JP3264240B2 - Method for producing copper tube having copper porous layer - Google Patents
Method for producing copper tube having copper porous layerInfo
- Publication number
- JP3264240B2 JP3264240B2 JP02002498A JP2002498A JP3264240B2 JP 3264240 B2 JP3264240 B2 JP 3264240B2 JP 02002498 A JP02002498 A JP 02002498A JP 2002498 A JP2002498 A JP 2002498A JP 3264240 B2 JP3264240 B2 JP 3264240B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- tube
- porous layer
- plate
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 359
- 239000010949 copper Substances 0.000 title claims description 280
- 229910052802 copper Inorganic materials 0.000 title claims description 278
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000012298 atmosphere Substances 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 27
- 239000011230 binding agent Substances 0.000 claims description 15
- 230000001590 oxidative effect Effects 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 10
- 238000005304 joining Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 33
- 230000002093 peripheral effect Effects 0.000 description 23
- 230000003647 oxidation Effects 0.000 description 17
- 238000007254 oxidation reaction Methods 0.000 description 17
- 239000007789 gas Substances 0.000 description 14
- 238000002844 melting Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 239000004925 Acrylic resin Substances 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910000881 Cu alloy Inorganic materials 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910000906 Bronze Inorganic materials 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 3
- 239000010974 bronze Substances 0.000 description 3
- 150000001879 copper Chemical class 0.000 description 3
- 229910000431 copper oxide Inorganic materials 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000006247 magnetic powder Substances 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001152 Bi alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017532 Cu-Be Inorganic materials 0.000 description 1
- 229910017758 Cu-Si Inorganic materials 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 229910017888 Cu—P Inorganic materials 0.000 description 1
- 229910017931 Cu—Si Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- ZWFRZGJUJSOHGL-UHFFFAOYSA-N [Bi].[Cu].[Sn] Chemical compound [Bi].[Cu].[Sn] ZWFRZGJUJSOHGL-UHFFFAOYSA-N 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/003—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Powder Metallurgy (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は表面に銅多孔質層を
形成した銅管の製造方法に関する。本発明に係る銅管
は、熱交換器用配管、ヒートパイプ、給水給湯用配管な
どに適用される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a copper tube having a copper porous layer formed on its surface. The copper pipe according to the present invention is applied to a pipe for a heat exchanger, a heat pipe, a pipe for hot and cold water supply, and the like.
【0002】[0002]
【従来の技術】従来、金属素材の表面に金属からなる多
孔質層を形成する技術として、例えば次のものが知られ
ている。特開昭60−103187号公報には、鋼管の
表面に、銅-錫-ビスマス合金の被膜を形成することを特
徴とする熱交換器用管の製造方法が開示されている。特
開昭60−251390号公報には、銅管(エンペロー
プ)の内面に500メッシュ程度の低融点ハンダ(接合
粉体)と、200メッシュ以下の銅片からなる材料粉体
を入れ、銅管を周方向に回転させながら、これら粉体を
加熱溶着させることを特徴とするヒートパイプの製造方
法が開示されている。特開昭60−255983号公報
には、金属製の熱伝達基体の表面に、磁場を利用して低
融点の金属を被覆した磁性粉を散布し、加熱して、該磁
性粉を熱伝達面に密着接着させることを特徴とする熱交
換体の製造方法が開示されている。特開昭61−168
793号公報には、金属管の表面に、プラズマ溶射法に
よって銅粉を吹き付け、表面に微細な凹凸を形成した伝
熱管及びその製造方法が開示されている。特開昭62−
206382号公報には、銅管などの金属製管体の内表
面に、電気鍍金により樹枝状または粒状の多孔質層を形
成したヒートパイプが開示されている。特開平2−12
9488号公報には、銅−亜鉛合金製の管の内外表面を
脱亜鉛することにより、多数の微細な開孔面が形成され
た表面多孔質管が開示されている。特開平2−1758
81号公報には金属管の内面に低融点金属粉末(Sn粉
末)と高融点金属粉末(Cu粉末)の混合層を形成し、
これを加熱して微小空孔を形成させる内面多孔質管の製
造方法が開示されている。特開平5−214504号公
報には、素材管の表面に金属粉を溶射して多孔質溶射層
を形成しながら金属線を素材管に巻き付け、溶射層形成
後に金属線を除去する伝熱管の製造方法が開示されてい
る。2. Description of the Related Art Conventionally, as a technique for forming a porous layer made of metal on the surface of a metal material, for example, the following techniques are known. Japanese Patent Application Laid-Open No. 60-103187 discloses a method for manufacturing a heat exchanger tube, which comprises forming a coating of a copper-tin-bismuth alloy on the surface of a steel tube. Japanese Patent Application Laid-Open No. S60-251390 discloses a method in which a low melting point solder (joining powder) of about 500 mesh and a material powder composed of copper pieces of 200 mesh or less are put on the inner surface of a copper tube (envelope). A method for manufacturing a heat pipe is disclosed in which these powders are heated and welded while being rotated in a circumferential direction. Japanese Patent Application Laid-Open No. 60-255983 discloses that a magnetic powder coated with a metal having a low melting point is sprinkled on a surface of a metal heat transfer base by using a magnetic field and heated, so that the magnetic powder is transferred to a heat transfer surface. There is disclosed a method for producing a heat exchanger, which is characterized in that the heat exchanger is closely adhered to a heat exchanger. JP-A-61-168
No. 793 discloses a heat transfer tube in which copper powder is sprayed onto the surface of a metal tube by a plasma spraying method to form fine irregularities on the surface, and a method for manufacturing the same. JP-A-62-2
No. 206382 discloses a heat pipe in which a dendritic or granular porous layer is formed on the inner surface of a metal tube such as a copper tube by electroplating. JP-A-2-12
No. 9488 discloses a superficially porous tube in which a number of fine open surfaces are formed by dezincing the inner and outer surfaces of a copper-zinc alloy tube. JP-A-2-1758
No. 81 discloses that a mixed layer of a low melting point metal powder (Sn powder) and a high melting point metal powder (Cu powder) is formed on the inner surface of a metal tube.
There is disclosed a method of manufacturing an inner porous tube which heats this to form micropores. JP-A-5-214504 discloses a method for manufacturing a heat transfer tube in which a metal wire is wound around a material tube while spraying metal powder on the surface of the material tube to form a porous sprayed layer, and the metal wire is removed after the sprayed layer is formed. A method is disclosed.
【0003】[0003]
【発明が解決しようとする課題】上述した従来技術のう
ち、銅管の表面に、ハンダやSnなどの低融点金属を用
いて、銅からなる多孔質層を形成する方法は、銅管と、
銅からなる多孔質層とがハンダやSnなどの低融点金属
を介して接合されているので、低融点金属の部分で熱伝
導が悪くなり、その結果銅管−多孔質層間の熱伝導損失
が大きくなるという問題があった。さらに低融点ハンダ
等を使用すると、耐熱性や耐薬品性が悪くなるという問
題があった。また、銅管の表面に、プラズマ溶射などの
溶射法、或いは電気鍍金によって銅の多孔質層や微細な
凹凸を設ける方法は、製造に手間がかかる問題があっ
た。Among the prior arts described above, a method of forming a porous layer made of copper on the surface of a copper tube by using a low-melting metal such as solder or Sn comprises a copper tube,
Since the porous layer made of copper is joined to the porous layer made of copper via a low-melting metal such as solder or Sn, heat conduction becomes poor at the low-melting metal portion, and as a result, the heat conduction loss between the copper tube and the porous layer is reduced. There was a problem of becoming larger. Further, when low melting point solder or the like is used, there is a problem that heat resistance and chemical resistance are deteriorated. In addition, a thermal spraying method such as plasma spraying, or a method of providing a copper porous layer or fine irregularities by electroplating on the surface of a copper tube has a problem that production is troublesome.
【0004】本発明は、銅管表面に銅多孔質層を有し、
熱交換効率に優れた銅管を効率良く製造し得る方法の提
供を課題としている。The present invention has a copper porous layer on the surface of a copper tube,
It is an object of the present invention to provide a method for efficiently producing a copper tube having excellent heat exchange efficiency.
【0005】[0005]
【課題を解決するための手段】本発明による銅多孔質層
を有する銅管の製造方法は、(i)銅管の表面に銅粉を
有機バインダーで仮接合して前処理管を作製する工程、
(ii)前記前処理管を酸化性雰囲気下で加熱保持し、前
記銅粉と銅管表面及び銅粉同士が、各々の表面に生じた
酸化物によって架橋された構造を有する酸化処理管を形
成する工程、(iii)前記酸化処理管を還元性雰囲気下
で加熱保持し、前記銅管表面に、銅粉が該銅管表面或い
は他の銅粉に金属結合により接合した銅多孔質層を形成
する工程、の各工程を備えたことを特徴としている。ま
た本発明による銅多孔質層を有する銅管の別な製造方法
は、(a)銅板の表面に銅粉を有機バインダーで仮接合
して前処理板を作製する工程、(b)前記前処理板を酸
化性雰囲気下で加熱保持し、前記銅粉と銅板表面及び銅
粉同士が、各々の表面に生じた酸化物によって架橋され
た構造を有する酸化処理板を形成する工程、(c)前記
酸化処理板を還元性雰囲気下で加熱保持し、前記銅板表
面に、銅粉が該銅管表面或いは他の銅粉に金属結合によ
り接合した銅多孔質層を形成する工程、(d)前記銅多
孔質層を形成した銅板に丸め加工を施して銅多孔質層を
有する銅管を得る工程の各工程を備えたことを特徴とし
ている。According to the present invention, there is provided a method for producing a copper tube having a copper porous layer, comprising the steps of (i) temporarily bonding copper powder to the surface of the copper tube with an organic binder to produce a pre-treated tube. ,
(Ii) The pretreatment tube is heated and held under an oxidizing atmosphere to form an oxidation treatment tube having a structure in which the copper powder, the surface of the copper tube, and the copper powder are cross-linked by an oxide generated on each surface. (Iii) heating the oxidized tube under a reducing atmosphere to form a copper porous layer on the surface of the copper tube in which copper powder is bonded to the surface of the copper tube or another copper powder by metal bonding. And the step of performing Further, another method for producing a copper tube having a copper porous layer according to the present invention comprises: (a) a step of temporarily joining copper powder to the surface of a copper plate with an organic binder to produce a pre-treated plate; A step of heating and holding the plate under an oxidizing atmosphere to form an oxidized plate having a structure in which the copper powder, the copper plate surface, and the copper powder are cross-linked by an oxide generated on each surface; Heating the oxidized plate under a reducing atmosphere to form a copper porous layer in which copper powder is bonded to the copper tube surface or another copper powder by metal bonding on the copper plate surface; The method is characterized in that the method includes a step of performing a rounding process on a copper plate having a porous layer formed thereon to obtain a copper tube having a copper porous layer.
【0006】[0006]
【発明の実施の形態】本発明では、銅管表面に有機バイ
ンダーによって銅粉を仮接合し、銅管と銅粉の表面を一
旦酸化する。これによって銅管−銅粉間及び銅粉−銅粉
間が酸化物で架橋(ブリッジ)された構造になる。その
後、この酸化処理管を還元雰囲気で加熱する。これによ
って、銅管と銅粉の表面が還元されると共に、銅管−銅
粉間及び銅粉−銅粉間の酸化物結合が金属結合となり、
銅管の表面に少なくとも一層の銅多孔質層が形成され
る。この方法によれば、銅管の外周に熱伝導の良い銅多
孔質層を容易に形成でき、また比較的短尺の銅管内周面
にも銅多孔質層を容易に形成できる。本発明の別な態様
では、銅板表面に有機バインダーによって銅粉を仮接合
し、銅板と銅粉の表面を一旦酸化する。これによって銅
板−銅粉間及び銅粉−銅粉間が酸化物で架橋(ブリッ
ジ)された構造になる。その後、この酸化処理板を還元
雰囲気で加熱する。これによって、銅板と銅粉の表面が
還元されると共に、銅板−銅粉間及び銅粉−銅粉間の酸
化物結合が金属結合となり、銅板の表面に少なくとも一
層の銅多孔質層が形成される。さらに、銅多孔質層を形
成した銅板に丸め加工を施して、銅多孔質層を有する銅
管とする。このように少なくとも一方の面に銅多孔質層
を形成した銅板を丸めて銅管とすることで、従来は形成
が困難だった長尺の銅管内面の多孔質層の形成を容易に
行うことができるようになる。また、板状のうちに所定
パターンの銅多孔質層を形成し、それを丸めて銅管とす
ることで、多数の平行直線状、波状などの所定のパター
ンの銅多孔質層を有する銅管が容易に作製できる。この
ように外周面または内周面に所定のパターンの銅多孔質
層を有する銅管は、管内部または外部を流れる流体の流
れを良くしたり、或いは乱流を発生させて熱交換効率を
良くすることが可能となる。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, copper powder is temporarily joined to the surface of a copper tube with an organic binder, and the surfaces of the copper tube and the copper powder are once oxidized. As a result, a structure in which the copper tube and the copper powder and the copper powder and the copper powder are cross-linked (bridged) with the oxide is obtained. Thereafter, the oxidation treatment tube is heated in a reducing atmosphere. Thereby, the surface of the copper tube and the copper powder is reduced, and the oxide bond between the copper tube and the copper powder and between the copper powder and the copper powder becomes a metal bond.
At least one copper porous layer is formed on the surface of the copper tube. According to this method, a copper porous layer having good heat conductivity can be easily formed on the outer periphery of the copper tube, and the copper porous layer can also be easily formed on the inner peripheral surface of a relatively short copper tube. In another embodiment of the present invention, copper powder is temporarily joined to the surface of the copper plate with an organic binder, and the surfaces of the copper plate and the copper powder are once oxidized. As a result, a structure in which the copper plate and the copper powder and the copper powder and the copper powder are cross-linked (bridged) with the oxide is obtained. Thereafter, the oxidized plate is heated in a reducing atmosphere. As a result, the surfaces of the copper plate and the copper powder are reduced, and an oxide bond between the copper plate and the copper powder and between the copper powder and the copper powder becomes a metal bond, and at least one copper porous layer is formed on the surface of the copper plate. You. Further, the copper plate having the copper porous layer formed thereon is rounded to obtain a copper tube having the copper porous layer. By thus forming a copper tube by rolling a copper plate having a copper porous layer formed on at least one surface, it is possible to easily form a porous layer on the inner surface of a long copper tube, which was conventionally difficult to form. Will be able to In addition, a copper tube having a predetermined pattern of a copper porous layer having a large number of parallel straight lines, corrugations, etc. is formed by forming a copper porous layer of a predetermined pattern in a plate shape and rolling it to form a copper tube. Can be easily produced. As described above, the copper tube having the copper porous layer of a predetermined pattern on the outer peripheral surface or the inner peripheral surface improves the flow of fluid flowing inside or outside the tube or generates turbulent flow to improve heat exchange efficiency. It is possible to do.
【0007】粒径が0.1mm以上の粗い銅粉は、単に
不活性雰囲気或いは還元性雰囲気中で加熱しても、銅板
表面に焼結し難い。そこで本発明では、銅板の表面に銅
粉を付け、酸化・還元の2段階焼結によって銅粉を銅板
表面に焼結(焼着)している。酸化工程で全ての銅を酸
化させると、銅板自体の強度が低下してしまうので、銅
板および銅粉の表面のみを酸化させている。また、一旦
高温酸化した状態で降温すると、CuとCu酸化物の熱
膨張係数の差によって、銅板表面から銅粉及び表面酸化
物が剥がれ落ちてしまう。そこで本発明においては、酸
化後に、高温に保持したまま還元することが望ましい。[0007] Coarse copper powder having a particle size of 0.1 mm or more does not easily sinter on the surface of the copper plate even when simply heated in an inert atmosphere or a reducing atmosphere. Therefore, in the present invention, copper powder is attached to the surface of the copper plate, and the copper powder is sintered (sintered) to the surface of the copper plate by two-stage sintering of oxidation and reduction. If all the copper is oxidized in the oxidation step, the strength of the copper plate itself is reduced, so only the surfaces of the copper plate and the copper powder are oxidized. Further, once the temperature is lowered in a state of being oxidized at a high temperature, the copper powder and the surface oxide are peeled off from the copper plate surface due to the difference in thermal expansion coefficient between Cu and Cu oxide. Therefore, in the present invention, it is desirable that after oxidation, reduction is performed while maintaining the temperature at a high temperature.
【0008】本発明において、材料の銅管又は銅板は、
純銅(Cu)、Cu-P合金(リン青銅)、Cu-Be合
金(ベリリウム青銅)、Cu-Sn合金(青銅)、Cu-
Al合金、Cu-Si合金、Cu-Ni合金、或いは銅を
主体として2種以上の元素を添加した合金などを使用し
得るが、特に純銅が望ましい。なお、使用する銅管又は
銅板は、少なくとも表面部分が銅又は銅合金で形成され
ていれば良く、上述した銅又は銅合金からなる一体物の
他、鋼板など他の金属板の表面を銅で被覆した材料や銅
−鋼クラッド材などを用いても良い。また銅管は円管の
他、楕円管や断面が三角、四角、菱形、多角形などの角
管でも良い。銅板の形状は、薄板、厚板、箔、長尺のテ
ープなどが用いられる。In the present invention, the material copper tube or copper plate is
Pure copper (Cu), Cu-P alloy (phosphor bronze), Cu-Be alloy (beryllium bronze), Cu-Sn alloy (bronze), Cu-
An Al alloy, a Cu-Si alloy, a Cu-Ni alloy, or an alloy mainly containing copper to which two or more elements are added can be used, and pure copper is particularly desirable. The copper tube or copper plate to be used only needs to have at least the surface portion formed of copper or a copper alloy.In addition to the above-described integrated member made of copper or a copper alloy, the surface of another metal plate such as a steel plate is made of copper. A coated material or a copper-steel clad material may be used. In addition to the circular tube, the copper tube may be an elliptical tube or a square tube having a triangular, square, rhombic, or polygonal cross section. As the shape of the copper plate, a thin plate, a thick plate, a foil, a long tape, or the like is used.
【0009】銅管を用い、本発明方法によって銅多孔質
層を有する銅管を製造する一例を図1ないし図4を参照
して説明する。本発明では、まず、銅管1の外周面と内
周面のいずれか一方或いは内外両面(以下、銅管1表面
という)に、銅粉3を有機バインダー2で仮接合し、図
1に示す前処理管11を作製する(i)工程を行う。こ
の有機バインダー2としては、以後の酸化性雰囲気下で
前処理管11を加熱保持する(b)工程で容易に無くな
り、その跡に余分な灰分や炭素が残留することのない材
料が好ましく、例えばグリセリン、油(鉱物油、動植物
性油脂)、アクリル樹脂系やセルロース樹脂系などの有
機系粘着剤などである。簡便には、市販のスプレー式ア
クリル樹脂粘着剤を用い、銅管1の所望部位にスプレー
塗布しても良い。An example of manufacturing a copper tube having a copper porous layer by the method of the present invention using the copper tube will be described with reference to FIGS. In the present invention, first, copper powder 3 is temporarily bonded to one of the outer peripheral surface and the inner peripheral surface of copper tube 1 or both inner and outer surfaces (hereinafter, referred to as the surface of copper tube 1) with organic binder 2, as shown in FIG. Step (i) of preparing the pretreatment tube 11 is performed. The organic binder 2 is preferably a material which is easily eliminated in the subsequent step (b) of heating and maintaining the pretreatment tube 11 under an oxidizing atmosphere, and in which traces of excess ash and carbon do not remain. Examples include glycerin, oils (mineral oils, animal and vegetable oils and fats), and organic adhesives such as acrylic resin and cellulose resin. For convenience, a commercially available spray-type acrylic resin adhesive may be used to spray-coat the desired portion of the copper tube 1.
【0010】また本発明において使用する銅粉3として
は、銅管1と同じく純銅および銅を主体とした銅合金を
用いることができ、特に純銅からなる銅粉が好ましい。
また、銅粉の粒径は、製造するべき銅多孔質層に求めら
れる機能、すなわち熱交換効率の向上や表面積の増大な
どが達成でき、しかも形成された銅多孔質層が十分な機
械強度となるように適宜選択して良く、通常は平均粒径
が0.1〜3mm、好ましくは0.2〜2mm程度のも
のが望ましい。さらに銅管1表面に銅粉3を緻密に配列
するために、銅粉3の粒径をなるべく均一にしておくこ
とが望ましい。銅粉3を銅管1表面に撒くための方法は
限定されず、銅粉3を少量ずつ銅管1の外周面に落下さ
せる方法や、銅管1内に所定量の銅粉を入れ、管を回し
て銅粉を移動させながら銅管1内周面に銅粉3を固着さ
せる方法などを採用して良い。また、銅管1に仮接合し
た銅粉3に再度有機バインダーを塗布し、銅粉3を撒い
て多層構造としても良い。Further, as the copper powder 3 used in the present invention, pure copper and a copper alloy mainly composed of copper can be used as in the case of the copper tube 1, and a copper powder made of pure copper is particularly preferable.
In addition, the particle size of the copper powder can achieve the functions required for the copper porous layer to be produced, that is, an improvement in heat exchange efficiency and an increase in surface area, and the formed copper porous layer has sufficient mechanical strength and The average particle diameter is usually 0.1 to 3 mm, preferably about 0.2 to 2 mm. Further, in order to arrange the copper powder 3 densely on the surface of the copper tube 1, it is desirable to make the particle diameter of the copper powder 3 as uniform as possible. The method for dispersing the copper powder 3 on the surface of the copper tube 1 is not limited. For example, a method of dropping the copper powder 3 little by little on the outer peripheral surface of the copper tube 1 or a method of putting a predetermined amount of copper powder into the copper tube 1, May be used to fix the copper powder 3 on the inner peripheral surface of the copper tube 1 while moving the copper powder. Alternatively, an organic binder may be applied again to the copper powder 3 temporarily bonded to the copper tube 1 and the copper powder 3 may be scattered to form a multilayer structure.
【0011】次に、銅管1表面に銅粉3を仮接合した前
処理管11を、雰囲気加熱炉等に入れ、酸化性雰囲気
下、好ましくは空気中、400〜700℃で加熱保持
し、図2に示すように銅粉3と銅管1表面、及び銅粉3
同士が、各々の表面に生じた酸化物4によって架橋され
た構造を有する酸化処理管12を形成する(ii)工程を
実施する。この酸化性雰囲気下での加熱温度が400℃
未満であると、銅粉3表面と銅管1表面の酸化物の生成
量が少なくなり、銅管1と銅粉3の結合力が弱くなって
しまう。また加熱温度が700℃を超えると、銅または
銅合金からなる銅管1が軟化して、変形したり強度が減
少する場合がある。酸化性雰囲気下で前処理管11を加
熱保持する時間は、上述した通り銅管1表面と銅粉3と
が酸化物による架橋構造で十分に接合した構造が得られ
れば特に限定されないが、通常は10分〜3時間程度、
好ましくは15分〜1時間程度とする。この(ii)工程
で使用する酸化性ガスとしては、上記空気以外にも、純
酸素ガス、窒素ガスや炭酸ガスで薄めた酸素ガス、一酸
化二窒素ガスなどが使用可能である。なお、銅管1の外
周面に銅多孔質層5を形成する場合、管中に窒素ガス等
の不活性ガスを流してパージしながら外周面の酸化を実
施すれば、管内周面の酸化を防ぐことができる。Next, the pretreatment tube 11 in which the copper powder 3 is temporarily bonded to the surface of the copper tube 1 is placed in an atmosphere heating furnace or the like, and heated and maintained at 400 to 700 ° C. in an oxidizing atmosphere, preferably in air. As shown in FIG. 2, the copper powder 3 and the surface of the copper tube 1 and the copper powder 3
The step (ii) of forming an oxidation treatment tube 12 having a structure in which the surfaces are crosslinked by the oxide 4 generated on each surface is performed. The heating temperature in this oxidizing atmosphere is 400 ° C.
If it is less than the above, the amount of oxides generated on the surface of the copper powder 3 and the surface of the copper tube 1 is reduced, and the bonding strength between the copper tube 1 and the copper powder 3 is weakened. On the other hand, when the heating temperature exceeds 700 ° C., the copper tube 1 made of copper or a copper alloy is softened and may be deformed or its strength may be reduced. The time for heating and holding the pretreatment tube 11 under the oxidizing atmosphere is not particularly limited as long as a structure in which the surface of the copper tube 1 and the copper powder 3 are sufficiently bonded to each other by the crosslinked structure of the oxide is obtained as described above. Is about 10 minutes to 3 hours,
Preferably, it is about 15 minutes to 1 hour. As the oxidizing gas used in the step (ii), in addition to the above air, pure oxygen gas, oxygen gas diluted with nitrogen gas or carbon dioxide gas, nitrous oxide gas, or the like can be used. When the copper porous layer 5 is formed on the outer peripheral surface of the copper tube 1, if the outer peripheral surface is oxidized while purging by flowing an inert gas such as nitrogen gas into the tube, the oxidation of the inner peripheral surface of the tube is reduced. Can be prevented.
【0012】次に、酸化処理管12の周囲を還元性雰囲
気として加熱保持し、銅粉3が銅管1表面、及び他の銅
粉3に金属結合により固着した銅多孔質層5を形成し、
図3及び図4に示す銅管13とする(iii)工程を実施
する。ここで、酸化性雰囲気下での加熱工程の後、酸化
処理管12を入れた雰囲気加熱炉内に直ちに水素ガスな
どの還元ガスを導入すると燃焼する場合がある。それを
防ぐために、上記(ii)工程の後、酸化処理管12の温
度を維持したまま、或いは(iii)工程の処理温度に移
行させながら、酸化処理管12の周囲を不活性ガス雰囲
気で置換し、その後、還元性雰囲気に置換して前記(ii
i)工程を実施することが望ましい。銅管1の温度を変
えることなく、酸化性雰囲気から還元性雰囲気に変更す
ることで、銅と銅酸化物の熱膨張係数の差によって銅酸
化物4及び銅粉3が剥離する不都合を防ぐことができ
る。ここで使用する不活性ガスとしては、窒素ガス、ア
ルゴンガス、ヘリウムガス等が用いられ、好ましくは窒
素ガスが用いられる。また、還元性雰囲気を形成するた
めの還元ガスとしては、水素ガス、窒素ガスで希釈した
水素ガス、一酸化炭素ガス、ブタン分解ガス、水性ガ
ス、発生炉ガスなどの一酸化炭素含有ガスが使用可能で
あり、特に水素ガス、窒素ガスで希釈した水素ガスが好
適である。Next, the surroundings of the oxidation treatment tube 12 are heated and held in a reducing atmosphere to form a copper porous layer 5 in which the copper powder 3 is fixed to the surface of the copper tube 1 and other copper powder 3 by metal bonding. ,
The step (iii) of forming the copper tube 13 shown in FIGS. 3 and 4 is performed. Here, after a heating step in an oxidizing atmosphere, if a reducing gas such as a hydrogen gas is immediately introduced into an atmosphere heating furnace containing the oxidation treatment tube 12, combustion may occur. In order to prevent this, after the above (ii) step, while maintaining the temperature of the oxidation treatment tube 12 or shifting to the treatment temperature of the (iii) step, the surroundings of the oxidation treatment tube 12 are replaced with an inert gas atmosphere. After that, the atmosphere is replaced with a reducing atmosphere,
i) It is desirable to carry out the process. By changing the oxidizing atmosphere to the reducing atmosphere without changing the temperature of the copper tube 1, it is possible to prevent the copper oxide 4 and the copper powder 3 from being separated due to a difference in thermal expansion coefficient between copper and copper oxide. Can be. As the inert gas used here, nitrogen gas, argon gas, helium gas or the like is used, and preferably, nitrogen gas is used. In addition, as a reducing gas for forming a reducing atmosphere, a carbon monoxide-containing gas such as hydrogen gas, hydrogen gas diluted with nitrogen gas, carbon monoxide gas, butane decomposition gas, water gas, and generation gas is used. Hydrogen gas and hydrogen gas diluted with nitrogen gas are particularly suitable.
【0013】酸化処理管12を還元性雰囲気下で加熱す
る際の加熱温度は、300〜700℃、好ましくは40
0〜600℃程度とする。加熱温度が300℃未満であ
ると、還元が十分でなくなり、銅酸化物が残ったり、
(ii)工程との温度差が大きくなって銅粉3や酸化物が
剥離し易くなる。加熱温度が700℃を超えると、銅ま
たは銅合金からなる銅管1が軟化して、変形したり強度
が減少する場合がある。還元性雰囲気下で酸化処理管1
2を加熱保持する時間は、上述した通り銅粉3が銅管1
表面、及び他の銅粉3に金属結合により固着した銅多孔
質層5を形成できれば特に限定されないが、通常は10
分〜3時間程度、好ましくは15分〜1時間程度とす
る。The heating temperature when heating the oxidation treatment tube 12 in a reducing atmosphere is 300 to 700 ° C., preferably 40 to 700 ° C.
The temperature is set to about 0 to 600 ° C. When the heating temperature is lower than 300 ° C., the reduction is not sufficient, and the copper oxide remains,
(Ii) The temperature difference from the process is large, and the copper powder 3 and oxides are easily peeled off. When the heating temperature exceeds 700 ° C., the copper tube 1 made of copper or a copper alloy is softened, and may be deformed or have reduced strength. Oxidation tube 1 under reducing atmosphere
The time for heating and holding the copper powder 3 is as described above.
Although there is no particular limitation as long as the copper porous layer 5 fixed to the surface and other copper powder 3 by metal bonding can be formed, it is usually 10
Minutes to 3 hours, preferably 15 minutes to 1 hour.
【0014】以上の(i)〜(iii)工程を順次行うこ
とによって、図3及び図4に示す通り、銅管1の外周面
及び内周面に銅多孔質層5が形成された銅管13が作製
される。この銅多孔質層を有する銅管13は、熱交換器
用配管、ヒートパイプ、給湯水用配管などに適用され
る。この方法によれば、低融点金属を介して基体表面に
多孔質層を形成したものに比べ、銅多孔質層と銅管との
間の熱伝導を向上することができる。また簡単な製造設
備で且つ短時間で銅多孔質層を有する銅管13を製造す
ることができる。By sequentially performing the above steps (i) to (iii), a copper tube having a copper porous layer 5 formed on the outer peripheral surface and the inner peripheral surface of the copper tube 1 as shown in FIGS. 13 are produced. The copper pipe 13 having the copper porous layer is applied to a pipe for a heat exchanger, a heat pipe, a pipe for hot water supply, and the like. According to this method, the heat conduction between the copper porous layer and the copper tube can be improved as compared with the case where the porous layer is formed on the surface of the base via the low melting point metal. Further, the copper tube 13 having the copper porous layer can be manufactured with simple manufacturing equipment in a short time.
【0015】銅板を用い、本発明方法によって銅多孔質
層を有する銅管を製造する一例を、図面を参照して説明
する。この方法では、まず、銅板1のいずれか一方又は
両方の面(以下、銅板表面という)に、上述した銅管1
を用いた方法と同じく、有機バインダーを用いて銅粉3
を仮接合して図1に示す前処理板11を形成する(a)
工程を行う。次に、この前処理板11を雰囲気加熱炉等
に入れ、酸化性雰囲気下、好ましくは空気中、400〜
700℃で加熱保持し、図2に示すように、銅粉3と銅
板1表面、及び銅粉3同士が、各々の表面に生じた酸化
物4によって架橋された構造を有する酸化処理板12を
形成する(b)工程を実施する。次に、この酸化処理板
の周囲を還元性雰囲気として加熱保持し、図3に示すよ
うに、銅粉3が銅板表面、及び他の銅粉3に金属結合に
より固着した銅多孔質層5を形成し、銅多孔質層5を有
する銅板を形成する(c)工程を実施する。An example of manufacturing a copper tube having a copper porous layer by a method of the present invention using a copper plate will be described with reference to the drawings. In this method, first, the copper tube 1 described above is attached to one or both surfaces of the copper plate 1 (hereinafter referred to as a copper plate surface).
In the same manner as the method using
Are temporarily joined to form a pretreatment plate 11 shown in FIG. 1 (a).
Perform the process. Next, this pretreatment plate 11 is placed in an atmosphere heating furnace or the like, and is placed in an oxidizing atmosphere, preferably in air, for 400 to 400 hours.
Heating and holding at 700 ° C., as shown in FIG. 2, the oxidized plate 12 having a structure in which the copper powder 3 and the surface of the copper plate 1 and the copper powder 3 are cross-linked by the oxide 4 generated on each surface. The step of forming (b) is performed. Next, the periphery of the oxidized plate is heated and held in a reducing atmosphere, and as shown in FIG. 3, the copper porous layer 5 in which the copper powder 3 is fixed to the copper plate surface and other copper powder 3 by metal bonding is applied. The step (c) of forming and forming a copper plate having the copper porous layer 5 is performed.
【0016】次いで、銅多孔質層5を有する銅板に丸め
加工を施し、図5に示す銅管14を作製する(d)工程
を行う。この丸め加工は、例えば銅管や鋼管の製造に使
用される周知の技法を用いて良い。また継ぎ目は溶接し
て完全な管体としても良いし、溶接しなくても良い。Next, the copper plate having the copper porous layer 5 is rounded to perform a step (d) of manufacturing a copper tube 14 shown in FIG. This rounding process may use a well-known technique used for manufacturing a copper pipe or a steel pipe, for example. Also, the seam may be welded to form a complete tube or may not be welded.
【0017】これら(a)〜(d)の各工程を順次実施
することによって、外周面と内周面の少なくとも一方
に、銅粉3が銅板1表面、及び他の銅粉3に金属結合に
より固着した銅多孔質層5を有する銅管14が得られ
る。この銅管14は熱交換器用配管、ヒートパイプ、給
水給湯用配管などに適用される。この方法によれば、低
融点金属を介して基体表面に多孔質層を形成したものに
比べ、銅多孔質層と銅管との間の熱伝導を向上すること
ができる。また、銅板表面に銅を介して強固に接合され
た銅多孔質層を形成し、この銅板を丸めて銅管とするの
で、簡単な製造設備で且つ短時間で銅多孔質層を有する
銅管を製造することができる。従って本発明によれば、
熱交換効率に優れた銅管を効率良く製造することができ
る。また、銅多孔質層5を形成した銅板13を丸めて銅
管を製造するので、従来法では形成が困難だった長尺管
の内面にも銅多孔質層を容易に形成することができる。By sequentially performing each of the steps (a) to (d), the copper powder 3 is bonded to at least one of the outer peripheral surface and the inner peripheral surface by metal bonding to the surface of the copper plate 1 and the other copper powder 3. A copper tube 14 having the adhered copper porous layer 5 is obtained. This copper pipe 14 is applied to a pipe for a heat exchanger, a heat pipe, a pipe for hot and cold water supply, and the like. According to this method, the heat conduction between the copper porous layer and the copper tube can be improved as compared with the case where the porous layer is formed on the surface of the base via the low melting point metal. Further, a copper porous layer which is firmly bonded to the surface of the copper plate via copper is formed, and this copper plate is rolled into a copper tube, so that the copper tube having the copper porous layer can be manufactured with simple manufacturing equipment in a short time. Can be manufactured. Therefore, according to the present invention,
A copper tube having excellent heat exchange efficiency can be manufactured efficiently. In addition, since the copper tube is manufactured by rolling the copper plate 13 having the copper porous layer 5 formed thereon, the copper porous layer can be easily formed on the inner surface of the long tube, which has been difficult to form by the conventional method.
【0018】図6ないし図8は、丸め加工を行うことで
種々のパターンの銅多孔質層5を有する銅管を形成する
ため、内周面又は外周面に各種パターンの銅多孔質層5
を形成した銅板13を例示するもので、図6は銅板13
の長手方向に沿って多数の直線状の銅多孔質層5を形成
した場合を示す。このように銅多孔質層5を形成するこ
とによって、該銅板13を丸めて銅管とした際に、該管
に沿って流れる流体の抵抗を減らすことができる。図7
は斜めの帯状に銅多孔質層5を形成し、該銅板13を丸
めて管とした際に、該管の内周面或いは外周面にスパイ
ラル状の銅多孔質層5を形成した場合を示す。また図8
は、多数の波状に銅多孔質層5を形成した場合を示す。
これらは該銅板13を丸めて管とした際に、該銅管に沿
って流れる流体に乱流を生じさせ、熱交換効率を一層高
めることができる。銅板13に形成する銅多孔質層5の
パターンは上記の各例に限定されることなく、曲線状、
S字状、W字状パターンに形成したり、或いはドット
状、単棒状、<字状などの各種記号や波状などの模様に
形成しても良い。FIGS. 6 to 8 show various shapes of the copper porous layer 5 on the inner peripheral surface or the outer peripheral surface to form a copper tube having the copper porous layer 5 of various patterns by performing rounding.
FIG. 6 illustrates the copper plate 13 on which the copper plate 13 is formed.
Shows a case where a large number of linear copper porous layers 5 are formed along the longitudinal direction of FIG. By forming the copper porous layer 5 in this manner, when the copper plate 13 is rolled into a copper tube, the resistance of the fluid flowing along the tube can be reduced. FIG.
Shows a case where the copper porous layer 5 is formed in an oblique strip shape, and when the copper plate 13 is rolled into a tube, the spiral copper porous layer 5 is formed on the inner or outer peripheral surface of the tube. . FIG.
Shows a case where the copper porous layer 5 is formed in a large number of waves.
When the copper plate 13 is rolled into a tube, they generate a turbulent flow in the fluid flowing along the copper tube, so that the heat exchange efficiency can be further improved. The pattern of the copper porous layer 5 formed on the copper plate 13 is not limited to each of the above examples, but may be a curved shape.
It may be formed in an S-shaped pattern, a W-shaped pattern, or may be formed in a pattern such as various symbols such as a dot shape, a single rod shape, a <character shape, or a wavy shape.
【0019】なお、上記(a)〜(d)工程を連続的に
行い、長尺の銅管14を連続生産することも可能であ
る。その場合には、長尺の銅板を用い、有機バインダー
の塗布装置、銅粉散布装置、酸化性雰囲気下と還元雰囲
気下での加熱が可能な炉、及び丸め加工と継ぎ目溶接を
行う溶接管製造装置を順に配置し、長尺銅板を一定速度
で移動させつつ、(a)〜(d)工程を連続的に実施す
る方法が望ましい。この方法では、従来は形成が困難だ
った内面に銅多孔質層を有する長尺銅管を容易に製造す
ることができる。It is also possible to continuously perform the above steps (a) to (d) to continuously produce a long copper tube 14. In that case, using a long copper plate, an organic binder coating device, a copper powder spraying device, a furnace capable of heating under an oxidizing atmosphere and a reducing atmosphere, and a welded pipe for rounding and seam welding It is desirable to arrange the devices in order and move the long copper plate at a constant speed while continuously performing the steps (a) to (d). According to this method, a long copper tube having a copper porous layer on the inner surface, which has conventionally been difficult to form, can be easily manufactured.
【0020】[0020]
【実施例】以下、本発明に係る実施例を記すが、下記の
実施例はあくまでも例示に過ぎず、本発明はかかる実施
例の記載に限定されるものではない。 (実施例1)外径11mmφ、内径9mmφの純銅製の
銅管(基体)と、平均粒径0.6mmの純銅粉、および
アクリル樹脂含有スプレー(有機バインダー)を用意し
た。銅管の周囲にアクリル樹脂をスプレー塗布し、次い
で純銅粉をふりかけた。すると純銅粉が1〜2層のみ全
体に均質に付着した。外周面に銅粉を付着した銅管(前
処理素材)を、管状電気炉に入れ、空気中、600℃に
0.5時間加熱保持し、次いでそのままの温度を保持し
たまま、炉心管内を一旦不活性ガス(N2)に置換した
後、還元性ガス(H2)に置換し、さらに700℃に
0.5時間保持した。その結果、銅管の外周面に純銅粉
が焼着して銅多孔質層が形成された銅管が得られた。Embodiments of the present invention will be described below. However, the following embodiments are merely examples, and the present invention is not limited to the description of the embodiments. (Example 1) A copper tube (substrate) made of pure copper having an outer diameter of 11 mmφ and an inner diameter of 9 mmφ, a pure copper powder having an average particle diameter of 0.6 mm, and an acrylic resin-containing spray (organic binder) were prepared. Acrylic resin was spray-applied around the copper tube and then sprinkled with pure copper powder. As a result, pure copper powder uniformly adhered to only one or two layers. A copper tube (pre-treated material) having copper powder adhered to the outer peripheral surface is placed in a tubular electric furnace, heated and maintained in air at 600 ° C. for 0.5 hour, and then, while maintaining the temperature as it is, once inside the furnace tube. After replacing with an inert gas (N 2 ), the gas was replaced with a reducing gas (H 2 ) and further maintained at 700 ° C. for 0.5 hour. As a result, a copper tube having a copper porous layer formed by baking pure copper powder on the outer peripheral surface of the copper tube was obtained.
【0021】(実施例2)幅50mmの純銅からなる薄
板状の銅板と、平均粒径0.8mmの純銅粉、および市
販のアクリル樹脂含有スプレー(有機バインダー)を用
意した。前記銅板の表面にアクリル樹脂をスプレー塗布
した後、前記純銅粉を銅板にふりかけて、前処理板とし
た。次いで、前記前処理板を電気炉に入れ、空気中、温
度500℃で30分間加熱保持した後、電気炉内の温度
を一定に保持したまま炉内雰囲気をN2雰囲気に置換
し、さらにH2雰囲気に置換し、温度500℃で30分
間加熱保持した。加熱の後、H2雰囲気中で室温まで放
冷し、銅板を取り出し、ロール加工により外周面に銅多
孔質層を向けて丸め、アーク溶接にて継ぎ目を接合し、
銅管を作製した。その結果、外周面に1〜3層の純銅粉
が焼着して銅多孔質層が形成された銅管が得られた。Example 2 A thin copper plate made of pure copper having a width of 50 mm, a pure copper powder having an average particle diameter of 0.8 mm, and a commercially available acrylic resin-containing spray (organic binder) were prepared. After spray coating an acrylic resin on the surface of the copper plate, the pure copper powder was sprinkled on the copper plate to obtain a pre-treated plate. Then, the pre-treated plate was placed in an electric furnace, heated and maintained in air at a temperature of 500 ° C. for 30 minutes, and then the atmosphere in the furnace was replaced with an N 2 atmosphere while the temperature in the electric furnace was kept constant. The atmosphere was replaced with two atmospheres, and heated and maintained at a temperature of 500 ° C. for 30 minutes. After heating, it is allowed to cool to room temperature in an H 2 atmosphere, the copper plate is taken out, the copper porous layer is rolled toward the outer peripheral surface by roll processing, and the seam is joined by arc welding,
A copper tube was made. As a result, a copper tube in which one to three layers of pure copper powder were baked on the outer peripheral surface to form a copper porous layer was obtained.
【0022】[0022]
【発明の効果】本発明による銅管の製造方法は、銅管の
表面に有機バインダーで銅粉を仮接合し、これを酸化性
雰囲気下で加熱保持する工程と、続いて還元性雰囲気下
で加熱保持する工程を行って、銅多孔質層が金属結合に
よって銅管に固着した銅多孔質層を形成するので、簡単
な製造設備で且つ短時間で銅多孔質層を有する銅管を製
造することができる。また銅板の表面に有機バインダー
で銅粉を仮接合し、これを酸化性雰囲気下で加熱保持す
る工程と、続いて還元性雰囲気下で加熱保持する工程を
行って、銅多孔質層が金属結合によって銅板に固着した
銅多孔質層を形成し、更にこの銅板に丸め加工を施して
銅多孔質層を有する銅管を製造するものなので、低融点
金属を介して基体表面に多孔質層を形成したものに比
べ、銅多孔質層と銅管との間の熱伝導を向上することが
できる。また、銅板表面に銅を介して強固に接合された
銅多孔質層を形成し、この銅板を丸めて銅管とするの
で、簡単な製造設備で且つ短時間で銅多孔質層を有する
銅管を製造することができる。従って本発明によれば、
熱交換効率に優れた銅管を効率良く製造することができ
る。また、銅多孔質層を形成した銅板を丸めて銅管を製
造するので、従来法では形成が困難だった長尺管の内面
にも銅多孔質層を容易に形成することができる。さら
に、銅多孔質層を形成した銅板を丸めて銅管を製造する
ので、銅板の表面に多数の平行直線状、波状などの所定
のパターンの銅多孔質層を形成し、外周面または内周面
に所定のパターンの銅多孔質層を有する銅管が容易に作
製できる。このような銅多孔質層を有する銅管は、管内
部または外部を流れる流体の流れを良くしたり、或いは
乱流を発生させて熱交換効率を良くすることが可能とな
る。The method for producing a copper tube according to the present invention comprises the steps of temporarily bonding copper powder to the surface of a copper tube with an organic binder, heating and holding the powder in an oxidizing atmosphere, and subsequently in a reducing atmosphere. Since the copper porous layer is fixed to the copper tube by metal bonding by performing the step of heating and holding, the copper tube having the copper porous layer is manufactured in a short time with simple manufacturing equipment. be able to. In addition, a step of temporarily bonding copper powder to the surface of the copper plate with an organic binder and heating and holding the same in an oxidizing atmosphere, and subsequently performing a step of heating and holding the same in a reducing atmosphere, is performed so that the copper porous layer is bonded to the metal. Forming a copper porous layer adhered to the copper plate, and then rounding the copper plate to produce a copper tube having a copper porous layer, so that a porous layer is formed on the surface of the base via a low melting point metal. As compared with the above, the heat conduction between the copper porous layer and the copper tube can be improved. Further, a copper porous layer which is firmly bonded to the surface of the copper plate via copper is formed, and this copper plate is rolled into a copper tube, so that the copper tube having the copper porous layer can be manufactured with simple manufacturing equipment in a short time. Can be manufactured. Therefore, according to the present invention,
A copper tube having excellent heat exchange efficiency can be manufactured efficiently. Further, since the copper tube on which the copper porous layer is formed is rolled to manufacture the copper tube, the copper porous layer can be easily formed also on the inner surface of the long tube, which is difficult to form by the conventional method. Furthermore, since a copper tube is manufactured by rolling the copper plate on which the copper porous layer is formed, a large number of copper porous layers having a predetermined pattern such as a parallel linear shape and a wavy shape are formed on the surface of the copper plate, and the outer peripheral surface or the inner peripheral surface is formed. A copper tube having a copper porous layer of a predetermined pattern on its surface can be easily manufactured. A copper tube having such a copper porous layer can improve the flow of fluid flowing inside or outside the tube, or generate turbulence to improve the heat exchange efficiency.
【図1】 本発明による銅多孔質層を有する銅管の製造
方法の一例を説明するもので、銅管(又は銅板)表面に
銅粉を仮接合する(i)工程(又は(a)工程)を示す
拡大断面図。FIG. 1 illustrates an example of a method of manufacturing a copper tube having a copper porous layer according to the present invention, in which step (i) (or step (a)) of temporarily joining copper powder to the surface of a copper tube (or copper plate); FIG.
【図2】 同じく酸化処理管(又は酸化処理板)を形成
する(ii)工程(又は(b)工程)を示す拡大断面図。FIG. 2 is an enlarged sectional view showing a step (ii) (or a step (b)) of forming an oxidation-treated tube (or an oxidation-treated plate).
【図3】 同じく銅多孔質層を有する銅管を形成する
(iii)工程(又は(c)工程)を示す拡大断面図。FIG. 3 is an enlarged sectional view showing a step (iii) (or a step (c)) of forming a copper tube having a copper porous layer.
【図4】 (i)〜(iii)工程を経て作製された銅多
孔質層を有する銅管を示す斜視図。FIG. 4 is a perspective view showing a copper tube having a copper porous layer manufactured through steps (i) to (iii).
【図5】 銅多孔質層を有する銅板に丸め加工を施す
(d)工程を示す拡大断面図。FIG. 5 is an enlarged sectional view showing a step (d) of performing rounding on a copper plate having a copper porous layer.
【図6】 銅板表面に形成する銅多孔質層のパターンの
一例を示す平面図。FIG. 6 is a plan view showing an example of a pattern of a copper porous layer formed on a copper plate surface.
【図7】 別なパターンを示す平面図。FIG. 7 is a plan view showing another pattern.
【図8】 さらに別なパターンを示す平面図。FIG. 8 is a plan view showing still another pattern.
1 銅管(又は銅板) 2 有機バインダー 3 銅粉 4 酸化物 5 銅多孔質層 11 前処理板(又は前処理管) 12 酸化処理板(又は酸化処理管) 13 銅多孔質層を有する銅管(又は銅板) 14 銅多孔質層を有する銅管 DESCRIPTION OF SYMBOLS 1 Copper pipe (or copper plate) 2 Organic binder 3 Copper powder 4 Oxide 5 Copper porous layer 11 Pretreatment plate (or pretreatment tube) 12 Oxidation treatment plate (or oxidation treatment tube) 13 Copper tube having a copper porous layer (Or copper plate) 14 Copper tube with copper porous layer
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 24/08 F28F 1/12 B21D 53/06 B22F 1/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C23C 24/08 F28F 1/12 B21D 53/06 B22F 1/02
Claims (2)
ーで仮接合して前処理管を作製する工程、 (ii)前記前処理管を酸化性雰囲気下で加熱保持し、前
記銅粉と銅管表面及び銅粉同士が、各々の表面に生じた
酸化物によって架橋された構造を有する酸化処理管を形
成する工程、 (iii)前記酸化処理管を還元性雰囲気下で加熱保持
し、前記銅管表面に、銅粉が該銅管表面或いは他の銅粉
に金属結合により接合した銅多孔質層を形成する工程、
の各工程を備えたことを特徴とする銅多孔質層を有する
銅管の製造方法。(I) a step of temporarily joining copper powder to the surface of a copper tube with an organic binder to produce a pretreatment tube; and (ii) heating and holding the pretreatment tube in an oxidizing atmosphere, A step of forming an oxidized tube having a structure in which the powder, the copper tube surface, and the copper powder are cross-linked by an oxide generated on each surface; (iii) heating and holding the oxidized tube in a reducing atmosphere Forming a copper porous layer on the surface of the copper tube, in which copper powder is bonded to the surface of the copper tube or another copper powder by metal bonding;
A method for producing a copper tube having a copper porous layer, comprising the steps of:
ーで仮接合して前処理板を作製する工程、 (b)前記前処理板を酸化性雰囲気下で加熱保持し、前
記銅粉と銅板表面及び銅粉同士が、各々の表面に生じた
酸化物によって架橋された構造を有する酸化処理板を形
成する工程、 (c)前記酸化処理板を還元性雰囲気下で加熱保持し、
前記銅板表面に、銅粉が該銅板表面或いは他の銅粉に金
属結合により接合した銅多孔質層を形成する工程、 (d)前記銅多孔質層を形成した銅板に丸め加工を施し
て銅多孔質層を有する銅管を得る工程の各工程を備えた
ことを特徴とする銅多孔質層を有する銅管の製造方法。2. (a) a step of temporarily bonding copper powder to the surface of a copper plate with an organic binder to produce a pre-treated plate; (b) heating and holding the pre-treated plate in an oxidizing atmosphere; Forming an oxidized plate having a structure in which the surface of the copper plate and the copper powder are crosslinked by an oxide generated on each surface; (c) heating and holding the oxidized plate under a reducing atmosphere;
A step of forming a copper porous layer in which copper powder is bonded to the surface of the copper plate or another copper powder by metal bonding on the surface of the copper plate, and (d) rounding the copper plate on which the copper porous layer is formed to form copper. A method for producing a copper tube having a copper porous layer, comprising the steps of obtaining a copper tube having a porous layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02002498A JP3264240B2 (en) | 1998-01-30 | 1998-01-30 | Method for producing copper tube having copper porous layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02002498A JP3264240B2 (en) | 1998-01-30 | 1998-01-30 | Method for producing copper tube having copper porous layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11217680A JPH11217680A (en) | 1999-08-10 |
JP3264240B2 true JP3264240B2 (en) | 2002-03-11 |
Family
ID=12015527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02002498A Expired - Fee Related JP3264240B2 (en) | 1998-01-30 | 1998-01-30 | Method for producing copper tube having copper porous layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3264240B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015090242A (en) * | 2013-11-06 | 2015-05-11 | 住友電気工業株式会社 | Metal pipe, heat transfer pipe, heat exchange device, and manufacturing method of metal pipe |
JP6562196B2 (en) * | 2014-05-08 | 2019-08-21 | 国立大学法人北海道大学 | Copper fine particle sintered body and method for producing conductive substrate |
JP6011593B2 (en) | 2014-10-22 | 2016-10-19 | 三菱マテリアル株式会社 | Method for producing copper porous sintered body and method for producing copper porous composite member |
JP6065059B2 (en) | 2015-06-12 | 2017-01-25 | 三菱マテリアル株式会社 | Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member |
JP6107888B2 (en) | 2015-06-12 | 2017-04-05 | 三菱マテリアル株式会社 | Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member |
JP6659026B2 (en) * | 2015-10-14 | 2020-03-04 | 国立大学法人大阪大学 | Low temperature joining method using copper particles |
CN109385642B (en) * | 2017-08-04 | 2021-04-13 | 林信涌 | Gas generator |
CN111936659B (en) | 2018-03-28 | 2022-12-27 | 杰富意钢铁株式会社 | High-strength alloyed hot-dip galvanized steel sheet and method for producing same |
-
1998
- 1998-01-30 JP JP02002498A patent/JP3264240B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11217680A (en) | 1999-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0744586B1 (en) | Method of manufacturing a heat transmitting device and a heat transmitting device | |
EP1756330B1 (en) | Method for reducing metal oxide powder and attaching it to a heat transfer surface and the heat transfer surface | |
JP2007522346A (en) | Porous coating member and method for producing the same using low temperature spraying method | |
JP3264240B2 (en) | Method for producing copper tube having copper porous layer | |
EP1278631A2 (en) | Method of making reactive multilayer foil and resulting product | |
JP2013532264A (en) | Method for manufacturing heat exchange parts using wire mesh screen | |
JPH029155A (en) | Composite metal material | |
JPH10121110A (en) | Boiling heat-transfer member and its production | |
US20100047616A1 (en) | Wire Feedstock and Process for Producing the Same | |
GB2243621A (en) | Process and apparatus for preparing metal layers | |
JP3262058B2 (en) | Method for producing copper material having copper porous layer | |
JP3508527B2 (en) | Method of manufacturing finned heat transfer tube | |
JPH1158072A (en) | Manufacture of copper brazing sheet | |
JP2000113730A (en) | Compound lightweight ribbon wire, insulated compound lightweight ribbon wire, and manufacture thereof | |
KR100629445B1 (en) | Fabrication methid of titanium clad copper bus-bars | |
JPH01249294A (en) | Precoated brazing filler metal-coated metal sheet, production thereof and using method therefor | |
JP2002192336A (en) | Manufacturing method of blazed plate heat exchanger and exchanger manufactured in such way | |
JPH11217602A (en) | Manufacture of porous copper body and porous copper tube | |
JPH05311494A (en) | Production of heat transfer tube | |
JP2010132986A (en) | Method for manufacturing aluminum member with layer of soldering material and method for manufacturing heat exchanger | |
US6613397B2 (en) | Method and apparatus for manufacturing an aluminum clad product | |
JPH02225605A (en) | Porous material composed of ceramic in at least a part and manufacture thereof | |
JP2957306B2 (en) | Arc spraying wire | |
JP2003001302A (en) | Production method for aluminum-dispersed reinforced copper strip | |
JPS62267481A (en) | Mechanical plating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011127 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071228 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081228 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091228 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101228 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101228 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101228 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101228 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111228 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121228 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131228 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |