JP3508527B2 - Method of manufacturing finned heat transfer tube - Google Patents
Method of manufacturing finned heat transfer tubeInfo
- Publication number
- JP3508527B2 JP3508527B2 JP02002698A JP2002698A JP3508527B2 JP 3508527 B2 JP3508527 B2 JP 3508527B2 JP 02002698 A JP02002698 A JP 02002698A JP 2002698 A JP2002698 A JP 2002698A JP 3508527 B2 JP3508527 B2 JP 3508527B2
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- transfer tube
- fin
- copper
- fins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012546 transfer Methods 0.000 title claims description 108
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 113
- 239000010949 copper Substances 0.000 claims description 71
- 229910052802 copper Inorganic materials 0.000 claims description 68
- 229910052751 metal Inorganic materials 0.000 claims description 36
- 239000002184 metal Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 36
- 238000010438 heat treatment Methods 0.000 claims description 30
- 230000003647 oxidation Effects 0.000 claims description 26
- 238000007254 oxidation reaction Methods 0.000 claims description 26
- 230000001590 oxidative effect Effects 0.000 claims description 17
- 238000003780 insertion Methods 0.000 claims description 15
- 230000037431 insertion Effects 0.000 claims description 15
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 11
- 238000005304 joining Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 description 23
- 239000000463 material Substances 0.000 description 21
- 229910045601 alloy Inorganic materials 0.000 description 14
- 239000000956 alloy Substances 0.000 description 14
- 238000005219 brazing Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 229910001873 dinitrogen Inorganic materials 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- 239000011261 inert gas Substances 0.000 description 7
- 229910000906 Bronze Inorganic materials 0.000 description 6
- 239000010974 bronze Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- 229910017532 Cu-Be Inorganic materials 0.000 description 2
- 229910017758 Cu-Si Inorganic materials 0.000 description 2
- 229910017755 Cu-Sn Inorganic materials 0.000 description 2
- 229910017767 Cu—Al Inorganic materials 0.000 description 2
- 229910017888 Cu—P Inorganic materials 0.000 description 2
- 229910017931 Cu—Si Inorganic materials 0.000 description 2
- 229910017927 Cu—Sn Inorganic materials 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000006247 magnetic powder Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001152 Bi alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- ZWFRZGJUJSOHGL-UHFFFAOYSA-N [Bi].[Cu].[Sn] Chemical compound [Bi].[Cu].[Sn] ZWFRZGJUJSOHGL-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は熱交換器用配管、ヒ
ートパイプなどとして使用されるフィン付き伝熱管の製
造方法に関し、詳しくは溶接やろう付けを用いることな
く伝熱管に多数のフィンを固定して、熱交換効率に優れ
たフィン付き伝熱管を製造する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a finned heat transfer tube used as a heat exchanger pipe, a heat pipe, and the like, and more particularly, to fixing a large number of fins to a heat transfer tube without using welding or brazing. And a method for manufacturing a finned heat transfer tube having excellent heat exchange efficiency.
【0002】[0002]
【従来の技術】従来、熱交換器用配管やヒートパイプと
して使用されるフィン付き伝熱管を製造するには、銅管
などの伝熱管に、挿入孔を穿設した銅板などのフィンを
多数挿入し、伝熱管の長手方向に沿って所定間隔毎に溶
接、ろう付け或いは拡径密着により接合し、製造してい
た。しかしながら、ろう付けによる接合では、フィンと
伝熱管との間に低融点ハンダなどのろう材が介在してい
るために、この接合部分で熱伝導が悪くなる問題があ
る。また溶接は、多数のフィンを伝熱管に接合する場
合、溶接作業に手間がかかり、製造コストが高くなる問
題がある。2. Description of the Related Art Conventionally, in order to manufacture a finned heat transfer tube used as a heat exchanger pipe or a heat pipe, many fins such as copper plates having insertion holes are inserted into a heat transfer tube such as a copper tube. In this case, the heat transfer tubes are manufactured by welding, brazing, or expanding the diameter of the heat transfer tubes at predetermined intervals. However, in the joining by brazing, there is a problem that the heat conduction is deteriorated at this joining portion because a brazing material such as low melting point solder is interposed between the fin and the heat transfer tube. Further, in welding, there is a problem in that when a large number of fins are joined to the heat transfer tube, the welding work takes time and the manufacturing cost increases.
【0003】一方、伝熱管表面の表面積を増大させて熱
交換効率を高めるために、伝熱管の表面に金属からなる
多孔質層を形成する技術として、次のものが知られてい
る。特開昭60−103187号公報には、鋼管の表面
に、銅-錫-ビスマス合金の被膜を形成することを特徴と
する熱交換器用管の製造方法が開示されている。特開昭
60−251390号公報には、銅管(エンペロープ)
の内面に500メッシュ程度の低融点ハンダ(接合粉
体)と、200メッシュ以下の銅片からなる材料粉体を
入れ、銅管を周方向に回転させながら、これら粉体を加
熱溶着させることを特徴とするヒートパイプの製造方法
が開示されている。特開昭60−255983号公報に
は、金属製の熱伝達基体の表面に、磁場を利用して低融
点の金属を被覆した磁性粉を散布し、加熱して、該磁性
粉を熱伝達面に密着接着させることを特徴とする熱交換
体の製造方法が開示されている。特開昭61−1687
93号公報には、金属管の表面に、プラズマ溶射法によ
って銅粉を吹き付け、表面に微細な凹凸を形成した伝熱
管及びその製造方法が開示されている。特開昭62−2
06382号公報には、銅管などの金属製管体の内表面
に、電気鍍金により樹枝状または粒状の多孔質層を形成
したヒートパイプが開示されている。特開平2−129
488号公報には、銅−亜鉛合金製の管の内外表面を脱
亜鉛することにより、多数の微細な開孔面が形成された
表面多孔質管が開示されている。特開平2−17588
1号公報には金属管の内面に低融点金属粉末(Sn粉
末)と高融点金属粉末(Cu粉末)の混合層を形成し、
これを加熱して微小空孔を形成させる内面多孔質管の製
造方法が開示されている。特開平5−214504号公
報には、素材管の表面に金属粉を溶射して多孔質溶射層
を形成しながら金属線を素材管に巻き付け、溶射層形成
後に金属線を除去する伝熱管の製造方法が開示されてい
る。上述した従来技術のうち、銅管などの基体の表面
に、ハンダやSnなどの低融点金属を用いて、銅からな
る多孔質層を形成する方法は、銅管などの基体と、銅か
らなる多孔質層とがハンダやSnなどの低融点金属を介
して接合されているので、低融点金属の部分で熱伝導が
悪くなり、その結果基体−多孔質層間の熱伝導損失が大
きくなるという問題があった。さらに低融点ハンダ等を
使用すると、耐熱性や耐薬品性が悪くなるという問題が
あった。また、銅管など基体の表面に、プラズマ溶射な
どの溶射法、或いは電気鍍金によって銅の多孔質層や微
細な凹凸を設ける方法は、製造に手間がかかる問題があ
った。On the other hand, the following techniques are known for forming a porous layer made of metal on the surface of the heat transfer tube in order to increase the surface area of the surface of the heat transfer tube and enhance the heat exchange efficiency. Japanese Unexamined Patent Publication (Kokai) No. 60-103187 discloses a method for manufacturing a heat exchanger tube, which comprises forming a coating film of a copper-tin-bismuth alloy on the surface of a steel tube. Japanese Unexamined Patent Publication No. 60-251390 discloses a copper pipe (employee).
A low-melting point solder (bonding powder) of about 500 mesh and a material powder consisting of copper pieces of 200 mesh or less are put on the inner surface of the, and the powder is heated and welded while rotating the copper tube in the circumferential direction. Disclosed is a characteristic heat pipe manufacturing method. In Japanese Patent Laid-Open No. 60-255983, magnetic powder coated with a metal having a low melting point is dispersed on the surface of a metal heat transfer substrate by using a magnetic field and heated to heat the magnetic powder to a heat transfer surface. Disclosed is a method for producing a heat exchange element, which is characterized in that the heat exchange element is closely adhered to. JP 61-1687 A
Japanese Unexamined Patent Publication No. 93 discloses a heat transfer tube in which copper powder is sprayed on the surface of a metal tube by a plasma spraying method to form fine irregularities on the surface, and a manufacturing method thereof. JP 62-2
Japanese Patent Publication No. 06382 discloses a heat pipe in which a dendritic or granular porous layer is formed on the inner surface of a metal pipe body such as a copper pipe by electroplating. JP-A-2-129
Japanese Patent No. 488 discloses a superficially porous tube in which a large number of fine open surfaces are formed by dezincing the inner and outer surfaces of a copper-zinc alloy tube. JP-A-2-17588
In Japanese Patent Laid-Open No. 1, a mixed layer of a low melting point metal powder (Sn powder) and a high melting point metal powder (Cu powder) is formed on the inner surface of a metal tube,
A method for manufacturing an inner porous tube by heating this to form minute pores is disclosed. Japanese Patent Application Laid-Open No. 5-214504 discloses a method of manufacturing a heat transfer tube in which a metal wire is sprayed on the surface of a material tube to form a porous sprayed layer, a metal wire is wound around the material tube, and the metal wire is removed after the sprayed layer is formed. A method is disclosed. Among the above-mentioned conventional techniques, a method of forming a porous layer made of copper on the surface of a substrate such as a copper tube by using a low melting point metal such as solder or Sn is a method of forming a substrate such as a copper tube and copper. Since the porous layer is bonded via a low melting point metal such as solder or Sn, the heat conduction becomes poor at the low melting point metal part, resulting in a large heat conduction loss between the substrate and the porous layer. was there. Further, when a low melting point solder or the like is used, there is a problem that heat resistance and chemical resistance are deteriorated. In addition, there is a problem in that it takes time and effort to manufacture the surface of a substrate such as a copper tube by a thermal spraying method such as plasma spraying or a method of forming a porous layer of copper and fine irregularities by electroplating.
【0004】[0004]
【発明が解決しようとする課題】本発明は、溶接やろう
付けを用いることなく伝熱管に多数のフィンを固定し
て、熱交換効率に優れたフィン付き伝熱管を製造する方
法の提供、並びに伝熱管やフィン表面に、表面積を増大
させて熱交換効率を向上するための銅多孔質層を簡易に
製造する方法の提供を課題としている。SUMMARY OF THE INVENTION The present invention provides a method for manufacturing a finned heat transfer tube having excellent heat exchange efficiency by fixing a large number of fins to the heat transfer tube without using welding or brazing. An object of the present invention is to provide a method for easily producing a copper porous layer on the surface of a heat transfer tube or fins to increase the surface area and improve heat exchange efficiency.
【0005】[0005]
【課題を解決するための手段】本発明のフィン付き伝熱
管の製造方法は、(a)銅又は銅合金からなる伝熱管
に、銅又は銅合金からなり挿入孔を穿設したフィンを挿
入して成形体を形成する工程、(b)前記成形体を酸化
性雰囲気下で加熱保持し、前記伝熱管とフィンとの隙間
が各々の表面に生じた酸化物によって架橋された構造を
有する酸化処理体を形成する工程、(c)前記酸化処理
体を還元性雰囲気下で加熱保持し、前記伝熱管とフィン
とを金属結合により接合する工程、の各工程を備えたこ
とを特徴としている。このフィン付き伝熱管の製造方法
において、前記(a)工程で形成した成形体の表面に、
銅粉を有機バインダーで仮接合し、この銅粉付き成形体
に前記(b)および(c)工程を行っても良い。このよ
うな操作を付与することによって、銅粉がフィンや伝熱
管の表面に、金属結合によって接合した銅多孔質層が形
成される。さらに、フィンは、以下の工程;
(i)銅又は銅合金からなり挿入孔を穿設したフィンの
表面に銅粉を有機バインダーで仮接合して前処理フィン
を作製する工程、(ii)前記前処理フィンを酸化性雰囲
気下で加熱保持し、前記銅粉とフィン表面及び銅粉同士
が、各々の表面に生じた酸化物によって架橋された構造
を有する酸化処理フィンを形成する工程、(iii)前記
酸化処理フィンを還元性雰囲気下で加熱保持し、前記フ
ィン表面に、銅粉が該フィン表面或いは他の銅粉に金属
結合により接合した銅多孔質層を形成する工程、の各工
程を経て製造されたものを用いることもできる。さらに
本発明方法において、前記(a)工程で、伝熱管にフィ
ンを挿入した後、該伝熱管を拡径することによって該フ
ィンと伝熱管を密着させる処理を付加しても良い。According to the method of manufacturing a heat transfer tube with fins of the present invention, (a) a heat transfer tube made of copper or a copper alloy is inserted with fins made of copper or a copper alloy and provided with insertion holes. And (b) an oxidation treatment in which the gap between the heat transfer tube and the fin is cross-linked by the oxide generated on each surface The method is characterized by including the steps of forming a body, and (c) heating and holding the oxidation-treated body under a reducing atmosphere and joining the heat transfer tube and the fin by metal bonding. In the method of manufacturing a heat transfer tube with fins, the surface of the molded body formed in the step (a) is
The copper powder may be temporarily joined with an organic binder, and the moldings with the copper powder may be subjected to the steps (b) and (c). By applying such an operation, a copper porous layer in which copper powder is bonded to the surfaces of the fins and the heat transfer tubes by metal bonding is formed. Further, the fin is formed by the following steps: (i) a step of producing a pretreatment fin by temporarily joining copper powder with an organic binder to the surface of the fin made of copper or a copper alloy and having an insertion hole formed therein; A step of heating and holding the pretreatment fin in an oxidizing atmosphere to form an oxidation-treated fin having a structure in which the copper powder, the fin surface and the copper powder are crosslinked by the oxide generated on each surface, (iii ) A step of heating and holding the oxidation-treated fin under a reducing atmosphere to form a copper porous layer in which copper powder is bonded to the fin surface or another copper powder by metal bonding on the fin surface. It is also possible to use those manufactured through the above process. Further, in the method of the present invention, in the step (a), after the fins are inserted into the heat transfer tube, a treatment may be added to bring the fins into close contact with each other by expanding the diameter of the heat transfer tube.
【0006】[0006]
【発明の実施の形態】本発明では、銅または銅合金から
なる伝熱管に、銅または銅合金からなる多数のフィンを
焼結(焼着)によって接合するために、伝熱管とフィン
の表面を一旦酸化する。これによって伝熱管とフィンの
挿入孔周縁とが酸化物で架橋(ブリッジ)された構造に
なる。その後、この酸化処理体を還元雰囲気で加熱する
ことによって、伝熱管とフィンの表面が還元されると共
に、伝熱管−フィン間の酸化物結合が金属結合となり、
伝熱管の表面にフィンが金属結合によって強固に接合さ
れた構造が得られる。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in order to join a large number of fins made of copper or a copper alloy to a heat transfer pipe made of copper or a copper alloy by sintering (baking), the surfaces of the heat transfer pipe and the fins are joined together. Oxidize once. This results in a structure in which the heat transfer tube and the peripheral edge of the fin insertion hole are bridged (bridged) with an oxide. Thereafter, by heating the oxidation treated body in a reducing atmosphere, the surfaces of the heat transfer tube and the fins are reduced, and the oxide bond between the heat transfer tube and the fin becomes a metal bond,
A structure in which the fins are strongly bonded to the surface of the heat transfer tube by metal bonding is obtained.
【0007】また本発明において、フィン或いはフィン
と伝熱管の表面に、銅粉を接合して銅多孔質層を形成す
るには、フィン或いはフィンと伝熱管(以下、基材とい
う)の表面に有機バインダーで銅粉を仮接合し、基材と
銅粉の表面を一旦酸化する。これによって基材−銅粉間
及び銅粉−銅粉間が酸化物で架橋(ブリッジ)された構
造になる。その後、この基材を還元雰囲気で加熱する。
これによって、基材と銅粉の表面が還元されると共に、
基材−銅粉間及び銅粉−銅粉間の酸化物結合が金属結合
となり、基材の表面に少なくとも一層の銅多孔質層が形
成される。In the present invention, in order to form a copper porous layer by bonding copper powder to the surface of the fin or the fin and the heat transfer tube, the surface of the fin or the fin and the heat transfer tube (hereinafter referred to as the base material) is The copper powder is temporarily bonded with an organic binder to temporarily oxidize the surfaces of the base material and the copper powder. This results in a structure in which the base material-copper powder and the copper powder-copper powder are crosslinked (bridged) with an oxide. Then, this base material is heated in a reducing atmosphere.
This reduces the surface of the base material and the copper powder,
Oxide bonds between the base material-copper powder and between the copper powder-copper powder become metal bonds, and at least one copper porous layer is formed on the surface of the base material.
【0008】粒径が0.1mm以上の粗い銅粉は、単に
不活性雰囲気或いは還元性雰囲気中で加熱しても、焼結
し難い。そこで本発明では、基材の表面に銅粉を仮接合
し、酸化・還元の2段階焼結によって銅粉を基材表面に
焼結(焼着)している。酸化工程で全ての銅を酸化させ
ると、銅自体の強度が低下してしまうので、基材および
銅粉の表面のみを酸化させている。また、一旦高温酸化
した状態で降温すると、CuとCu酸化物の熱膨張係数
の差によって、基材表面から銅粉及び表面酸化物が剥が
れ落ちてしまう。そこで本発明においては、酸化後に、
高温に保持したまま還元することが望ましい。Coarse copper powder having a particle size of 0.1 mm or more is difficult to sinter even if it is simply heated in an inert atmosphere or a reducing atmosphere. Therefore, in the present invention, copper powder is temporarily bonded to the surface of the base material, and the copper powder is sintered (baked) on the surface of the base material by two-step sintering of oxidation and reduction. If all the copper is oxidized in the oxidation step, the strength of the copper itself will decrease, so only the surface of the base material and the copper powder is oxidized. Further, if the temperature is once lowered in the state of being oxidized at high temperature, the copper powder and the surface oxide will be peeled off from the surface of the base material due to the difference in thermal expansion coefficient between Cu and Cu oxide. Therefore, in the present invention, after oxidation,
It is desirable to carry out the reduction while keeping it at a high temperature.
【0009】本発明において、伝熱管とフィンの好まし
い材質は、純銅(Cu)、Cu-P合金(リン青銅)、
Cu-Be合金(ベリリウム青銅)、Cu-Sn合金(青
銅)、Cu-Al合金、Cu-Si合金、Cu-Ni合
金、或いは銅を主体として2種以上の元素を添加した合
金などである。なお、伝熱管とフィンは少なくとも表面
部分が銅又は銅合金で形成されていれば良く、上述した
銅又は銅合金からなる一体物の他、鋼板など他の金属板
の表面を銅で被覆した材料や銅−鋼クラッド材などを用
いても良い。また、伝熱管とフィンの形状は限定される
ことなく、伝熱管は円管状の他、断面が楕円形、四角
形、多角形などの形状をなす管が使用できる。またフィ
ンは、伝熱管に挿入するための挿入孔が穿設された四角
形あるいは多角形板状、環状、楕円環状などの種々の形
状や厚みのものを使用できる。さらに、フィンに凹凸や
貫通孔を設けても良い。In the present invention, the preferred materials for the heat transfer tubes and fins are pure copper (Cu), Cu-P alloy (phosphor bronze),
It is a Cu-Be alloy (beryllium bronze), a Cu-Sn alloy (bronze), a Cu-Al alloy, a Cu-Si alloy, a Cu-Ni alloy, or an alloy containing copper as a main component and adding two or more elements. In addition, the heat transfer tube and the fins are sufficient if at least the surface portion is formed of copper or a copper alloy, other than the above-mentioned one-piece made of copper or a copper alloy, a material obtained by coating the surface of another metal plate such as a steel plate with copper. Alternatively, a copper-steel clad material or the like may be used. Further, the shapes of the heat transfer tube and the fins are not limited, and as the heat transfer tube, a tube having a circular tube shape or a cross section having an elliptical shape, a quadrangular shape, a polygonal shape, or the like can be used. The fins may have various shapes and thicknesses such as a quadrangular or polygonal plate shape having an insertion hole for insertion into the heat transfer tube, an annular shape, and an elliptic annular shape. Further, the fin may be provided with irregularities or through holes.
【0010】このような伝熱管とフィンとを用い、フィ
ン付き伝熱管を製造する方法の一例を、図1ないし図3
を参照して説明する。本発明では、まず、図1に示すよ
うに挿入孔2を設けた多数のフィン3を伝熱管1に挿入
して、成形体8を形成する(a)工程を行う。伝熱管1
の長手方向に沿って所定間隔毎にフィン3を配置した
後、フィン3を動かないように仮接合することが望まし
い。仮接合の方法としては、有機系接着剤を用いてフィ
ン3の挿入孔2周縁を伝熱管1表面に接着する方法、或
いは伝熱管1を僅かに拡げ、フィン3の挿入孔2周縁を
伝熱管1表面に圧着する方法が望ましい。An example of a method for manufacturing a heat transfer tube with fins using such a heat transfer tube and fins will be described with reference to FIGS.
Will be described with reference to. In the present invention, first, as shown in FIG. 1, a large number of fins 3 provided with insertion holes 2 are inserted into the heat transfer tube 1 to form the molded body 8 (a). Heat transfer tube 1
After arranging the fins 3 at predetermined intervals along the longitudinal direction, it is desirable to temporarily join the fins 3 so that the fins 3 do not move. As a method of temporary joining, a method of adhering the peripheral edge of the insertion hole 2 of the fin 3 to the surface of the heat transfer tube 1 using an organic adhesive, or a method of slightly expanding the heat transfer tube 1 and extending the peripheral edge of the insertion hole 2 of the fin 3 to the heat transfer tube 1 The method of pressure bonding to the surface is desirable.
【0011】次に、伝熱管1に多数のフィン3を仮接合
した成形体8を雰囲気加熱炉等に入れ、酸化性雰囲気
下、好ましくは空気中、400〜700℃で加熱保持
し、図2に示すように伝熱管1とフィン3との隙間が各
々の表面に生じた酸化物4によって架橋された構造を有
する酸化処理体9を形成する(b)工程を実施する。こ
の酸化性雰囲気下での加熱温度が400℃未満である
と、フィン3表面と伝熱管1表面の酸化物4の生成量が
少なくなり、両者の結合力が弱くなってしまう。また加
熱温度が700℃を超えると、銅または銅合金からなる
成形体8が軟化して、変形したり強度が減少する場合が
ある。酸化性雰囲気下で成形体8を加熱保持する時間
は、上述した通り伝熱管1表面とフィン3とが酸化物に
よる架橋構造で十分に接合した構造が得られれば特に限
定されないが、通常は10分〜3時間程度、好ましくは
15分〜1時間程度とする。この(b)工程で使用する
酸化性ガスとしては、上記空気以外にも、純酸素ガス、
窒素ガスや炭酸ガスで薄めた酸素ガス、一酸化二窒素ガ
スなどが使用可能である。なお、この(b)工程におい
て、伝熱管1中に窒素ガス等の不活性ガスを流してパー
ジしながら外面の酸化処理を実施すれば、伝熱管1内面
の酸化を防ぐことができる。Next, the molded body 8 in which a large number of fins 3 are temporarily joined to the heat transfer tube 1 is placed in an atmosphere heating furnace or the like and heated and maintained at 400 to 700 ° C. in an oxidizing atmosphere, preferably in air, As shown in (1), the step (b) of forming an oxidation treated body 9 having a structure in which the gap between the heat transfer tube 1 and the fin 3 is cross-linked by the oxide 4 generated on each surface is performed. If the heating temperature in this oxidizing atmosphere is less than 400 ° C., the amount of oxide 4 produced on the surface of the fin 3 and the surface of the heat transfer tube 1 will be small, and the binding force between them will be weakened. On the other hand, if the heating temperature exceeds 700 ° C., the molded body 8 made of copper or copper alloy may be softened and deformed or the strength may be reduced. The time for heating and holding the molded body 8 in an oxidizing atmosphere is not particularly limited as long as a structure in which the surface of the heat transfer tube 1 and the fins 3 are sufficiently joined by a cross-linking structure by an oxide as described above is obtained, but is usually 10 Minute to 3 hours, preferably about 15 minutes to 1 hour. As the oxidizing gas used in the step (b), pure oxygen gas,
Oxygen gas diluted with nitrogen gas or carbon dioxide gas, nitrous oxide gas, etc. can be used. In step (b), if the outer surface is oxidized while purging by passing an inert gas such as nitrogen gas into the heat transfer tube 1, it is possible to prevent the inner surface of the heat transfer tube 1 from being oxidized.
【0012】次いで、酸化処理体9の周囲を還元性雰囲
気として加熱保持し、伝熱管1とフィン3の表面を還元
するとともに、フィン3の挿入孔周縁と伝熱管1の表面
とが金属結合により接合した図3に示すフィン付き伝熱
管10を形成する(c)工程を実施する。ここで、酸化
性雰囲気下での加熱工程の後、酸化処理体9を入れた雰
囲気加熱炉内に直ちに水素ガスなどの還元ガスを導入す
ると燃焼する場合がある。それを防ぐために、上記
(b)工程の後、酸化処理体9の温度を維持したまま、
或いは(c)工程の処理温度に移行させながら、酸化処
理体9の周囲を不活性ガス雰囲気で置換し、その後、還
元性雰囲気に置換して前記(c)工程を実施することが
望ましい。酸化処理体9の温度を変えることなく酸化性
雰囲気から還元性雰囲気に変更することで、銅と銅酸化
物の熱膨張係数の差によって酸化物4が剥離する不都合
を防ぐことができる。ここで使用する不活性ガスとして
は、窒素ガス、アルゴンガス、ヘリウムガス等が用いら
れ、好ましくは窒素ガスが用いられる。また、還元性雰
囲気を形成するための還元ガスとしては、水素ガス、窒
素ガスで希釈した水素ガス、ブタン分解ガス、一酸化炭
素ガス、水性ガス、発生炉ガスなどの一酸化炭素含有ガ
スが使用可能であり、特に水素ガス、窒素ガスで希釈し
た水素ガスが好適である。Next, the periphery of the oxidation treated body 9 is heated and maintained as a reducing atmosphere to reduce the surfaces of the heat transfer tube 1 and the fins 3, and the peripheral edge of the insertion hole of the fins 3 and the surface of the heat transfer tube 1 are metal-bonded. A step (c) of forming the joined finned heat transfer tube 10 shown in FIG. 3 is performed. Here, if a reducing gas such as hydrogen gas is immediately introduced into the atmosphere heating furnace containing the oxidation treated body 9 after the heating step in the oxidizing atmosphere, combustion may occur. In order to prevent this, after the step (b), while maintaining the temperature of the oxidation treated body 9,
Alternatively, it is desirable to perform the above step (c) by displacing the periphery of the oxidation treated body 9 with an inert gas atmosphere and then replacing with a reducing atmosphere while shifting to the processing temperature of the step (c). By changing the oxidizing atmosphere to the reducing atmosphere without changing the temperature of the oxidation treated body 9, it is possible to prevent the inconvenience that the oxide 4 is peeled off due to the difference in thermal expansion coefficient between copper and copper oxide. As the inert gas used here, nitrogen gas, argon gas, helium gas or the like is used, and nitrogen gas is preferably used. Further, as the reducing gas for forming the reducing atmosphere, hydrogen gas, hydrogen gas diluted with nitrogen gas, butane decomposition gas, carbon monoxide gas, water gas, carbon monoxide-containing gas such as generator gas is used. It is possible, and hydrogen gas and hydrogen gas diluted with nitrogen gas are particularly preferable.
【0013】酸化処理体9を還元性雰囲気下で加熱する
際の加熱温度は、300〜700℃、好ましくは400
〜600℃程度とする。加熱温度が300℃未満である
と、還元が十分でなくなり、銅酸化物が残ったり、
(b)工程との温度差が大きくなって酸化物4が剥離し
易くなる。加熱温度が700℃を超えると銅または銅合
金からなる伝熱管1が軟化して、変形したり強度が減少
する場合がある。還元性雰囲気下で酸化処理体9を加熱
保持する時間は、上述した通りフィン3が伝熱管1表面
に金属結合により固着できれば特に限定されないが、通
常は10分〜3時間程度、好ましくは15分〜1時間程
度とする。The heating temperature for heating the oxidation treated body 9 in a reducing atmosphere is 300 to 700 ° C., preferably 400.
Approximately 600 ° C. If the heating temperature is less than 300 ° C, the reduction is insufficient and copper oxide remains,
The temperature difference from the step (b) becomes large, and the oxide 4 is easily peeled off. If the heating temperature exceeds 700 ° C., the heat transfer tube 1 made of copper or copper alloy may be softened, and may be deformed or its strength may be reduced. The time for heating and holding the oxidation treated body 9 in a reducing atmosphere is not particularly limited as long as the fins 3 can be fixed to the surface of the heat transfer tube 1 by metal bonding as described above, but is usually about 10 minutes to 3 hours, preferably 15 minutes. Approximately 1 hour.
【0014】以上の(a)〜(c)工程を順次実施し、
還元雰囲気下で放冷して炉内から取り出すことによっ
て、伝熱管1の表面に多数のフィン3が金属結合によっ
て強固に接合されたフィン付き伝熱管10が製造され
る。このものは、多数のフィン3が金属結合によって伝
熱管1に接合されたものなので、フィン3と伝熱管1と
の熱伝導に優れている。The above steps (a) to (c) are sequentially carried out,
The finned heat transfer tube 10 in which a large number of fins 3 are firmly joined to the surface of the heat transfer tube 1 by metal bonding is manufactured by allowing to cool in a reducing atmosphere and taking out from the furnace. This is excellent in heat conduction between the fins 3 and the heat transfer tube 1 because many fins 3 are joined to the heat transfer tube 1 by metal bonding.
【0015】この製造方法によれば、多数のフィン3を
伝熱管1に一挙に接合できるので、従来の溶接法に比べ
て製造が容易となり、製造コストを低減することができ
る。またフィン3と伝熱管1が直接、金属結合によって
接合されるので、従来のろう付け法に比べ、余分なろう
材が介在しない分だけ熱伝導を向上させることができ
る。さらに、ろう材を用いないので、フィン付き伝熱管
の耐熱性や耐薬品性が向上する。According to this manufacturing method, since a large number of fins 3 can be joined to the heat transfer tube 1 at once, the manufacturing becomes easier and the manufacturing cost can be reduced as compared with the conventional welding method. Further, since the fins 3 and the heat transfer tubes 1 are directly joined by metal bonding, heat conduction can be improved as compared with the conventional brazing method by the amount that no extra brazing material is present. Further, since no brazing material is used, the heat resistance and chemical resistance of the finned heat transfer tube are improved.
【0016】次に、本発明によるフィン付き伝熱管の製
造方法において、フィンとして、表面に銅多孔質層を形
成したものを使用して良い。この銅多孔質層を有するフ
ィンの製造方法の一例を図4ないし図6を参照して説明
する。この方法では、まず、フィン3の表面に銅粉13
を有機バインダー12で仮接合し、図4に示す前処理フ
ィンを作製する(i)工程を行う。この有機バインダー
12としては、以後の酸化性雰囲気下でフィン3を加熱
保持する工程で容易に無くなり、その跡に余分な灰分や
炭素が残留することのない材料が好ましく、例えばグリ
セリン、油(鉱物油、動植物性油脂)、アクリル樹脂系
やセルロース樹脂系などの有機系粘着剤、などである。
簡便には、市販のスプレー式アクリル樹脂粘着剤を使用
して、基体表面の所望部位にスプレー塗布しても良い。
また銅粉13は、純銅(Cu)、Cu-P合金(リン青
銅)、Cu-Be合金(ベリリウム青銅)、Cu-Sn合
金(青銅)、Cu-Al合金、Cu-Si合金、Cu-N
i合金、或いは銅を主体として2種以上の元素を添加し
た合金の粉末を使用でき、特に純銅からなるものが望ま
しい。また銅粉13の粒径は、製造するべき銅多孔質層
に求められる機能、すなわち熱交換効率の向上や表面積
の増大などが達成でき、しかも形成された銅多孔質層が
十分な機械強度となるように適宜選択して良く、通常は
平均粒径が0.1〜3mm、好ましくは0.2〜2mm
程度のものが望ましい。さらに、フィン3表面に銅粉1
3を緻密に配列するために、銅粉13の粒径をなるべく
均一にしておくことが望ましい。Next, in the method for manufacturing a finned heat transfer tube according to the present invention, fins having a copper porous layer formed on their surfaces may be used. An example of a method of manufacturing the fin having the copper porous layer will be described with reference to FIGS. In this method, first, the copper powder 13 is formed on the surface of the fin 3.
Is temporarily joined with the organic binder 12, and the step (i) of manufacturing the pretreatment fin shown in FIG. 4 is performed. The organic binder 12 is preferably a material that easily disappears in the subsequent step of heating and holding the fins 3 in an oxidizing atmosphere and does not leave excess ash and carbon in the traces thereof, such as glycerin and oil (minerals). Oils, animal and vegetable fats and oils, organic adhesives such as acrylic resins and cellulose resins, and the like.
For convenience, a commercially available spray-type acrylic resin pressure-sensitive adhesive may be used and spray-coated on a desired portion of the substrate surface.
The copper powder 13 is pure copper (Cu), Cu-P alloy (phosphor bronze), Cu-Be alloy (beryllium bronze), Cu-Sn alloy (bronze), Cu-Al alloy, Cu-Si alloy, Cu-N.
Powders of an i alloy or an alloy containing copper as a main component and two or more elements added thereto can be used, and a powder made of pure copper is particularly preferable. The particle size of the copper powder 13 can achieve the functions required for the copper porous layer to be manufactured, that is, the heat exchange efficiency and the surface area can be increased, and the formed copper porous layer has sufficient mechanical strength. The average particle size is usually 0.1 to 3 mm, preferably 0.2 to 2 mm.
Something is preferable. Furthermore, copper powder 1 on the surface of fin 3
In order to arrange 3 closely, it is desirable to make the particle diameter of copper powder 13 as uniform as possible.
【0017】次いで、前処理フィンを雰囲気加熱炉等に
入れ、酸化性雰囲気下、好ましくは空気中、400〜7
00℃で加熱保持し、図5に示すように銅粉13とフィ
ン3表面、及び銅粉13同士が、各々の表面に生じた酸
化物14によって架橋された構造を有する酸化処理フィ
ンを形成する(ii)工程を実施する。この酸化性雰囲気
下での加熱温度が400℃未満であると、銅粉13表面
とフィン3表面の酸化物の生成量が少なくなり、両者の
結合力が弱くなってしまう。また、加熱温度が700℃
を超えると、銅または銅合金からなるフィン3が軟化し
て変形したり強度が減少する場合がある。この酸化処理
時間は、上述した通りフィン3表面と銅粉13とが酸化
物14による架橋構造で十分に接合した構造が得られれ
ば特に限定されないが、通常は10分〜3時間程度、好
ましくは15分〜1時間程度とする。Next, the pretreatment fins are put in an atmosphere heating furnace or the like, and the pretreatment fin is heated to 400 to 7 in an oxidizing atmosphere, preferably in air.
By heating and holding at 00 ° C., as shown in FIG. 5, the copper powder 13 and the surface of the fin 3 and the copper powder 13 form an oxidation-treated fin having a structure in which the copper powder 13 is cross-linked by the oxide 14 generated on each surface. (Ii) Perform the step. If the heating temperature under this oxidizing atmosphere is less than 400 ° C., the amount of oxides produced on the surface of the copper powder 13 and the surface of the fins 3 will be small, and the binding force between them will be weakened. Also, the heating temperature is 700 ℃
If it exceeds, the fins 3 made of copper or copper alloy may be softened and deformed or the strength may be reduced. The oxidation treatment time is not particularly limited as long as a structure in which the surface of the fin 3 and the copper powder 13 are sufficiently joined by the cross-linking structure of the oxide 14 is obtained as described above, but is usually about 10 minutes to 3 hours, preferably It is about 15 minutes to 1 hour.
【0018】次いで、酸化処理フィンの周囲を還元性雰
囲気として加熱保持し、銅粉13がフィン3表面、及び
他の銅粉13に金属結合により接合した銅多孔質層15
を形成し、図6に示す銅多孔質層を有するフィン16を
作製する(iii)工程を実施する。酸化性雰囲気下での
加熱工程の後、酸化処理フィンを入れた雰囲気加熱炉内
を還元性雰囲気にする場合、炉内の温度を維持したま
ま、窒素ガスやアルゴンガスなどの不活性ガスを炉内に
供給して不活性ガス雰囲気とした後、還元ガスを供給す
ることが望ましい。還元ガスとしては、水素ガス、ブタ
ン分解ガス、窒素ガスで希釈した水素ガス、一酸化炭素
ガス、水性ガス、発生炉ガスなどの一酸化炭素含有ガス
が使用可能であり、特に水素ガス、窒素ガスで希釈した
水素ガスが好適である。Next, the periphery of the oxidation-treated fin is heated and maintained in a reducing atmosphere, and the copper powder 13 is bonded to the surface of the fin 3 and the other copper powder 13 by metal bonding to form a copper porous layer 15.
And the fin 16 having the copper porous layer shown in FIG. 6 is manufactured (iii). After the heating process in an oxidizing atmosphere, when making the atmosphere heating furnace containing the oxidation fins a reducing atmosphere, an inert gas such as nitrogen gas or argon gas is kept in the furnace while maintaining the temperature in the furnace. It is desirable to supply the reducing gas after supplying the reducing gas to the inside of the atmosphere to make an inert gas atmosphere. As the reducing gas, hydrogen gas, butane decomposition gas, hydrogen gas diluted with nitrogen gas, carbon monoxide gas, water gas, carbon monoxide-containing gas such as generator gas can be used, particularly hydrogen gas and nitrogen gas. Hydrogen gas diluted with is suitable.
【0019】これら(i)〜(iii)の各工程を順次行
うことによって、銅多孔質層15を有するフィン16が
作製される。このフィン16は、銅多孔質層15によっ
て表面積が大きく、且つこの銅多孔質層15は金属結合
によって直接フィン3と接合していることから、銅多孔
質層15とフィン3との熱伝導が良好である特徴を有す
る。従って、このフィン15を上述したフィン付き伝導
管の製造方法におけるフィンに適用することによって、
そのフィン付き伝導管の熱交換効率を向上させることが
できる。The fin 16 having the copper porous layer 15 is manufactured by sequentially performing the steps (i) to (iii). Since the fin 16 has a large surface area due to the copper porous layer 15 and the copper porous layer 15 is directly bonded to the fin 3 by metal bonding, the heat conduction between the copper porous layer 15 and the fin 3 is conducted. Has characteristics that are good. Therefore, by applying this fin 15 to the fin in the method for manufacturing the finned conductive tube described above,
The heat exchange efficiency of the finned conduction tube can be improved.
【0020】なお、フィン3の表面、或いはフィン3と
伝熱管1の表面に銅多孔質層を形成する方法は、先の例
示に限定されず、他の方法を用いても良い。例えば、フ
ィン3を伝熱管1に挿入して得られた成形体8の表面
に、有機バインダー12によって銅粉13を仮接合して
おき、この成形体8に上述した(b)工程及び(c)工
程を実施することによって、フィン3と伝熱管1との接
合と、これら表面への銅多孔質層15の形成を同時に行
うことができる。さらに、それらとは別個に、伝熱管1
の内周面に、同様の手法によって銅多孔質層15を形成
することも可能である。The method of forming the copper porous layer on the surface of the fin 3 or the surface of the fin 3 and the heat transfer tube 1 is not limited to the above example, and another method may be used. For example, the copper powder 13 is temporarily bonded to the surface of the molded body 8 obtained by inserting the fins 3 into the heat transfer tube 1 with the organic binder 12, and the molded body 8 is subjected to the above-mentioned steps (b) and (c). By carrying out the step (2), the fin 3 and the heat transfer tube 1 can be joined and the copper porous layer 15 can be formed on these surfaces at the same time. Furthermore, separately from them, the heat transfer tube 1
It is also possible to form the copper porous layer 15 on the inner peripheral surface of the same by the same method.
【0021】[0021]
【実施例】以下、本発明に係る実施例を記すが本発明は
これらの例示に限定されない。
[実施例1]外径9.52mmφ、長さ1mの純銅製の
伝熱管と、30×30mm、厚さ1mmの四角形の純銅
板の中央に直径9.53mmの挿入孔を穿設したフィン
とを用意し、伝熱管の5mm間隔に1枚ずつ、合計20
0枚のフィンを挿入し、配置した。アクリル系粘着剤に
よってフィンを伝熱管に仮接合して、成形体とした。こ
の成形体を電気炉に入れ、空気中、550℃に1時間加
熱保持し、次いでそのままの温度を保持したまま、炉心
管内を一旦不活性ガス(N2)に置換した後、還元性ガ
ス(H2)に置換し、さらに580℃に0.5時間保持
した。炉内を還元性雰囲気に保ったまま徐冷し、全ての
フィンの挿入孔周縁が伝熱管の外周面に金属結合によっ
て強固に接合したフィン付き伝熱管を得た。EXAMPLES Examples according to the present invention will be described below, but the present invention is not limited to these examples. [Example 1] A heat transfer tube made of pure copper having an outer diameter of 9.52 mmφ and a length of 1 m, and a fin having a hole of 9.53 mm in diameter formed in the center of a rectangular pure copper plate having a size of 30 mm x 30 mm and a thickness of 1 mm. Is prepared, and one for every 5 mm interval of the heat transfer tube, for a total of 20
Zero fins were inserted and placed. The fin was temporarily joined to the heat transfer tube with an acrylic pressure-sensitive adhesive to obtain a molded body. This molded body was placed in an electric furnace, heated and held at 550 ° C. for 1 hour in air, and then while maintaining the same temperature, the inside of the furnace core tube was once replaced with an inert gas (N 2 ) and then a reducing gas ( It was replaced with H 2 ), and the temperature was maintained at 580 ° C. for 0.5 hour. The furnace was gradually cooled while maintaining a reducing atmosphere, and a finned heat transfer tube was obtained in which the peripheral edges of all the fin insertion holes were firmly joined to the outer peripheral surface of the heat transfer tube by metal bonding.
【0022】[実施例2]表面に銅多孔質層を形成した
フィンを用いてフィン付き伝熱管を作製した。実施例1
で用いたフィンを材料とし、このフィンの表面にアクリ
ル系粘着剤をスプレー塗布し、平均粒径0.5mmの銅
粉を撒き、フィン表面に1〜3層ほどの銅粉を仮接合し
た。次いで、このフィンを電気炉に入れ、空気中、55
0℃に1時間加熱保持し、次いでそのままの温度を保持
したまま、炉心管内を一旦不活性ガス(N2)に置換し
た後、還元性ガス(H2)に置換し、さらに600℃に
0.5時間保持した。炉内を還元性雰囲気に保ったまま
徐冷し、表面に1〜3層の銅粉が金属結合によって強固
に接合した銅多孔質層が表面に形成されたフィンを取り
出した。このフィンを用い、実施例1と同様に伝熱管に
挿入し、酸化性雰囲気下及び還元性雰囲気下で加熱保持
し、フィンと伝熱管の接合を行って、銅多孔質層を有す
るフィン付き伝熱管を得た。[Example 2] A finned heat transfer tube was produced by using fins having a copper porous layer formed on the surface thereof. Example 1
Using the fin used in step 1 as a material, an acrylic pressure-sensitive adhesive was spray-coated on the surface of this fin, and copper powder having an average particle size of 0.5 mm was sprinkled, and about 1 to 3 layers of copper powder were temporarily bonded to the fin surface. Then, this fin is put into an electric furnace and the
After heating and holding at 0 ° C. for 1 hour, then while maintaining the same temperature, the inside of the furnace core tube was once replaced with an inert gas (N 2 ), then replaced with a reducing gas (H 2 ), and further heated to 600 ° C. Hold for 5 hours. The furnace was gradually cooled while maintaining a reducing atmosphere, and a fin having a copper porous layer on the surface of which 1 to 3 layers of copper powder were strongly bonded by metal bonding was taken out. Using this fin, the fin was inserted into a heat transfer tube in the same manner as in Example 1, heated and held in an oxidizing atmosphere and a reducing atmosphere, the fin and the heat transfer tube were joined, and a finned transfer having a copper porous layer was performed. I got a heat tube.
【0023】[0023]
【発明の効果】本発明によるフィン付き伝熱管は、伝熱
管にフィンを挿入して成形体とし、これを酸化性雰囲気
下で加熱保持する工程と、続いて還元性雰囲気下で加熱
保持する工程を行って、フィンの挿入孔周縁と伝熱管表
面が金属結合によって接合せしめ、フィン付き伝熱管を
製造するものなので、多数のフィンを伝熱管表面に一挙
に接合できることから、従来の溶接によるフィンの接合
に比べて製造に手間がかからず、製造コストを下げるこ
とができる。また、フィンと伝熱管とを直接、金属結合
によって接合でき、両者間にろう材などの余分な材料を
介在させることがないので、従来のろう材を用いたフィ
ンの接合に比べ、フィンと伝熱管との間の熱伝導を良好
にすることができる。さらに、フィンとして、フィン表
面に銅粉を有機バインダーで仮接合し、これを酸化性雰
囲気下で加熱保持する工程と、続いて還元性雰囲気下で
加熱保持する工程を行って、フィンの表面に銅粉が金属
結合によって接合した銅多孔質層を形成したものを用い
ることによって、フィンの表面積が増大し、熱交換効率
を向上することができる。また、成形体の表面に銅粉を
有機バインダーで仮接合し、これを酸化性雰囲気下で加
熱保持する工程と、続いて還元性雰囲気下で加熱保持す
る工程を行って、フィンの挿入孔周縁と伝熱管表面が金
属結合によって接合せしめると同時に、フィンと伝熱管
の表面に銅多孔質層を形成することにより、熱交換効率
に優れたフィン付き伝熱管を容易に製造することができ
る。The heat transfer tube with fins according to the present invention has a step of inserting fins into the heat transfer tube to form a molded body, which is heated and held in an oxidizing atmosphere, and subsequently heated and held in a reducing atmosphere. The heat transfer tube with fins is joined to the heat transfer tube surface by metal bonding to produce a heat transfer tube with fins, so many fins can be bonded to the heat transfer tube surface all at once. Compared with joining, the manufacturing cost is low and the manufacturing cost can be reduced. Further, since the fin and the heat transfer tube can be directly joined by metal bonding and no extra material such as a brazing filler metal is interposed between the fins and the heat transfer pipe, compared with the conventional fin jointing using a brazing filler metal, The heat conduction with the heat pipe can be improved. Further, as a fin, a step of temporarily joining copper powder to the fin surface with an organic binder, heating and holding this in an oxidizing atmosphere, and then a step of heating and holding it in a reducing atmosphere are performed to form a fin surface. By using a copper porous layer in which copper powder is bonded by metal bonding, the surface area of the fin is increased, and heat exchange efficiency can be improved. In addition, the step of temporarily bonding copper powder to the surface of the molded body with an organic binder, heating and holding this in an oxidizing atmosphere, and subsequently heating and holding it in a reducing atmosphere, the peripheral edge of the fin insertion hole By forming a copper porous layer on the surfaces of the fins and the heat transfer tubes at the same time as joining the surfaces of the heat transfer tubes by metal bonding, a heat transfer tube with fins having excellent heat exchange efficiency can be easily manufactured.
【図1】 本発明のフィン付き伝熱管の製造方法の一例
を説明するもので、成形体を作製する(a)工程を示す
斜視図。FIG. 1 is a perspective view illustrating an example of a method of manufacturing a finned heat transfer tube of the present invention, showing a step (a) of manufacturing a molded body.
【図2】 同じく酸化処理体を形成する(b)工程を示
す拡大断面図。FIG. 2 is an enlarged cross-sectional view showing step (b) of forming an oxidation-treated body in the same manner.
【図3】 同じくフィン付き伝熱管を得る(c)工程を
示す拡大断面図。FIG. 3 is an enlarged sectional view showing a step (c) of obtaining a heat transfer tube with fins.
【図4】 本発明のフィン付き伝熱管の構成部材として
好適な銅多孔質層を有するフィンの製造方法の一例を説
明するもので、フィン表面に銅粉を仮接合して前処理フ
ィンを作製する(i)工程を示す拡大断面図。FIG. 4 illustrates an example of a method for manufacturing a fin having a copper porous layer suitable as a constituent member of the finned heat transfer tube of the present invention, in which a copper powder is temporarily bonded to the fin surface to prepare a pretreatment fin. The expanded sectional view which shows the (i) process.
【図5】 同じく酸化処理フィンを形成する(ii)工程
を示す拡大断面図。FIG. 5 is an enlarged cross-sectional view showing the step (ii) of forming an oxidation fin similarly.
【図6】 同じく銅多孔質層を有するフィンを形成する
(iii)工程を示す拡大断面図。FIG. 6 is an enlarged cross-sectional view showing the step (iii) of forming a fin having a copper porous layer.
1 伝熱管 2 挿入孔 3 フィン 4 酸化物 8 成形体 9 酸化処理体 10 フィン付き伝熱管 12 有機バインダー 13 銅粉 14 酸化物 15 銅多孔質層 16 銅多孔質層を有するフィン 1 heat transfer tube 2 insertion holes Three fins 4 oxides 8 molded bodies 9 Oxidized body 10 heat transfer tubes with fins 12 organic binders 13 Copper powder 14 Oxides 15 Copper porous layer 16 Fins Having Copper Porous Layer
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B21D 53/06 F28F 1/32 B22F 1/02 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B21D 53/06 F28F 1/32 B22F 1/02
Claims (4)
銅又は銅合金からなり挿入孔を穿設したフィンを挿入し
て成形体を形成する工程、 (b)前記成形体を酸化性雰囲気下で加熱保持し、前記
伝熱管とフィンとの隙間が各々の表面に生じた酸化物に
よって架橋された構造を有する酸化処理体を形成する工
程、 (c)前記酸化処理体を還元性雰囲気下で加熱保持し、
前記伝熱管とフィンとを金属結合により接合する工程、
の各工程を備えたことを特徴とするフィン付き伝熱管の
製造方法。1. A heat transfer tube comprising (a) copper or a copper alloy,
A step of inserting a fin made of copper or a copper alloy and having an insertion hole formed therein to form a molded body; (b) heating and holding the molded body under an oxidizing atmosphere so that a gap between the heat transfer tube and the fin is A step of forming an oxidation-treated body having a structure cross-linked by the oxide generated on the surface of (c), the oxidation-treated body is heated and held in a reducing atmosphere,
A step of joining the heat transfer tube and the fin by metal bonding,
The method for producing a heat transfer tube with fins, comprising:
方法において、前記(a)工程で形成した成形体の表面
に、銅粉を有機バインダーで仮接合し、この銅粉付き成
形体に前記(b)および(c)工程を施すことを特徴と
するフィン付き伝熱管の製造方法。2. The method for manufacturing a heat transfer tube with fins according to claim 1, wherein copper powder is temporarily bonded to the surface of the molded body formed in the step (a) with an organic binder, and the molded body with copper powder is formed. A method for manufacturing a heat transfer tube with fins, which comprises performing the steps (b) and (c).
方法において、フィンが、以下の工程; (i)銅又は銅合金からなり挿入孔を穿設したフィンの
表面に銅粉を有機バインダーで仮接合して前処理フィン
を作製する工程、 (ii)前記前処理フィンを酸化性雰囲気下で加熱保持
し、前記銅粉とフィン表面及び銅粉同士が、各々の表面
に生じた酸化物によって架橋された構造を有する酸化処
理フィンを形成する工程、 (iii)前記酸化処理フィンを還元性雰囲気下で加熱保
持し、前記フィン表面に、銅粉が該フィン表面或いは他
の銅粉に金属結合により接合した銅多孔質層を形成する
工程、の各工程を経て製造されたものであることを特徴
とするフィン付き伝熱管の製造方法。3. The method for manufacturing a heat transfer tube with fins according to claim 1, wherein the fin comprises the following steps; (i) An organic binder containing copper powder on the surface of the fin made of copper or a copper alloy and having an insertion hole formed therein. (Ii) The pretreatment fin is heated and held in an oxidizing atmosphere, and the copper powder and the fin surface and the copper powder are oxides formed on the respective surfaces. Forming an oxidation-treated fin having a structure crosslinked by (iii) heating and holding the oxidation-treated fin in a reducing atmosphere, and copper powder on the fin surface or other copper powder is metallized on the fin surface or other copper powder. A method for producing a heat transfer tube with fins, which is produced through each step of forming a copper porous layer joined by bonding.
方法において、前記(a)工程で、伝熱管にフィンを挿
入した後、該伝熱管を拡径することによって該フィンと
伝熱管を密着させる処理を付加することを特徴とするフ
ィン付き伝熱管の製造方法。4. The method for manufacturing a heat transfer tube with fins according to claim 1, wherein in the step (a), the fin and the heat transfer tube are formed by inserting the fin into the heat transfer tube and then expanding the diameter of the heat transfer tube. A method of manufacturing a heat transfer tube with fins, which comprises adding a process of closely contacting each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02002698A JP3508527B2 (en) | 1998-01-30 | 1998-01-30 | Method of manufacturing finned heat transfer tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02002698A JP3508527B2 (en) | 1998-01-30 | 1998-01-30 | Method of manufacturing finned heat transfer tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11216529A JPH11216529A (en) | 1999-08-10 |
JP3508527B2 true JP3508527B2 (en) | 2004-03-22 |
Family
ID=12015578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02002698A Expired - Fee Related JP3508527B2 (en) | 1998-01-30 | 1998-01-30 | Method of manufacturing finned heat transfer tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3508527B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103194641A (en) * | 2013-04-10 | 2013-07-10 | 苏州天兼金属新材料有限公司 | Novel lead-free copper-based alloy tube and preparation method thereof |
-
1998
- 1998-01-30 JP JP02002698A patent/JP3508527B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11216529A (en) | 1999-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0744586B1 (en) | Method of manufacturing a heat transmitting device and a heat transmitting device | |
CA2407224C (en) | Method of making reactive multilayer foil and resulting product | |
CN108430690B (en) | Bonding material, bonding method using the same, and bonding structure | |
JPH029155A (en) | Composite metal material | |
JP4965242B2 (en) | Manufacturing method of aluminum heat sink | |
JP3264240B2 (en) | Method for producing copper tube having copper porous layer | |
JP3508527B2 (en) | Method of manufacturing finned heat transfer tube | |
EP1400300B1 (en) | Layered heat-resistant alloy plate and method of producing the same | |
JP3991481B2 (en) | Method for producing multilayer graphite sheet | |
JP4350753B2 (en) | Heat sink member and manufacturing method thereof | |
JPH08145592A (en) | Heat transfer member and manufacture thereof | |
JP3262058B2 (en) | Method for producing copper material having copper porous layer | |
JPH06155030A (en) | Joined clad plate and its manufacture | |
JP3051078B2 (en) | Connection method of superconducting conductor | |
JPH1158072A (en) | Manufacture of copper brazing sheet | |
JPH01249294A (en) | Precoated brazing filler metal-coated metal sheet, production thereof and using method therefor | |
US6613397B2 (en) | Method and apparatus for manufacturing an aluminum clad product | |
JPH11217602A (en) | Manufacture of porous copper body and porous copper tube | |
JPS62202482A (en) | Manufacture of electric contact | |
JPH0223498B2 (en) | ||
JPH05311494A (en) | Production of heat transfer tube | |
JPS62234553A (en) | Production of metallic carrier base body for exhaust gas purifying catalyst | |
JPH02126942A (en) | Metallic carrier base for carrying exhaust gas purifying catalyst | |
JP2814352B2 (en) | Metal honeycomb structure and method for manufacturing metal honeycomb carrier | |
JPS60205016A (en) | Manufacturing method of slidable compound member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031215 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |