜厚0.1μmのCr微粉
からなる被着層が形成されていることがわかった。さら
に、磁石表面の樹脂部分は、Cr微粉からなる被着層で
被覆されていることがわかった。Reference Example 9: Ring-shaped bonded magnet manufactured by the same method as in Step A of Reference Example 3 (characteristics are shown in Table 1).
Was used, and the short columnar Fe fine powder producing substance in step B was replaced with a short columnar Cr fine powder producing substance of the same size, and the treatment was performed in the same manner as in step B of Reference Example 3. The finest Cr powder produced by this operation has the longest diameter of 5 μm.
It was about. The magnet obtained by the above treatment was subjected to CrKα ray intensity measurement using a standard sample. As a result, an adhered layer made of Cr fine powder having a film thickness of 0.1 μm was formed on the magnetic powder on the surface of the magnet. I understood it. Further, it was found that the resin portion on the surface of the magnet was covered with the adhered layer made of Cr fine powder.
【0059】参考例10:参考例9で得られた磁石表面
全体にCr微粉からなる被着層を有する磁石に対し、参
考例4と同一の条件にて電気Niめっき処理を行った。
得られためっき被膜は、外径側膜厚が21μm、内径側
膜厚が18μmであった。このめっき被膜を有する磁石
について、参考例2と同様にして、耐湿試験後の表面状
況観察と磁気特性劣化率測定、内径側膜厚の寸法精度測
定を行った。その結果、表2および表3から明らかなよ
うに、このめっき被膜を有する磁石は、優れた耐食性を
示すとともに、高い膜厚寸法精度にて成膜されていた。Reference Example 10: The magnet obtained in Reference Example 9 having an adhered layer of Cr fine powder on the entire surface of the magnet was subjected to electric Ni plating under the same conditions as in Reference Example 4.
The obtained plated coating had an outer diameter side film thickness of 21 μm and an inner diameter side film thickness of 18 μm. With respect to the magnet having this plating film, the surface condition after the moisture resistance test, the magnetic property deterioration rate measurement, and the dimensional accuracy measurement of the inner diameter side film thickness were performed in the same manner as in Reference Example 2. As a result, as is clear from Tables 2 and 3, the magnet having this plating film had excellent corrosion resistance and was formed with high film thickness dimensional accuracy.
【0060】比較例1:
(工程A)参考例1の工程Aと同様の方法で作製された
外径22mm×内径20mm×高さ3mmのリング状ボ
ンド磁石を洗浄後、浸漬法にて、未硬化のフェノール樹
脂層を磁石上に形成した後、市販のAg粉(長径0.7
μm以下)を樹脂表面に付着させた。得られた50個の
リング状ボンド磁石(見かけ容積0.15l、重量71
g)を容積3.5lの振動バレル装置の処理槽に投入
し、2.5mm径のスチールボール(見かけ容積2l)
をメディアとして3時間処理した後(合計投入量は処理
槽内容積の61vol%)、150℃で2時間キュア
し、磁石表面上に7μmの導電被覆層を形成した。Comparative Example 1: (Step A) A ring-shaped bonded magnet having an outer diameter of 22 mm, an inner diameter of 20 mm, and a height of 3 mm, which was produced by the same method as in the step A of Reference Example 1, was washed and then subjected to an immersion method. After forming a cured phenolic resin layer on the magnet, a commercially available Ag powder (major axis 0.7
μm or less) was attached to the resin surface. The obtained 50 ring-shaped bonded magnets (apparent volume 0.15 l, weight 71
g) was charged into a treatment tank of a vibrating barrel device having a volume of 3.5 l, and a steel ball having a diameter of 2.5 mm (apparent volume of 2 l)
Was used as a medium for 3 hours (the total amount charged was 61 vol% of the inner volume of the processing tank), and then cured at 150 ° C. for 2 hours to form a conductive coating layer of 7 μm on the magnet surface.
【0061】(工程B)工程Aで得られた磁石に対し、
参考例2と同一の条件にて電気Niめっき処理を行っ
た。このめっき被膜を有する磁石について、参考例2と
同様にして、耐湿試験後の表面状況観察、内径側膜厚の
寸法精度測定を行った。その結果、表2から明らかなよ
うに、このめっき被膜を有する磁石は耐湿試験によって
発錆を招き、また膜厚寸法精度も低いものであった。(Step B) For the magnet obtained in Step A,
The electric Ni plating treatment was performed under the same conditions as in Reference Example 2. With respect to the magnet having this plating film, the surface condition was observed after the moisture resistance test and the dimensional accuracy of the inner diameter side film thickness was measured in the same manner as in Reference Example 2. As a result, as is apparent from Table 2, the magnet having this plating film was rusted by the moisture resistance test, and the film thickness dimensional accuracy was low.
【0062】比較例2:
(工程A)参考例1の工程Aと同様の方法で作製された
外径22mm×内径20mm×高さ3mmのリング状ボ
ンド磁石を洗浄後、エポキシ系接着剤の10wt%メチ
ルエチルケトン(MEK)溶液に5分間含浸させ、その
後、十分に液切りしてからMEKを乾燥させた。このよ
うにして作製された、表面に未硬化のエポキシ系接着剤
層を有するリング状ボンド磁石50個(見かけ容積0.
15l、重量71g)と直径1mmのCuボール10k
g(見かけ容積2l)と長径0.8μmの市販のCu粉
末25gを容積3.5lの振動バレル装置の処理槽に投
入し(合計投入量は処理槽内容積の61vol%)、3
時間処理した。その後、150℃で2時間キュアしてか
ら洗浄し、過剰のCu粉末を除去し、磁石表面上に18
μmの導電被覆層を形成した。Comparative Example 2: (Step A) A ring-shaped bonded magnet having an outer diameter of 22 mm, an inner diameter of 20 mm and a height of 3 mm, which was produced by the same method as in the step A of Reference Example 1, was washed, and then 10 wt of epoxy adhesive was used. % Methyl ethyl ketone (MEK) solution was impregnated for 5 minutes, then drained well and dried MEK. 50 ring-shaped bond magnets (apparent volume of 0.
15 l, weight 71 g) and a Cu ball 10 k with a diameter of 1 mm
g (apparent volume 2 l) and 25 g of commercially available Cu powder having a major axis of 0.8 μm were charged into a treatment tank of a vibrating barrel device having a volume of 3.5 l (total amount added was 61 vol% of the inner volume of the treatment tank), 3
Time processed. After that, it was cured at 150 ° C. for 2 hours and then washed to remove excess Cu powder, and the magnet powder was placed on the magnet surface for 18 hours.
A μm conductive coating layer was formed.
【0063】(工程B)工程Aで得られた磁石に対し、
参考例2と同一の条件にて電気Niめっき処理を行っ
た。このめっき被膜を有する磁石について、参考例2と
同様にして、耐湿試験後の表面状況観察、内径側膜厚の
寸法精度測定を行った。その結果、表2から明らかなよ
うに、このめっき被膜を有する磁石は耐湿試験によって
発錆を招き、また膜厚寸法精度も低いものであった。(Step B) For the magnet obtained in Step A,
The electric Ni plating treatment was performed under the same conditions as in Reference Example 2. With respect to the magnet having this plating film, the surface condition was observed after the moisture resistance test and the dimensional accuracy of the inner diameter side film thickness was measured in the same manner as in Reference Example 2. As a result, as is apparent from Table 2, the magnet having this plating film was rusted by the moisture resistance test, and the film thickness dimensional accuracy was low.
【0064】[0064]
【表1】 [Table 1]
【0065】[0065]
【表2】 [Table 2]
【0066】[0066]
【表3】 [Table 3]
【0067】参考例11:
(工程A)急冷合金法で作製した、Nd13原子%、F
e76原子%、B6原子%、Co5原子%の組成からな
る平均粒径150μmの合金粉末にエポキシ樹脂を2w
t%加えて混練し、686N/mm2の圧力で圧縮成形
した後、180℃で2時間キュアし、外径25mm×内
径23mm×高さ3mmのリング状ボンド磁石を作製し
た。得られたリング状ボンド磁石(素材上がり)の特性
を表4に示す。Reference Example 11: (Step A) Nd of 13 atomic%, F prepared by a quenching alloy method
2w of an epoxy resin is added to an alloy powder having an average particle size of 150 μm and having a composition of 76 atomic% B, 6 atomic% B, and 5 atomic% Co.
After t% was added and kneaded, and compression molding was performed at a pressure of 686 N / mm 2 , the mixture was cured at 180 ° C. for 2 hours to prepare a ring-shaped bonded magnet having an outer diameter of 25 mm × an inner diameter of 23 mm × height of 3 mm. Table 4 shows the properties of the obtained ring-shaped bonded magnet (raw material).
【0068】(工程B)工程Aで得られた磁石50個
(見かけ容積0.15l、重量83g)と見かけ容積2
lの直径2mm、長さ1mmの短円柱状Sn微粉生成物
質(ワイヤーをカットしたもの)を容積3.0lの振動
バレル装置の処理槽に投入し(合計投入量は処理槽内容
積の72vol%)、振動数60Hz、振動振幅2mm
の条件にて乾式的に処理を2時間行った。この操作によ
り生成したSn微粉は、長径が0.1μm以下の超微粉
から最も大きいもので長径が5μm程度であった。上記
の処理によって得られた磁石について、標準試料を用い
てSnKα線強度測定を行ったところ、磁石表面の磁性
粉上には膜厚0.5μmのSn微粉からなる被着層が形
成されていることがわかった。さらに、磁石表面の樹脂
部分は、Sn微粉からなる被着層で被覆されていること
がわかった。(Step B) 50 magnets obtained in step A (apparent volume 0.15 l, weight 83 g) and apparent volume 2
1 μm in diameter of 2 mm and 1 mm in length of a short cylindrical Sn fine powder producing substance (wire is cut) is charged into a processing tank of a vibrating barrel device having a volume of 3.0 l (total charging amount is 72 vol% of the processing tank inner volume). ), Frequency 60Hz, vibration amplitude 2mm
The treatment was performed under dry conditions for 2 hours. The Sn fine powder generated by this operation was the largest from the ultrafine powder having a major axis of 0.1 μm or less, and the major axis was about 5 μm. When the SnKα ray intensity of the magnet obtained by the above treatment was measured using a standard sample, a coating layer made of Sn fine powder having a film thickness of 0.5 μm was formed on the magnetic powder on the surface of the magnet. I understood it. Further, it was found that the resin portion on the magnet surface was covered with the adhered layer made of Sn fine powder.
【0069】参考例12:参考例11で得られた磁石表
面全体にSn微粉からなる被着層を有する磁石を洗浄し
た後、ひっかけめっき方式で電気Cuめっき処理を行っ
た。該処理は、電流密度2.3A/dm2、めっき時間
6分、pH10.5、浴温45℃、めっき液組成(銅2
0g/l、遊離シアン10g/l)の条件にて行った。
続いて、ひっかけめっき方式で電気Niめっき処理を行
った。該処理は、電流密度2.2A/dm2、めっき時
間60分、pH4.2、浴温50℃、めっき液組成(硫
酸ニッケル240g/l、塩化ニッケル45g/l、炭
酸ニッケル適量(pH調整)、ほう酸30g/l)の条
件にて行った。得られためっき被膜は、外径側膜厚が2
4μm、内径側膜厚が22μmであった。このめっき被
膜を有する磁石について、参考例2と同様にして、耐湿
試験後の表面状況観察と磁気特性劣化率測定、内径側膜
厚の寸法精度測定を行った。その結果、表5および表6
から明らかなように、このめっき被膜を有する磁石は、
優れた耐食性を示すとともに、高い膜厚寸法精度にて成
膜されていた。Reference Example 12: After cleaning the magnet having an adhered layer of Sn fine powder on the entire surface of the magnet obtained in Reference Example 11, an electric Cu plating treatment was carried out by a hook plating method. The treatment is performed with a current density of 2.3 A / dm 2 , a plating time of 6 minutes, a pH of 10.5, a bath temperature of 45 ° C., a plating solution composition (copper 2
The conditions were 0 g / l and 10 g / l of free cyan.
Subsequently, an electric Ni plating process was performed by a hook plating method. The treatment is carried out at a current density of 2.2 A / dm 2 , a plating time of 60 minutes, a pH of 4.2, a bath temperature of 50 ° C., a plating solution composition (nickel sulfate 240 g / l, nickel chloride 45 g / l, nickel carbonate suitable amount (pH adjustment)). , Boric acid 30 g / l). The plating film obtained has a film thickness on the outer diameter side of 2
The thickness was 4 μm and the film thickness on the inner diameter side was 22 μm. With respect to the magnet having this plating film, the surface condition after the moisture resistance test, the magnetic property deterioration rate measurement, and the dimensional accuracy measurement of the inner diameter side film thickness were performed in the same manner as in Reference Example 2. As a result, Table 5 and Table 6
As is clear from the above, the magnet having this plating film is
The film was excellent in corrosion resistance and was formed with high film thickness dimensional accuracy.
【0070】参考例13:参考例11の工程Aと同様の
方法で作製されたリング状ボンド磁石(特性を表4に示
す)を用い、工程Bの短円柱状Sn微粉生成物質を同じ
大きさの短円柱状Zn微粉生成物質に代えたこと以外は
参考例11の工程Bと同様にして処理を行った。この操
作により生成したZn微粉は、最も大きいもので長径が
5μm程度であった。上記の処理によって得られた磁石
について、標準試料を用いてZnKα線強度測定を行っ
たところ、磁石表面の磁性粉上には膜厚0.3μmのZ
n微粉からなる被着層が形成されていることがわかっ
た。さらに、磁石表面の樹脂部分は、Zn微粉からなる
被着層で被覆されていることがわかった。Reference Example 13: Using a ring-shaped bonded magnet (characteristics are shown in Table 4) produced by the same method as in Step A of Reference Example 11, the short columnar Sn fine powder producing substance of Step B was used in the same size. The treatment was carried out in the same manner as in Step B of Reference Example 11 except that the short columnar Zn fine powder generating substance was replaced with. The fine Zn powder generated by this operation was the largest and had a major axis of about 5 μm. With respect to the magnet obtained by the above-mentioned treatment, ZnKα ray intensity measurement was performed using a standard sample.
It was found that a coating layer made of n fine powder was formed. Further, it was found that the resin portion on the surface of the magnet was covered with the adhered layer made of Zn fine powder.
【0071】参考例14:参考例13で得られた磁石表
面全体にZn微粉からなる被着層を有する磁石に対し、
参考例12と同一の条件にて電気Cuめっき処理と電気
Niめっき処理を行った。得られためっき被膜は、外径
側膜厚が24μm、内径側膜厚が22μmであった。こ
のめっき被膜を有する磁石について、参考例2と同様に
して、耐湿試験後の表面状況観察と磁気特性劣化率測
定、内径側膜厚の寸法精度測定を行った。その結果、表
5および表6から明らかなように、このめっき被膜を有
する磁石は、優れた耐食性を示すとともに、高い膜厚寸
法精度にて成膜されていた。Reference Example 14: For the magnet having the adhered layer of Zn fine powder on the entire surface of the magnet obtained in Reference Example 13,
The electric Cu plating treatment and the electric Ni plating treatment were performed under the same conditions as in Reference Example 12. The obtained plated coating had an outer diameter side film thickness of 24 μm and an inner diameter side film thickness of 22 μm. With respect to the magnet having this plating film, the surface condition after the moisture resistance test, the magnetic property deterioration rate measurement, and the dimensional accuracy measurement of the inner diameter side film thickness were performed in the same manner as in Reference Example 2. As a result, as is clear from Tables 5 and 6, the magnet having this plating film had excellent corrosion resistance and was formed with high film thickness dimensional accuracy.
【0072】参考例15:参考例11の工程Aと同様の
方法で作製されたリング状ボンド磁石(特性を表4に示
す)を用い、工程Bの短円柱状Sn微粉生成物質を同じ
大きさの短円柱状Pb微粉生成物質に代えたこと以外は
参考例11の工程Bと同様にして処理を行った。この操
作により生成したPb微粉は、最も大きいもので長径が
5μm程度であった。上記の処理によって得られた磁石
について、標準試料を用いてPbKα線強度測定を行っ
たところ、磁石表面の磁性粉上には膜厚0.7μmのP
b微粉からなる被着層が形成されていることがわかっ
た。さらに、磁石表面の樹脂部分は、Pb微粉からなる
被着層で被覆されていることがわかった。Reference Example 15: Using a ring-shaped bonded magnet (characteristics are shown in Table 4) manufactured in the same manner as in Step A of Reference Example 11, the short columnar Sn fine powder producing substance of Step B was used in the same size. The treatment was carried out in the same manner as in Step B of Reference Example 11 except that the short columnar Pb fine powder producing substance in Example 2 was used. The Pb fine powder generated by this operation was the largest and had a major axis of about 5 μm. With respect to the magnet obtained by the above treatment, PbKα ray intensity measurement was performed using a standard sample, and as a result, P of 0.7 μm thickness was found on the magnetic powder on the magnet surface.
It was found that a coating layer made of fine powder was formed. Further, it was found that the resin portion on the surface of the magnet was covered with the adhered layer made of Pb fine powder.
【0073】参考例16:参考例15で得られた磁石表
面全体にPb微粉からなる被着層を有する磁石に対し、
参考例12と同一の条件にて電気Cuめっき処理と電気
Niめっき処理を行った。得られためっき被膜は、外径
側膜厚が24μm、内径側膜厚が22μmであった。こ
のめっき被膜を有する磁石について、参考例2と同様に
して、耐湿試験後の表面状況観察と磁気特性劣化率測
定、内径側膜厚の寸法精度測定を行った。その結果、表
5および表6から明らかなように、このめっき被膜を有
する磁石は、優れた耐食性を示すとともに、高い膜厚寸
法精度にて成膜されていた。Reference Example 16: For the magnet having the adhered layer of Pb fine powder on the entire surface of the magnet obtained in Reference Example 15,
The electric Cu plating treatment and the electric Ni plating treatment were performed under the same conditions as in Reference Example 12. The obtained plated coating had an outer diameter side film thickness of 24 μm and an inner diameter side film thickness of 22 μm. With respect to the magnet having this plating film, the surface condition after the moisture resistance test, the magnetic property deterioration rate measurement, and the dimensional accuracy measurement of the inner diameter side film thickness were performed in the same manner as in Reference Example 2. As a result, as is clear from Tables 5 and 6, the magnet having this plating film had excellent corrosion resistance and was formed with high film thickness dimensional accuracy.
【0074】比較例3:
(工程A)参考例11の工程Aと同様の方法で作製され
た外径25mm×内径23mm×高さ3mmのリング状
ボンド磁石(特性を表4に示す)を洗浄後、浸漬法に
て、未硬化のフェノール樹脂層を磁石上に形成した後、
市販のAg粉(長径0.8μm以下)を樹脂表面に付着
させた。得られた50個のリング状ボンド磁石(見かけ
容積0.15l、重量83g)を容積3.0lの振動バ
レル装置の処理槽に投入し、2.5mm径のスチールボ
ール(見かけ容積2l)をメディアとして2時間処理し
た後(合計投入量は処理槽内容積の72vol%)、1
50℃で2時間キュアし、磁石表面上に8μmの導電被
覆層を形成した。Comparative Example 3: (Step A) A ring-shaped bonded magnet (having characteristics shown in Table 4) having an outer diameter of 25 mm, an inner diameter of 23 mm, and a height of 3 mm, which was manufactured by the same method as the step A of Reference Example 11, was washed. After that, by the dipping method, after forming an uncured phenol resin layer on the magnet,
Commercially available Ag powder (major axis 0.8 μm or less) was adhered to the resin surface. The obtained 50 ring-shaped bonded magnets (apparent volume 0.15 l, weight 83 g) were put into a treatment tank of a vibrating barrel device having a volume of 3.0 l, and a 2.5 mm diameter steel ball (apparent volume 2 l) was used as a medium. After 2 hours of treatment (total amount added is 72 vol% of the treatment tank internal volume), 1
It was cured at 50 ° C. for 2 hours to form a conductive coating layer of 8 μm on the magnet surface.
【0075】(工程B)工程Aで得られた磁石に対し、
参考例12と同一の条件にて電気Cuめっき処理と電気
Niめっき処理を行った。このめっき被膜を有する磁石
について、参考例2と同様にして、耐湿試験後の表面状
況観察と磁気特性劣化率測定、内径側膜厚の寸法精度測
定を行った。その結果、表5および表6から明らかなよ
うに、このめっき被膜を有する磁石は、耐湿試験によっ
て発錆や磁気特性の劣化を招き、また膜厚寸法精度も低
いものであった。(Step B) For the magnet obtained in Step A,
The electric Cu plating treatment and the electric Ni plating treatment were performed under the same conditions as in Reference Example 12. With respect to the magnet having this plating film, the surface condition after the moisture resistance test, the magnetic property deterioration rate measurement, and the dimensional accuracy measurement of the inner diameter side film thickness were performed in the same manner as in Reference Example 2. As a result, as is clear from Tables 5 and 6, the magnets having this plating film were rusted and deteriorated in magnetic properties by the moisture resistance test, and the film thickness dimensional accuracy was low.
【0076】[0076]
【表4】 [Table 4]
【0077】[0077]
【表5】 [Table 5]
【0078】[0078]
【表6】 [Table 6]
【0079】参考例17:
(工程A)急冷合金法で作製した、Nd13原子%、F
e76原子%、B6原子%、Co5原子%の組成からな
る平均粒径150μmの合金粉末にエポキシ樹脂を2w
t%加えて混練し、686N/mm2の圧力で圧縮成形
した後、180℃で2時間キュアし、外径20mm×内
径17mm×高さ6mmのリング状ボンド磁石を作製し
た。得られたリング状ボンド磁石(素材上がり)の特性
を表7に示す。Reference Example 17: (Process A) Nd of 13 atomic%, F produced by a quenching alloy method
2w of an epoxy resin is added to an alloy powder having an average particle size of 150 μm and having a composition of 76 atomic% B, 6 atomic% B, and 5 atomic% Co.
t% was added and kneaded, and compression molding was performed at a pressure of 686 N / mm 2 , followed by curing at 180 ° C. for 2 hours to prepare a ring-shaped bonded magnet having an outer diameter of 20 mm × an inner diameter of 17 mm × height of 6 mm. Table 7 shows the characteristics of the obtained ring-shaped bonded magnet (raw material).
【0080】(工程B)工程Aで得られた磁石50個
(見かけ容積0.15l、重量188g)と見かけ容積
2lの直径1.2mm、長さ1.5mmの短円柱状Al
微粉生成物質(ワイヤーをカットしたもの)を容積3.
0lの振動バレル装置の処理槽に投入し(合計投入量は
処理槽内容積の72vol%)、振動数60Hz、振動
振幅2mmの条件にて乾式的に処理を2時間行った。こ
の操作により生成したAl微粉は、最も大きいもので長
径が5μm程度であった。上記の処理によって得られた
磁石について、標準試料を用いてAlKα線強度測定を
行ったところ、磁石表面の磁性粉上には膜厚0.4μm
のAl微粉からなる被着層が形成されていることがわか
った。さらに、磁石表面の樹脂部分は、Al微粉からな
る被着層で被覆されていることがわかった。この磁石表
面全体にAl微粉からなる被着層を有する磁石を、80
℃、相対湿度90%の条件下に放置しても、36時間ま
では発錆を招くことはなかった(表面状況についての3
0倍の顕微鏡観察による)。(Step B) 50 magnets obtained in step A (apparent volume 0.15 l, weight 188 g) and an apparent volume 2 l of a short columnar Al having a diameter of 1.2 mm and a length of 1.5 mm.
Volume of fine powder generating substance (cut wire) 3.
The mixture was charged into a treatment tank of a 0 liter vibrating barrel device (total amount added was 72 vol% of the inner volume of the treatment tank), and the treatment was performed dry for 2 hours under the conditions of a frequency of 60 Hz and a vibration amplitude of 2 mm. The Al fine powder generated by this operation was the largest and had a major axis of about 5 μm. When the AlKα ray intensity of the magnet obtained by the above treatment was measured using a standard sample, the film thickness of 0.4 μm was found on the magnetic powder on the surface of the magnet.
It was found that the adhered layer made of Al fine powder was formed. Further, it was found that the resin portion on the magnet surface was covered with the adhered layer made of Al fine powder. A magnet having an adhered layer of Al fine powder on the entire surface of the magnet is
Even if it was left under the conditions of ℃ and relative humidity of 90%, rusting was not caused up to 36 hours (3 for surface condition).
(By 0-time microscope observation).
【0081】参考例18:参考例17で得られた磁石表
面全体にAl微粉からなる被着層を有する磁石を、浴温
20℃の亜鉛置換液(液組成:水酸化ナトリウム50g
/l、酸化亜鉛5g/l、塩化第二鉄2g/l、ロッシ
ェル塩50g/l、硝酸ナトリウム1g/l)に1分間
浸漬して亜鉛置換処理を行った。磁石を洗浄した後、ひ
っかけめっき方式で電気Niめっき処理を行った。該処
理は、電流密度2.2A/dm2、めっき時間60分、
pH4.2、浴温50℃、めっき液組成(硫酸ニッケル
240g/l、塩化ニッケル45g/l、炭酸ニッケル
適量(pH調整)、ほう酸30g/l)の条件にて行っ
た。得られためっき被膜は、外径側膜厚が21μm、内
径側膜厚が19μmであった。このめっき被膜を有する
磁石について、参考例2と同様にして、耐湿試験後の表
面状況観察と磁気特性劣化率測定、内径側膜厚の寸法精
度測定を行った。その結果、表8および表9から明らか
なように、このめっき被膜を有する磁石は、優れた耐食
性を示すとともに、高い膜厚寸法精度にて成膜されてい
た。Reference Example 18: A magnet having an adhered layer of Al fine powder on the entire surface of the magnet obtained in Reference Example 17 was used in a zinc replacement solution (solution composition: 50 g of sodium hydroxide at a bath temperature of 20 ° C.).
/ L, zinc oxide 5 g / l, ferric chloride 2 g / l, Rochelle salt 50 g / l, sodium nitrate 1 g / l) for 1 minute for zinc substitution treatment. After cleaning the magnet, an electric Ni plating process was performed by a hook plating method. The treatment is performed with a current density of 2.2 A / dm 2 , a plating time of 60 minutes,
The pH was 4.2, the bath temperature was 50 ° C., and the plating solution composition was 240 g / l of nickel sulfate, 45 g / l of nickel chloride, an appropriate amount of nickel carbonate (pH adjustment), and 30 g / l of boric acid. The obtained plated coating had an outer diameter side film thickness of 21 μm and an inner diameter side film thickness of 19 μm. With respect to the magnet having this plating film, the surface condition after the moisture resistance test, the magnetic property deterioration rate measurement, and the dimensional accuracy measurement of the inner diameter side film thickness were performed in the same manner as in Reference Example 2. As a result, as is clear from Tables 8 and 9, the magnet having this plating film showed excellent corrosion resistance and was formed with high film thickness dimensional accuracy.
【0082】比較例4:
(工程A)参考例17の工程Aと同様の方法で作製され
た外径20mm×内径17mm×高さ6mmのリング状
ボンド磁石(特性を表7に示す)を洗浄後、浸漬法に
て、未硬化のフェノール樹脂層を磁石上に形成した後、
市販のAg粉(長径0.8μm以下)を樹脂表面に付着
させた。得られた50個のリング状ボンド磁石(見かけ
容積0.15l、重量188g)を容積3.0lの振動
バレル装置の処理槽に投入し、2.5mm径のスチール
ボール(見かけ容積2l)をメディアとして2時間処理
した後(合計投入量は処理槽内容積の72vol%)、
150℃で2時間キュアし、磁石表面上に7μmの導電
被覆層を形成した。Comparative Example 4: (Step A) A ring-shaped bonded magnet (having characteristics shown in Table 7) having an outer diameter of 20 mm, an inner diameter of 17 mm and a height of 6 mm, which was manufactured by the same method as in the step A of Reference Example 17, was washed. After that, by the dipping method, after forming an uncured phenol resin layer on the magnet,
Commercially available Ag powder (major axis 0.8 μm or less) was adhered to the resin surface. The obtained 50 ring-shaped bonded magnets (apparent volume 0.15 l, weight 188 g) were put into a treatment tank of a vibrating barrel device having a volume of 3.0 l, and 2.5 mm diameter steel balls (apparent volume 2 l) were used as media. After treating for 2 hours as a total (72 vol% of the total volume of the treatment tank),
It was cured at 150 ° C. for 2 hours to form a 7 μm conductive coating layer on the magnet surface.
【0083】(工程B)工程Aで得られた磁石に対し、
参考例18に記載の条件にて電気Niめっき処理を行っ
た。このめっき被膜を有する磁石について、参考例2と
同様にして、耐湿試験後の表面状況観察と磁気特性劣化
率測定、内径側膜厚の寸法精度測定を行った。その結
果、表8および表9から明らかなように、このめっき被
膜を有する磁石は、耐湿試験によって発錆や磁気特性の
劣化を招き、また膜厚寸法精度も低いものであった。(Step B) For the magnet obtained in Step A,
An electric Ni plating treatment was performed under the conditions described in Reference Example 18. With respect to the magnet having this plating film, the surface condition after the moisture resistance test, the magnetic property deterioration rate measurement, and the dimensional accuracy measurement of the inner diameter side film thickness were performed in the same manner as in Reference Example 2. As a result, as is clear from Tables 8 and 9, the magnets having this plating film were rusted and deteriorated in magnetic properties by the moisture resistance test, and the film thickness dimensional accuracy was low.
【0084】[0084]
【表7】 [Table 7]
【0085】[0085]
【表8】 [Table 8]
【0086】[0086]
【表9】 [Table 9]
【0087】参考例19:
(工程A)急冷合金法で作製した、Nd12原子%、F
e77原子%、B6原子%、Co5原子%の組成からな
る平均粒径150μmの合金粉末にエポキシ樹脂を2w
t%加えて混練し、686N/mm2の圧力で圧縮成形
した後、170℃で1時間キュアし、縦30mm×横2
0mm×高さ3mmのボンド磁石を作製した。この磁石
を、80℃、相対湿度90%の条件下に放置したとこ
ろ、12時間で微小な点錆が発生した(表面状況につい
ての30倍の顕微鏡観察による)。Reference Example 19: (Step A) Nd of 12 atomic%, F produced by a quenching alloy method
2w of an epoxy resin is added to an alloy powder having an average particle size of 150 μm, which is composed of 77 atomic% B, 6 atomic% B, and 5 atomic% Co.
t% was added and kneaded, and compression molding was performed at a pressure of 686 N / mm 2 , followed by curing at 170 ° C. for 1 hour, vertical 30 mm × horizontal 2
A bonded magnet having a size of 0 mm and a height of 3 mm was manufactured. When this magnet was left under the condition of 80 ° C. and relative humidity of 90%, minute spot rust was generated in 12 hours (according to a microscope observation of the surface condition of 30 times).
【0088】(工程B)工程Aで得られた磁石50個
(見かけ容積0.1l、重量650g)と見かけ容積2
lの直径2mm、長さ1mmの短円柱状Sn微粉生成物
質(ワイヤーをカットしたもの)を容積3.0lの振動
バレル装置の処理槽に投入し(合計投入量は処理槽内容
積の72vol%)、振動数60Hz、振動振幅2mm
の条件にて乾式的に処理を2時間行った。この操作によ
り生成したSn微粉は、長径が0.1μm以下の超微粉
から最も大きいもので長径が5μm程度であった。上記
の処理によって得られた磁石について、標準試料を用い
てSnKα線強度測定を行ったところ、磁石表面の磁性
粉上には膜厚0.5μmのSn微粉からなる被着層が形
成されていることがわかった。さらに、磁石表面の樹脂
部分は、Sn微粉からなる被着層で被覆されていること
がわかった。(Step B) 50 magnets obtained in step A (apparent volume 0.1 l, weight 650 g) and apparent volume 2
1 μm in diameter of 2 mm and 1 mm in length of a short cylindrical Sn fine powder producing substance (wire is cut) is charged into a processing tank of a vibrating barrel device having a volume of 3.0 l (total charging amount is 72 vol% of the processing tank inner volume). ), Frequency 60Hz, vibration amplitude 2mm
The treatment was performed under dry conditions for 2 hours. The Sn fine powder generated by this operation was the largest from the ultrafine powder having a major axis of 0.1 μm or less, and the major axis was about 5 μm. When the SnKα ray intensity of the magnet obtained by the above treatment was measured using a standard sample, a coating layer made of Sn fine powder having a film thickness of 0.5 μm was formed on the magnetic powder on the surface of the magnet. I understood it. Further, it was found that the resin portion on the magnet surface was covered with the adhered layer made of Sn fine powder.
【0089】参考例20:ゾル液を、表10に示すSi
化合物、触媒、有機溶媒および水の各成分にて、表11
に示す組成、粘度およびpHで調整した。参考例19で
得られた磁石表面全体にSn微粉からなる被着層を有す
る磁石に対し、ゾル液を、ディップコーティング法に
て、表12に示す引き上げ速度で塗布し、熱処理を行っ
て、その表面に膜厚1.5μm(破面の電子顕微鏡観察
で測定)のSi酸化物被膜(SiOx被膜:0<x≦
2)を形成した。このゾルゲル成膜法によって得られた
Si酸化物被膜を有する磁石を、80℃、相対湿度90
%の条件下に放置しても、200時間までは発錆を招く
ことはなかった(表面状況についての30倍の顕微鏡観
察による)。Reference Example 20: The sol liquid is shown in Table 10 as Si.
For each compound, catalyst, organic solvent and water component, Table 11
The composition, viscosity and pH shown in 1 were adjusted. The sol liquid was applied by a dip coating method at a pulling rate shown in Table 12 to a magnet having an adhered layer made of Sn fine powder on the entire surface of the magnet obtained in Reference Example 19, and heat treatment was performed. Si oxide coating (SiO x coating: 0 <x ≦) with a thickness of 1.5 μm (measured by electron microscope observation of fracture surface) on the surface
2) was formed. A magnet having a Si oxide film obtained by this sol-gel film formation method was set at 80 ° C. and a relative humidity of 90.
%, It did not cause rusting up to 200 hours (according to a microscope observation of the surface condition of 30 times).
【0090】参考例21:参考例19の工程Aと同様の
方法で作製されたボンド磁石を用い、工程Bの短円柱状
Sn微粉生成物質を同じ大きさの短円柱状Zn微粉生成
物質に代えたこと以外は参考例19の工程Bと同様にし
て処理を行った。この操作により生成したZn微粉は、
最も大きいもので長径が5μm程度であった。上記の処
理によって得られた磁石について、標準試料を用いてZ
nKα線強度測定を行ったところ、磁石表面の磁性粉上
には膜厚0.3μmのZn微粉からなる被着層が形成さ
れていることがわかった。さらに、磁石表面の樹脂部分
は、Zn微粉からなる被着層で被覆されていることがわ
かった。Reference Example 21: Using a bonded magnet prepared in the same manner as in Step A of Reference Example 19, the short columnar Sn fine powder producing substance of Step B was replaced with a short columnar Zn fine powder producing substance of the same size. Except for the above, the treatment was performed in the same manner as in Step B of Reference Example 19. Zn fine powder generated by this operation,
The largest one had a major axis of about 5 μm. For the magnet obtained by the above treatment, Z
When the nKα ray intensity was measured, it was found that an adhered layer made of Zn fine powder having a film thickness of 0.3 μm was formed on the magnetic powder on the surface of the magnet. Further, it was found that the resin portion on the surface of the magnet was covered with the adhered layer made of Zn fine powder.
【0091】参考例22:ゾル液を、表10に示すTi
化合物、触媒、安定化剤、有機溶媒および水の各成分に
て、表11に示す組成、粘度およびpHで調整した。参
考例21で得られた磁石表面全体にZn微粉からなる被
着層を有する磁石に対し、ゾル液を、ディップコーティ
ング法にて、表12に示す引き上げ速度で塗布し、熱処
理を行って、その表面に膜厚0.7μm(破面の電子顕
微鏡観察で測定)のTi酸化物被膜(TiOx被膜:0
<x≦2)を形成した。このゾルゲル成膜法によって得
られたTi酸化物被膜を有する磁石を、80℃、相対湿
度90%の条件下に放置しても、200時間までは発錆
を招くことはなかった(表面状況についての30倍の顕
微鏡観察による)。Reference Example 22: The sol liquid is Ti shown in Table 10.
The components, the catalyst, the stabilizer, the organic solvent, and the water were adjusted to the composition, viscosity, and pH shown in Table 11. A sol solution was applied by a dip coating method at a pulling rate shown in Table 12 to a magnet having an adhered layer made of Zn fine powder on the entire surface of the magnet obtained in Reference Example 21, and heat treatment was performed. Ti oxide coating (TiO x coating: 0) with a thickness of 0.7 μm (measured by electron microscope observation of fracture surface) on the surface
<X ≦ 2) was formed. Even if the magnet having the Ti oxide coating film obtained by this sol-gel film formation method was allowed to stand under the conditions of 80 ° C. and 90% relative humidity, rusting was not caused up to 200 hours. 30 times under a microscope).
【0092】参考例23:参考例19の工程Aと同様の
方法で作製されたボンド磁石50個(見かけ容積0.1
l、重量650g)と見かけ容積2lの直径1.2m
m、長さ1.5mmの短円柱状Al微粉生成物質(ワイ
ヤーをカットしたもの)を容積3.0lの振動バレル装
置の処理槽に投入し(合計投入量は処理槽内容積の72
vol%)、振動数60Hz、振動振幅2mmの条件に
て乾式的に処理を2時間行った。この操作により生成し
たAl微粉は、長径が0.1μm以下の超微粉から最も
大きいもので長径が5μm程度であった。上記の処理に
よって得られた磁石について、標準試料を用いてAlK
α線強度測定を行ったところ、磁石表面の磁性粉上には
膜厚0.4μmのAl微粉からなる被着層が形成されて
いることがわかった。さらに、磁石表面の樹脂部分は、
Al微粉からなる被着層で被覆されていることがわかっ
た。Reference Example 23: Fifty bonded magnets (apparent volume 0.1
1, weight 650g) and apparent volume 2l diameter 1.2m
A short columnar Al fine powder producing substance (having a wire cut) having a length of m and a length of 1.5 mm was charged into a treatment tank of a vibrating barrel apparatus having a volume of 3.0 l (the total amount of the charge was 72 times the internal volume of the treatment tank).
vol%), the frequency was 60 Hz, and the vibration amplitude was 2 mm, and the dry treatment was performed for 2 hours. The Al fine powder generated by this operation was the largest from the ultrafine powder having a major axis of 0.1 μm or less, and the major axis was about 5 μm. For the magnet obtained by the above treatment, using a standard sample, AlK
When the α-ray intensity was measured, it was found that an adhered layer made of Al fine powder having a film thickness of 0.4 μm was formed on the magnetic powder on the surface of the magnet. Furthermore, the resin portion of the magnet surface is
It was found to be covered with an adherend layer made of Al fine powder.
【0093】参考例24:ゾル液を、表10に示すSi
化合物、Al化合物、触媒、安定化剤、有機溶媒および
水の各成分にて、表11に示す組成、粘度およびpHで
調整した。参考例23で得られた磁石表面全体にAl微
粉からなる被着層を有する磁石に対し、ゾル液を、ディ
ップコーティング法にて、表12に示す引き上げ速度で
塗布し、熱処理を行って、その表面に膜厚0.5μm
(破面の電子顕微鏡観察で測定)のSi−Al複合酸化
物被膜(SiOx・Al2Oy被膜:0<x≦2・0<
y≦3)を形成した。このゾルゲル成膜法によって得ら
れたSi−Al複合酸化物被膜を有する磁石を、80
℃、相対湿度90%の条件下に放置しても、200時間
までは発錆を招くことはなかった(表面状況についての
30倍の顕微鏡観察による)。Reference Example 24: The sol solution is shown in Table 10 as Si.
The composition, viscosity and pH shown in Table 11 were adjusted with each component of the compound, Al compound, catalyst, stabilizer, organic solvent and water. A sol solution was applied by a dip coating method at a pulling rate shown in Table 12 to a magnet having an adhered layer made of Al fine powder on the entire surface of the magnet obtained in Reference Example 23, and heat treatment was performed. 0.5 μm film thickness on the surface
Si-Al complex oxide coating (measured by electron microscope observation of fracture surface) (SiO x Al 2 O y coating: 0 <x ≦ 2.0 <
y ≦ 3) was formed. A magnet having a Si—Al composite oxide film obtained by this sol-gel film formation method was
Even if it was left under the conditions of ° C and relative humidity of 90%, rusting was not caused up to 200 hours (according to a microscope observation of the surface condition of 30 times).
【0094】[0094]
【表10】 [Table 10]
【0095】[0095]
【表11】 [Table 11]
【0096】[0096]
【表12】 [Table 12]
【0097】参考例25:パルコート3753(製品
名:日本パーカライジング社製のTi−リン酸系化成処
理用液)35gを水1lに溶解して調整した処理液(p
H3.8)に、参考例17で得られた磁石表面全体にA
l微粉からなる被着層を有する磁石を、浴温40℃で1
分間浸漬した後、100℃で20分間乾燥し、その表面
にTi含有化成処理被膜を形成した。得られた被膜中の
Ti含有量は、磁石表面1m2上に形成された被膜あた
り10mgであった。この化成処理被膜を有する磁石
を、80℃、相対湿度90%の条件下に放置しても、2
00時間までは発錆を招くことはなかった(表面状況に
ついての30倍の顕微鏡観察による)。Reference Example 25: Palcoat 3753 (Product name: Ti-phosphoric acid chemical conversion treatment liquid manufactured by Nihon Parkerizing Co., Ltd.) was dissolved in 1 l of water to prepare a treatment liquid (p.
H3.8), A on the entire magnet surface obtained in Reference Example 17
1 A magnet having an adhered layer of fine powder was used at a bath temperature of 40 ° C.
After dipping for a minute, it was dried at 100 ° C. for 20 minutes to form a Ti-containing chemical conversion treatment film on the surface. The Ti content in the obtained coating was 10 mg per coating formed on 1 m 2 of the magnet surface. Even if a magnet having this chemical conversion treatment film is left under the conditions of 80 ° C. and 90% relative humidity,
It did not cause rusting until 00 hours (according to a microscope observation of the surface condition of 30 times).
【0098】参考例26:パルコート3756MAおよ
びパルコート3756MB(いずれも製品名:日本パー
カライジング社製のZr−リン酸系化成処理用液)各1
0gを水1lに溶解して調整した処理液(pH3.2)
に、参考例17で得られた磁石表面全体にAl微粉から
なる被着層を有する磁石を、浴温50℃で1分30秒間
浸漬した後、120℃で20分間乾燥し、その表面にZ
r含有化成処理被膜を形成した。得られた被膜中のZr
含有量は、磁石表面1m2上に形成された被膜あたり1
6mgであった。この化成処理被膜を有する磁石を、8
0℃、相対湿度90%の条件下に放置しても、200時
間までは発錆を招くことはなかった(表面状況について
の30倍の顕微鏡観察による)。Reference Example 26: Palcoat 3756MA and Palcoat 3756MB (both product names: Zr-phosphoric acid type chemical conversion treatment liquid manufactured by Nippon Parkerizing Co., Ltd.) 1 each
Treatment liquid prepared by dissolving 0 g in 1 L of water (pH 3.2)
A magnet having an adhered layer made of Al fine powder on the entire surface of the magnet obtained in Reference Example 17 was immersed in a bath temperature of 50 ° C. for 1 minute and 30 seconds, and then dried at 120 ° C. for 20 minutes, and Z was formed on the surface.
An r-containing chemical conversion coating was formed. Zr in the obtained coating
The content is 1 per coating film formed on 1 m 2 of the magnet surface.
It was 6 mg. A magnet having this chemical conversion coating is
Even when left under conditions of 0 ° C. and 90% relative humidity, rusting did not occur up to 200 hours (according to a microscope observation of the surface condition of 30 times).
【0099】[0099]
【発明の効果】本発明の希土類系焼結磁石は、磁石表面
を構成する金属上に実質的に金属微粉のみからなる被着
層が強固にかつ高密度に形成されている。従って、電気
めっき処理などにより、耐食性に優れた被膜の形成を高
い膜厚寸法精度で行うことができ、磁石寸法精度の向上
を図ることが可能となる。また、金属微粉からなる被着
層自体に防錆効果があるので、それ自体が磁石の防錆層
としての役割を果たす。EFFECTS OF THE INVENTION In the rare earth-based sintered magnet of the present invention, an adherent layer consisting essentially of fine metal powder is firmly and densely formed on the metal constituting the magnet surface. Therefore, a film having excellent corrosion resistance can be formed with high film thickness dimensional accuracy by electroplating or the like, and the magnet dimensional accuracy can be improved. Further, since the adhered layer made of fine metal powder itself has an anticorrosion effect, it itself serves as an anticorrosion layer for the magnet.
フロントページの続き (51)Int.Cl.7 識別記号 FI C23C 28/00 C23C 28/00 C H01F 41/02 H01F 41/02 G (56)参考文献 特開 平9−205013(JP,A) 特開 昭61−166116(JP,A) 特開 平9−7810(JP,A) 特開 平9−289108(JP,A) 特開 平7−161516(JP,A) 特開 昭62−87237(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/00 - 1/117 H01F 41/00 - 41/04 H01F 41/08 - 41/10 C23C 24/00 - 28/00 Continuation of front page (51) Int.Cl. 7 identification code FI C23C 28/00 C23C 28/00 C H01F 41/02 H01F 41/02 G (56) Reference JP-A-9-205013 (JP, A) Kai 61-166116 (JP, A) JP 9-8810 (JP, A) JP 9-289108 (JP, A) JP 7-161516 (JP, A) JP 62-87237 ( (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1/00-1/117 H01F 41/00-41/04 H01F 41/08-41/10 C23C 24/00-28 / 00
Claims (10)
〜10mmの金属微粉生成物質を処理容器内に入れ、処
理容器内にて、両者に振動を加え、および/または両者
を攪拌することにより、金属微粉生成物質から長径が
0.001μm〜5μmの金属微粉を生成させるととも
に、磁石表面を構成する金属上に生成した金属微粉を被
着させることで得られる、磁石表面を構成する金属上に
実質的に金属微粉のみからなる被着層を有することを特
徴とする希土類系焼結磁石。1. A rare earth sintered magnet and a size of 0.3 mm
Put the metal fine powder generating substance of 10 mm into the processing container, and
In the processing container, apply vibration to both and / or both
By stirring the
Along with generating fine metal powder of 0.001 μm to 5 μm
The fine metal powder generated on the metal that constitutes the magnet surface.
A rare earth-based sintered magnet, characterized in that it has an adherend layer consisting essentially of fine metal powder on the metal constituting the magnet surface , which is obtained by adhesion.
rから選ばれる少なくとも一種の金属成分を含んでなる
ことを特徴とする請求項1記載の希土類系焼結磁石。2. The fine metal powder is Cu, Fe, Ni, Co, C.
The rare earth-based sintered magnet according to claim 1, comprising at least one metal component selected from r.
下であることを特徴とする請求項1記載の希土類系焼結
磁石。3. The rare earth-based sintered magnet according to claim 1, wherein the Vickers hardness value of the fine metal powder is 60 or less.
n、Au、Ag、Alから選ばれる少なくとも一種の金
属成分を含んでなることを特徴とする請求項1記載の希
土類系焼結磁石。4. The fine metal powder is Sn, Zn, Pb, Cd, I.
The rare earth-based sintered magnet according to claim 1, comprising at least one metal component selected from n, Au, Ag, and Al.
磁石であることを特徴とする請求項1記載の希土類系焼
結磁石。5. The rare earth based sintered magnet according to claim 1, wherein the rare earth based sintered magnet is an R—Fe—B based sintered magnet.
μmであることを特徴とする請求項2記載の希土類系焼
結磁石。6. The thickness of the adherend layer is 0.001 μm to 0.2.
The rare earth-based sintered magnet according to claim 2, wherein the sintered magnet has a thickness of μm.
μmであることを特徴とする請求項3記載の希土類系焼
結磁石。7. The thickness of the adherend layer is 0.001 μm to 100 μm.
The rare earth-based sintered magnet according to claim 3, wherein the sintered magnet has a diameter of μm.
的に金属微粉のみからなる被着層の表面にめっき被膜を
有することを特徴とする希土類系焼結磁石。8. A rare earth-based sintered magnet according to claim 1, wherein the surface of the adhered layer substantially consisting of only the fine metal powder has a plating film.
的に金属微粉のみからなる被着層の表面に金属酸化物被
膜を有することを特徴とする希土類系焼結磁石。9. A rare earth-based sintered magnet according to claim 1, wherein the adhered layer of the rare earth-based sintered magnet according to claim 1 has a metal oxide film on the surface of the adhered layer.
質的に金属微粉のみからなる被着層の表面に化成処理被
膜を有することを特徴とする希土類系焼結磁石。10. A rare earth-based sintered magnet having a chemical conversion treatment film on the surface of an adhered layer of the rare earth-based sintered magnet according to claim 1, which is substantially composed of only metal fine powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001358260A JP3519069B2 (en) | 1999-01-27 | 2001-11-22 | Rare earth sintered magnet |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1842699 | 1999-01-27 | ||
JP11-115836 | 1999-04-23 | ||
JP11-115835 | 1999-04-23 | ||
JP11583699 | 1999-04-23 | ||
JP11583599 | 1999-04-23 | ||
JP11-18426 | 1999-04-23 | ||
JP2001358260A JP3519069B2 (en) | 1999-01-27 | 2001-11-22 | Rare earth sintered magnet |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000002223A Division JP3278647B2 (en) | 1999-01-27 | 2000-01-11 | Rare earth bonded magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002237407A JP2002237407A (en) | 2002-08-23 |
JP3519069B2 true JP3519069B2 (en) | 2004-04-12 |
Family
ID=27456962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001358260A Expired - Lifetime JP3519069B2 (en) | 1999-01-27 | 2001-11-22 | Rare earth sintered magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3519069B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1511046B1 (en) | 2002-11-29 | 2015-05-20 | Hitachi Metals, Ltd. | Method for producing corrosion-resistant rare earth metal- based permanent magnet, corrosion-resistant rare earth metal- based permanent magnet, dip spin coating method for work piece, and method for forming coating film on work piece |
JP2006049865A (en) * | 2004-06-30 | 2006-02-16 | Shin Etsu Chem Co Ltd | Corrosion resistant rare earth magnet and manufacturing method thereof |
JP5573663B2 (en) * | 2010-12-27 | 2014-08-20 | 日立金属株式会社 | Method for producing corrosion-resistant magnet |
KR102283172B1 (en) * | 2015-02-03 | 2021-07-29 | 엘지이노텍 주식회사 | Rare earth magnet and motor including the same |
CN113166948A (en) * | 2018-12-04 | 2021-07-23 | Ppg工业俄亥俄公司 | Treated particles and substrates |
-
2001
- 2001-11-22 JP JP2001358260A patent/JP3519069B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002237407A (en) | 2002-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3278647B2 (en) | Rare earth bonded magnet | |
JP2003158006A (en) | Corrosion-resistant rare-earth magnet | |
JP3781095B2 (en) | Method for producing corrosion-resistant rare earth magnet | |
US6251196B1 (en) | Process for producing Fe-B-R based permanent magnet having a corrosion-resistant film | |
JP3519069B2 (en) | Rare earth sintered magnet | |
JP3877552B2 (en) | Method for manufacturing metal member | |
US6423369B1 (en) | Process for sealing pores in molded product, and bonded magnet with pores sealed by the process | |
JP3991660B2 (en) | Iron-based permanent magnet and method for producing the same | |
JP2002134342A (en) | Rare-earth permanent magnet and its manufacturing method | |
US8383252B2 (en) | Rare earth magnet and its production method | |
JP3232037B2 (en) | High corrosion resistance R-Fe-B bonded magnet with excellent crushing strength | |
JP3236813B2 (en) | High corrosion resistance R-Fe-B bonded magnet and method for producing the same | |
JP2003064454A (en) | Corrosion resistant rare earth magnet, and production method therefor | |
JP3236815B2 (en) | High corrosion resistance R-Fe-B bonded magnet and method for producing the same | |
JP2922601B2 (en) | Resin molded magnet | |
JP3218028B2 (en) | Surface treatment method for an object to be treated having a hollow portion communicating with the outside and a ring-shaped bonded magnet treated by the method | |
JP2006049865A (en) | Corrosion resistant rare earth magnet and manufacturing method thereof | |
JPH0613211A (en) | Permanent magnet having excellent corrosion resistance and manufacture thereof | |
JP3168484B2 (en) | Method for manufacturing rare earth-iron-nitrogen permanent magnet | |
JP2002020879A (en) | Surface treating method for object to be treated provided with hollow part communicating with outside and ringlike bond magnet treated by the same method | |
JP4539288B2 (en) | Rare earth sintered magnet | |
JP4600627B2 (en) | Rare earth permanent magnet manufacturing method | |
WO2023007900A1 (en) | Fe-based amorphous alloy powder, magnetic component, and magnetic powder core | |
JP3467263B2 (en) | Method for sealing pores in bonded magnet voids and bonded magnets sealed by the method | |
EP0984464B1 (en) | Process for producing Fe-B-R based permanent magnet having a corrosion-resistant film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030619 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3519069 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080206 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080206 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140206 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |