[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3597944B2 - Motor using dynamic pressure bearing - Google Patents

Motor using dynamic pressure bearing Download PDF

Info

Publication number
JP3597944B2
JP3597944B2 JP13078696A JP13078696A JP3597944B2 JP 3597944 B2 JP3597944 B2 JP 3597944B2 JP 13078696 A JP13078696 A JP 13078696A JP 13078696 A JP13078696 A JP 13078696A JP 3597944 B2 JP3597944 B2 JP 3597944B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
peripheral surface
motor
outer peripheral
cylindrical outer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13078696A
Other languages
Japanese (ja)
Other versions
JPH09298860A (en
Inventor
義和 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec America Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP13078696A priority Critical patent/JP3597944B2/en
Publication of JPH09298860A publication Critical patent/JPH09298860A/en
Application granted granted Critical
Publication of JP3597944B2 publication Critical patent/JP3597944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば光・磁気ディスク等の記録ディスクを回転駆動するために用いられる潤滑流体による動圧軸受を使用したモータに関する。
【0002】
【従来の技術】
従来から、軸部材とスリーブ部材とを相対的に回転自在に支持するために、両者間に介在させた潤滑流体の流体圧力を利用した動圧軸受が用いられている。この種の流体動圧軸受は、軸部材とスリーブ部材との間に、ラジアル荷重を支持するためのラジアル動圧軸受部及びスラスト荷重を支持するスラスト動圧軸受部が配設されている。そして、このような動圧軸受をモータに用いる場合には、軸部材又はスリーブ部材の一方が固定される。即ち、軸部材を固定したときには、軸固定型のモータとなり、スリーブ部材を固定したときには、軸回転型のモータとなる。
【0003】
【発明が解決しようとする課題】
この種の動圧軸受では、次の通りの解決すべき問題が存在する。即ち、動圧軸受で使用する潤滑流体つまり潤滑オイルは、通常、その粘度が高温時に低下し、低温時に上昇し、従って、動圧軸受の発生動圧は高温時には大きく、低温時には小さくなる。このため、使用温度範囲の上限での軸受剛性を確保すべく軸受仕様を設定すれば、低温での軸受剛性が過大になり、また、常温での軸受剛性を適正にすべく設定すれば、使用温度上限近くでは剛性不足となり、軸受剛性の温度依存性が非常に大きいと言った問題がある。
【0004】
本発明は、従来の技術の有するこのような問題点に留意してなされたものであり、その目的とするところは、動圧軸受における軸受剛性の温度依存性を大幅に低減し、使用温度範囲内において適正な軸受剛性を安定して得ることができる動圧軸受を使用したモータを提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明の動圧軸受を使用したモータにおいては、円筒状外周面を有する軸部材と、この円筒状外周面に対向する円筒状内周面を有し軸部材に対し相対的に回転自在であるスリーブ部材と、前記円筒状外周面と前記円筒状内周面との一方もしくは両方に形成され軸方向に間隔を介して配置された一対のラジアル動圧発生溝と、前記円筒状外周面と前記円筒状内周面との間に介在された潤滑流体とを備え、軸部材とスリーブ部材のうち固定側に、動圧の高い領域と低い領域とを連通する連通路を設け、この連通路に、高温時に開口面積が小になり低温時に開口面積が大になる開口を有する制御弁を配置したことを特徴とするものである。
【0006】
この場合、前記連通路は、前記円筒状外周面と前記円筒状内周面との間における、前記一対のラジアル動圧発生溝による動圧発生部分と前記一対のラジアル動圧発生溝間とを連通するように設けるのが望ましく、また、前記制御弁を、断面扇状の開口を有し前記固定側の材質より熱膨張係数の大なる材質により形成された円柱体より構成するのが好ましい。
【0007】
また、上記目的を達成するために、本発明の動圧軸受を使用したモータにおいては、円筒状外周面を有する軸部材と、この円筒状外周面に対向する円筒状内周面を有し軸部材に対し相対的に回転自在であるスリーブ部材と、前記円筒状外周面と前記円筒状内周面との一方もしくは両方に形成され軸方向に間隔を介して配置された一対のラジアル動圧発生溝と、前記円筒状外周面と前記円筒状内周面との間に介在された潤滑流体とを備え、前記軸部材と前記スリーブ部材のうち固定側に、動圧の高い領域と低い領域とを連通する連通路を設け、この連通路に、圧力大の時に開口面積が大になり圧力小の時に開口面積が小になる開口を有する制御弁を配置したことを特徴とするものである。
【0008】
この場合、前記連通路は、前記円筒状外周面と前記円筒状内周面との間における、前記一対のラジアル動圧発生溝による動圧発生部分と前記一対のラジアル動圧発生溝間とを連通するように設けられているのが望ましい。また、前記制御弁を、微小孔を有する弾性部材により構成するのが好ましく、特に、微小孔を、動圧の高い領域に連通する側の孔径を動圧の低い領域に連通する側より大きく形成してもよい。
【0009】
【発明の実施の形態】
本発明の実施の形態について、図面を参照しつつ詳述する。
まず、本発明の実施の形態の一例を図1〜図3を用いて説明する。図1は、例えば磁気ディスクを回転駆動する軸固定型のスピンドルモータを示す断面図である。この例では、記録媒体駆動装置の基盤もしくはこれに固定されるモータブラケット2の円形嵌合孔4に、上下方向の軸心線を有する固定の軸部材6の下端部が嵌合固定されている。軸部材6は、上部にスラスト板8が、上端にカバープレート10がそれぞれ外嵌固定され、スラスト板8より下側の外周面に円筒状外周面12が形成されている。
【0010】
軸部材6には、回転スリーブ体14が回転自在に外嵌されている。回転スリーブ体14の下部の小径のスリーブ部16は内周面に円筒状内周面18を有し、軸部材6におけるスラスト板8の下側の部分に外嵌され、その円筒状内周面18が軸部材6の円筒状外周面12に対向している。回転スリーブ体14の上部の拡径部20は、上端部に内嵌固定されたスラストカバー22と共にスラスト板8の上下及び外周部を囲んでいる。
【0011】
回転スリーブ体14の外周部には略円筒状のハブ24が外嵌固定され、ハブ24の下部内周側にロータマグネット26が内嵌固定されている。ステータコアにステータコイルが巻回されてなるステータ28が、ブラケット2に円形嵌合孔4と同軸に突設された支持筒30に外嵌固定され、ロータマグネット26と径方向に相対して回転駆動部を構成している。
【0012】
スラストカバー22の内周下部は、内上方に傾斜するテーパ部32に形成され、軸部材6の外周部のうちスリーブ部16の下端部に相対する部分は、内下方に傾斜するテーパ部34に形成されている。軸部材6と回転スリーブ体14との間隙に、潤滑流体(液体)の一例としての潤滑オイル36が充填されている。その一端すなわちスラスト板8の上側の間隙における潤滑オイル36の内周端部は、スラストカバー22のテーパ部32の基部とスラスト板8の上面の間に臨んで外気に通じ、他端は軸部材6のテーパ部34の基部とスリーブ部16の内周面の間に臨んで外気に通じた状態で毛細管現象によってその潤滑オイル36が保持されている。
【0013】
スラスト板8の上下面、並びにスリーブ部16の内周面(円筒状内周面18)には、それぞれヘリングボーン溝等のスラスト動圧発生溝38、40並びにラジアル動圧発生溝42、44(破線で示す)が設けられ、回転スリーブ体14及びスラストカバー22の順方向回転により、それぞれの位置の潤滑オイル36に、それぞれスラスト荷重支持圧並びにラジアル荷重支持圧が発生する。これにより、スラスト板8の上下にスラスト動圧軸受手段が構成され、スリーブ部16の外周部にラジアル動圧軸受手段が構成されている。なお、これらの溝は、それぞれ相対する部材の側に設けることもできる。
【0014】
軸部材6には、ラジアル動圧軸受手段における圧力の高い領域と低い領域とを連通する連通路46が設けられている。すなわち、軸部材6の軸心位置に、その下端面からスラスト板8よりやや下側の位置にかけて軸方向の縦穴48が形成され、ラジアル動圧発生溝42、44に対応する円筒状外周面12から縦穴48にかけてそれぞれ縦穴48に対し軸方向に直交する高圧側横穴50、52が形成されると共に、両ラジアル動圧発生溝42、44間の中間に対応する円筒状外周面12から縦穴48にかけて縦穴48に対し軸方向に直交する低圧側横穴54が形成され、最下段の横穴52より下側の縦穴48を封止部材56により閉塞することにより、円筒状外周面12と円筒状内周面18との間の間隙における、両ラジアル動圧発生溝42、44による動圧発生部分と両ラジアル動圧発生溝42、44間とを軸部材6内部でバイパスする連通路46が形成される。
【0015】
連通路46の低圧側横穴54には、高温時に開口面積が小になり低温時に開口面積が大になる開口を有する制御弁58が配置されている。具体的には、制御弁58は、図2に示すように、断面扇状の開口60を有し、軸部材6より熱膨張係数の大なる材質により形成された円柱体62よりなっている。この制御弁58を低圧側横穴54に取り付けるには、円柱体62をその開口60の両側面が内方に寄るように縮ませて低圧側横穴54に挿入することにより行われる。
【0016】
このような構成において、スピンドルモータが回転すると、両ラジアル動圧発生溝42、44を有するそれぞれのラジアル動圧軸受手段では、それらに存在する潤滑オイル36の圧力が高められ、かかるオイル層を介して回転スリーブ体14に作用するラジアル荷重を支持する。また、両スラスト動圧発生溝38、40を有するそれぞれのスラスト動圧軸受手段では、それらに存在する潤滑オイル36の圧力が高められ、このオイル層を介して回転スリーブ体14に作用するスラスト荷重を支持する。
【0017】
この動作時、軸部材6の円筒状外周面12とスリーブ部16の円筒状内周面18との間に充填された潤滑オイル36は、その一部が連通路46をバイパスし、循環される。すなわち、両ラジアル軸受手段では、ヘリングボーン溝である動圧発生溝42、44のそれぞれの中央部が最も圧力大となり、他方、両ラジアル軸受手段間ではこの部分の潤滑オイル36が両ラジアル軸受手段側に吸引されるため圧力小になっている。連通路46の高圧側横穴50、52はそれぞれ両ラジアル軸受手段の圧力大の部分に開口され、低圧側横穴54は両ラジアル軸受手段間の圧力小の部分に開口されている。このため、上記した圧力差により前記それぞれの圧力大の部分の潤滑オイル36が連通路46内の両高圧側横穴50、52及び縦穴48を経て低圧側横穴54から前記圧力小の部分に流れ、潤滑オイル36が循環される。
【0018】
潤滑オイル36が連通路46を循環する際、潤滑オイル36は低圧側横穴54の制御弁58における円柱体62の開口60を通るが、この開口60の開口断面積は連通路46の他の部分の開口面積(通路面積)に比し大幅に小さいため、発生動圧がいたずらに弱められることはなく、回転スリーブ体14に作用するラジアル荷重を十分支持した状態で潤滑オイル36の循環が行われる。
【0019】
潤滑オイル36は、低温時には粘性大、高温時には粘性小となり、何らの対策も施さなければ、動圧軸受部の発生動圧が低温時に高く、高温時に低くなる。上記制御弁58の円柱体62は、軸部材6より熱膨張係数の大なる材質により形成されているので、低温時に図3の実線の状態であった円柱体62が、高温時には同図1点鎖線に示すようにその開口60の両側面が開口内方に寄り、開口断面積が小さくなる。従って、高温時には潤滑オイル36の粘性が小さくなって発生動圧が低くなるが、連通路46の制御弁58における開口60の開口面積が小さくなって潤滑オイル36の循環量が制限されるため、ラジアル動圧軸受手段における発生動圧の圧力抜けを抑制し、結果として低温時の発生動圧とほぼ同じレベルの圧力を保持することが可能となる。
【0020】
このように、温度に応じて制御弁58における開口60の開口面積を変化させることにより、温度に応じて粘性が変化する潤滑オイル36に対し、粘性が小さくなるに従ってその循環量を減少させることができ、ラジアル動圧軸受手段における発生動圧の一定化を図ることができ、使用温度範囲内において軸受剛性をほぼ同レベルに保持することが可能になる。この結果、軸受剛性の温度依存性を減少することができるので、上限温度で必要な軸受剛性を確保した場合でも全使用温度範囲で軸損をほぼ同レベルに保持することができ、従来に比べ低温領域での軸損低減を実現でき、定格電流の低減に寄与することができる。
【0021】
なお、前記図2及び図3における円柱体62の材質(熱膨張係数)や長さ、開口60の開角等は、全使用温度範囲において軸受剛性をほぼ同レベルに保持することができるよう、スピンドルモータにおけるラジアル軸受手段の発生動圧や潤滑オイル36の特性(粘性)等に応じて適宜選定されるものである。
【0022】
次に、本発明の実施の形態の他の例を図4を用いて説明する。図4(a)及び(b)は図1の軸部材6に形成された連通路46における低圧側横穴54の端部近傍を示したものであり、前記と同一符号のものは同一もしくは相当するものを示すものとする。
【0023】
図4に示すものは、圧力大の時に開口面積が大になり圧力小の時に開口面積が小になる開口を有する制御弁64であり、連通路46の低圧側横穴54における円筒状外周面12側の端部にこの横穴54を閉塞するように薄板円板状の弾性部材66が配置され、この弾性部材66の中央に連通路46を低圧側に開口する微小孔68が形成されている。
【0024】
このような構成にあっては、モータの回転時、両ラジアル軸受手段における発生動圧が比較的低い場合、当該軸受手段における圧力と両軸受手段間の圧力との差があまり大きくないため、図4の(a)に示すように、連通路46を通して高圧側と低圧側との圧力を両面に受ける弾性部材66はほとんど変形することはなく、連通路46を通して高圧側から低圧側に循環する潤滑オイル36は微小孔68によって大きく絞られ、結果として高圧側圧力があまり低下することはなく、この圧力で軸受荷重が支持される。
【0025】
一方、両ラジアル軸受手段における発生動圧が大きい場合、当該軸受手段における圧力と両軸受手段間の圧力との差が大きくなるため、図4の(b)に示すように、連通路46を通して高圧側と低圧側との圧力を両面に受ける弾性部材66は低圧側に大きく変形し、これに伴って微小孔68もその開口面積を増大するように広がる。この結果、高圧側の潤滑オイル36は連通路46から弾性部材66の微小孔68を通って低圧側に多く流れ、圧力を逃がし、高圧側の圧力が低減され、両軸受手段が前述した発生動圧の低い場合とほぼ等しい圧力に保持され、軸受荷重を支持することになる。
【0026】
従って、動圧軸受手段における発生圧力に応じて制御弁64における開口68の開口面積を変化させることにより、温度に応じて潤滑オイル36の粘性が変化し発生圧力が変化しても、特に低温時に粘性が大きくなって圧力が過大になった場合に潤滑オイル36の循環量を増大させて圧力を逃がすことができるため、ラジアル動圧軸受手段における発生動圧の一定化を図ることができ、使用温度範囲内において軸受剛性をほぼ同レベルに保持することが可能になる。
【0027】
次に、本発明の実施の形態のさらに他の例を図5を用いて説明する。図5に示すものは、図4の場合と同様、圧力大の時に開口面積が大になり圧力小の時に開口面積が小になる開口を有する制御弁70であり、連通路46の低圧側横穴54における円筒状外周面12側の端部にこの横穴54を閉塞するように薄板円板状の弾性部材72が配置され、この弾性部材72の中央に連通路46を低圧側に開口する微小孔74が形成され、特に、微小孔74の連通路46側に、動圧の高い領域に連通する側の孔径を動圧の低い領域に連通する側より大きくするテーパ面76が形成されている。
【0028】
このような構成にすれば、弾性部材72の微小孔74部分がテーパ面76により高圧側の圧力を受けやすくなり、高圧側の圧力による弾性部材72の変形、微小孔74の開口面積の変化がより精度良く行われ、軸受剛性の温度依存性低減をより促進し、軸受剛性の一定制御が確実となる。
【0029】
なお、図4及び図5における弾性部材66、72の弾性係数や厚み、微小孔68、74の径さらには図5におけるテーパ面76のテーパ角等は、全使用温度範囲において軸受剛性をほぼ同レベルに保持することができるよう、スピンドルモータにおけるラジアル軸受手段の発生動圧や潤滑オイル36の特性(粘性)等に応じて適宜選定されるものである。
【0030】
以上、本発明に従う動圧軸受を使用したモータの実施の形態について詳述したが、本発明はこれら実施例に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更乃至修正が可能である。
【0031】
例えば、上述した実施の形態においては、軸固定型のスピンドルモータに適用した場合について説明したが、軸回転型のモータにおいても本発明を同様に実施することができる。この場合、回転する軸部材が挿入される固定のスリーブ部材に動圧の高い領域と低い領域とを連通する連通路を設け、この連通路に制御弁を配置するようにすればよい。
【0032】
【発明の効果】
本発明は、以上説明したように構成されているので、次に記載する効果を奏する。
請求項1に記載の動圧軸受を使用したモータにあっては、軸部材とスリーブ部材のうち固定側に、動圧の高い領域と低い領域とを連通する連通路を設け、この連通路に、高温時に開口面積が小になり低温時に開口面積が大になる開口を有する制御弁を配置したので、低温時に連通路の開口を大にして粘性大の潤滑流体による高い発生動圧を逃がすと共に、高温時に連通路の開口を小にして粘性小の潤滑流体による低い発生動圧を保持することができる。従って、使用温度範囲内における発生動圧の一定化を図り、軸受剛性をほぼ同レベルに保持でき、軸受剛性の温度依存性を減少することができる。この結果、上限温度で必要な軸受剛性を確保した場合でも全使用温度範囲で軸損をほぼ同レベルに保持することができ、従来に比べ低温領域での軸損低減を実現でき、定格電流の低減に大きく寄与することができる。
【0033】
請求項4に記載の動圧軸受を使用したモータにあっては、軸部材とスリーブ部材のうち固定側に、動圧の高い領域と低い領域とを連通する連通路を設け、この連通路に、圧力大の時に開口面積が大になり圧力小の時に開口面積が小になる開口を有する制御弁を配置したので、動圧大で連通路の開口を大にして高い発生動圧を逃がすと共に、動圧小で連通路の開口を小にして低い発生動圧を保持することができ、発生動圧の一定化を図り、軸受剛性をほぼ同レベルに保持でき、上述の場合と同様の効果を得ることができるものである。
【図面の簡単な説明】
【図1】本発明の動圧軸受を使用したモータをスピンドルモータに適用した場合の実施の形態の一例を示す切断正面図である。
【図2】図1の制御弁の斜視図である。
【図3】図2の制御弁の正面図である。
【図4】本発明の実施の形態の他の例を示す要部の切断正面図であり、(a)は連通路内の圧力小時、(b)は圧力大時である。
【図5】本発明の実施の形態のさらに他の例を示す要部の切断正面図である。
【符号の説明】
6 軸部材
12 円筒状外周面
14 回転スリーブ体
16 スリーブ部
18 円筒状内周面
36 潤滑オイル
42、44 ラジアル動圧発生溝
46 連通路
58、64、70 制御弁
60 開口
62 円柱体
66、72 弾性部材
68、74 微小孔
76 テーパ面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a motor using a hydrodynamic bearing using a lubricating fluid used for rotating a recording disk such as an optical / magnetic disk.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in order to relatively rotatably support a shaft member and a sleeve member, a dynamic pressure bearing utilizing the fluid pressure of a lubricating fluid interposed between the two has been used. In this type of fluid dynamic pressure bearing, a radial dynamic pressure bearing portion for supporting a radial load and a thrust dynamic pressure bearing portion for supporting a thrust load are disposed between a shaft member and a sleeve member. When such a dynamic pressure bearing is used for a motor, one of a shaft member and a sleeve member is fixed. That is, when the shaft member is fixed, the motor becomes a fixed shaft motor, and when the sleeve member is fixed, the motor becomes a shaft rotating motor.
[0003]
[Problems to be solved by the invention]
This type of dynamic bearing has the following problems to be solved. That is, the viscosity of the lubricating fluid, that is, the lubricating oil used in the dynamic pressure bearing usually decreases at a high temperature and increases at a low temperature. Therefore, the dynamic pressure generated by the dynamic pressure bearing is large at a high temperature and small at a low temperature. Therefore, if the bearing specifications are set to ensure the bearing rigidity at the upper limit of the operating temperature range, the bearing rigidity at low temperatures will be excessive, and if the bearing rigidity at room temperature is set appropriately, There is a problem that the rigidity is insufficient near the upper limit of the temperature, and the temperature dependence of the bearing rigidity is very large.
[0004]
The present invention has been made in consideration of such problems of the prior art, and an object of the present invention is to significantly reduce the temperature dependence of the bearing stiffness in a dynamic pressure bearing and to reduce the operating temperature range. It is an object of the present invention to provide a motor using a dynamic pressure bearing capable of stably obtaining appropriate bearing rigidity within the motor.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, in a motor using the dynamic pressure bearing of the present invention, a shaft member having a cylindrical outer peripheral surface and a shaft member having a cylindrical inner peripheral surface opposed to the cylindrical outer peripheral surface are provided. A sleeve member that is relatively rotatable, and a pair of radial dynamic pressure generating grooves formed on one or both of the cylindrical outer peripheral surface and the cylindrical inner peripheral surface and arranged at intervals in the axial direction; And a lubricating fluid interposed between the cylindrical outer peripheral surface and the cylindrical inner peripheral surface, and the shaft member and the sleeve member are connected to a fixed side of the shaft member and the sleeve member so as to communicate a high dynamic pressure region and a low dynamic pressure region. A passage is provided, and a control valve having an opening having a smaller opening area at a high temperature and a larger opening area at a low temperature is arranged in the communication path.
[0006]
In this case, the communication passage is provided between the cylindrical outer peripheral surface and the cylindrical inner peripheral surface, between the pair of radial dynamic pressure generating grooves formed by the pair of radial dynamic pressure generating grooves and the pair of radial dynamic pressure generating grooves. The control valve is preferably provided so as to communicate with each other, and the control valve is preferably formed of a cylindrical body having an opening having a fan-shaped cross section and having a larger thermal expansion coefficient than the material on the fixed side.
[0007]
In order to achieve the above object, in a motor using the dynamic pressure bearing of the present invention, a shaft member having a cylindrical outer peripheral surface and a shaft having a cylindrical inner peripheral surface facing the cylindrical outer peripheral surface are provided. A sleeve member rotatable relative to the member, and a pair of radial dynamic pressure generation members formed on one or both of the cylindrical outer peripheral surface and the cylindrical inner peripheral surface and arranged at intervals in the axial direction. The groove, comprising a lubricating fluid interposed between the cylindrical outer peripheral surface and the cylindrical inner peripheral surface, a high dynamic pressure region and a low dynamic pressure region on the fixed side of the shaft member and the sleeve member. And a control valve having an opening in which the opening area becomes large when the pressure is high and the opening area becomes small when the pressure is low is provided in the communication path.
[0008]
In this case, the communication passage is provided between the cylindrical outer peripheral surface and the cylindrical inner peripheral surface, between the pair of radial dynamic pressure generating grooves formed by the pair of radial dynamic pressure generating grooves and the pair of radial dynamic pressure generating grooves. Desirably, they are provided so as to communicate with each other. Further, it is preferable that the control valve is formed of an elastic member having micro holes. In particular, the micro holes are formed such that the diameter of the side communicating with the high dynamic pressure region is larger than the side communicating with the low dynamic pressure region. May be.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings.
First, an example of an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view showing a fixed shaft type spindle motor for rotating a magnetic disk, for example. In this example, the lower end of a fixed shaft member 6 having a vertical axis is fitted and fixed to the base of the recording medium driving device or the circular fitting hole 4 of the motor bracket 2 fixed thereto. . The shaft member 6 has a thrust plate 8 fixed at the upper portion and a cover plate 10 fixed at the upper end thereof, and a cylindrical outer peripheral surface 12 is formed on the outer peripheral surface below the thrust plate 8.
[0010]
A rotating sleeve body 14 is rotatably fitted to the shaft member 6. The small-diameter sleeve portion 16 at the lower portion of the rotary sleeve body 14 has a cylindrical inner peripheral surface 18 on the inner peripheral surface, and is externally fitted to a portion of the shaft member 6 below the thrust plate 8. Reference numeral 18 faces the cylindrical outer peripheral surface 12 of the shaft member 6. The enlarged diameter portion 20 at the upper part of the rotary sleeve body 14 surrounds the upper and lower portions and the outer peripheral portion of the thrust plate 8 together with the thrust cover 22 fixedly fitted at the upper end portion.
[0011]
A substantially cylindrical hub 24 is externally fitted and fixed to an outer peripheral portion of the rotating sleeve body 14, and a rotor magnet 26 is internally fixed to a lower inner peripheral side of the hub 24. A stator 28 having a stator coil wound around a stator core is externally fitted and fixed to a support cylinder 30 protruding from the bracket 2 coaxially with the circular fitting hole 4, and is rotationally driven relative to the rotor magnet 26 in the radial direction. Unit.
[0012]
An inner lower portion of the thrust cover 22 is formed in a tapered portion 32 inclined inward and upward, and a portion of the outer peripheral portion of the shaft member 6 facing the lower end of the sleeve portion 16 is formed in a tapered portion 34 inclined inward and downward. Is formed. A gap between the shaft member 6 and the rotary sleeve body 14 is filled with a lubricating oil 36 as an example of a lubricating fluid (liquid). One end, that is, the inner peripheral end of the lubricating oil 36 in the gap above the thrust plate 8 faces between the base of the tapered portion 32 of the thrust cover 22 and the upper surface of the thrust plate 8, and communicates with the outside air. The lubricating oil 36 is held between the base of the tapered portion 34 and the inner peripheral surface of the sleeve portion 16 and exposed to the outside air by capillary action.
[0013]
On the upper and lower surfaces of the thrust plate 8 and on the inner peripheral surface (cylindrical inner peripheral surface 18) of the sleeve portion 16, respectively, thrust dynamic pressure generating grooves 38 and 40 such as herringbone grooves and radial dynamic pressure generating grooves 42 and 44 ( (Shown by broken lines) are provided, and a forward rotation of the rotary sleeve body 14 and the thrust cover 22 generates a thrust load supporting pressure and a radial load supporting pressure respectively in the lubricating oil 36 at each position. As a result, thrust dynamic pressure bearing means are formed above and below the thrust plate 8, and radial dynamic pressure bearing means are formed on the outer peripheral portion of the sleeve portion 16. Note that these grooves may be provided on the sides of the members facing each other.
[0014]
The shaft member 6 is provided with a communication passage 46 for communicating a high pressure area and a low pressure area in the radial dynamic pressure bearing means. That is, an axial vertical hole 48 is formed at the axial center position of the shaft member 6 from the lower end surface to a position slightly below the thrust plate 8, and the cylindrical outer peripheral surface 12 corresponding to the radial dynamic pressure generating grooves 42, 44 is formed. From the cylindrical outer peripheral surface 12 corresponding to the middle between the radial dynamic pressure generating grooves 42 and 44, and extending from the cylindrical outer peripheral surface 12 to the vertical hole 48. A low-pressure side hole 54 that is orthogonal to the vertical hole 48 in the axial direction is formed, and the vertical hole 48 below the lowermost horizontal hole 52 is closed by a sealing member 56 so that the cylindrical outer peripheral surface 12 and the cylindrical inner peripheral surface are formed. A communication passage 46 is formed in the gap between the shaft member 6 and the gap between the radial dynamic pressure generating grooves 42 and 44 and the portion between the radial dynamic pressure generating grooves 42 and 44 in the shaft member 6. .
[0015]
A control valve 58 having an opening having a small opening area at a high temperature and having a large opening area at a low temperature is disposed in the low-pressure side hole 54 of the communication passage 46. Specifically, as shown in FIG. 2, the control valve 58 has a columnar body 62 having a fan-shaped opening 60 and formed of a material having a larger thermal expansion coefficient than the shaft member 6. The control valve 58 is attached to the low-pressure side hole 54 by shrinking the cylindrical body 62 so that both side surfaces of the opening 60 are shifted inward and inserting the same into the low-pressure side hole 54.
[0016]
In such a configuration, when the spindle motor rotates, the pressure of the lubricating oil 36 existing in each of the radial dynamic pressure bearing means having the two radial dynamic pressure generating grooves 42, 44 is increased, and the pressure is increased through the oil layer. To support the radial load acting on the rotating sleeve body 14. Further, in each thrust dynamic pressure bearing means having both thrust dynamic pressure generating grooves 38, 40, the pressure of the lubricating oil 36 existing in them is increased, and the thrust load acting on the rotary sleeve body 14 via this oil layer. Support.
[0017]
During this operation, the lubricating oil 36 filled between the cylindrical outer peripheral surface 12 of the shaft member 6 and the cylindrical inner peripheral surface 18 of the sleeve portion 16 partially circulates, bypassing the communication passage 46. . That is, in the two radial bearing means, the central portion of each of the dynamic pressure generating grooves 42 and 44, which is a herringbone groove, has the highest pressure. On the other hand, between the two radial bearing means, the lubricating oil 36 in this portion is supplied by the two radial bearing means. The pressure is low because it is sucked into the side. The high-pressure side holes 50 and 52 of the communication passage 46 are respectively opened at the high pressure portions of both radial bearing means, and the low-pressure side hole 54 is opened at the low pressure portion between the two radial bearing means. Therefore, due to the above-mentioned pressure difference, the lubricating oil 36 of the respective high pressure portions flows from the low pressure side horizontal holes 54 to the low pressure portions via the high pressure side holes 50 and 52 and the vertical hole 48 in the communication passage 46, The lubricating oil 36 is circulated.
[0018]
When the lubricating oil 36 circulates through the communication passage 46, the lubricating oil 36 passes through the opening 60 of the cylindrical body 62 in the control valve 58 of the low-pressure side hole 54. Is significantly smaller than the opening area (passage area), the generated dynamic pressure is not unnecessarily reduced, and the lubricating oil 36 is circulated in a state in which the radial load acting on the rotating sleeve body 14 is sufficiently supported. .
[0019]
The lubricating oil 36 has a high viscosity at a low temperature and a low viscosity at a high temperature, and if no measures are taken, the dynamic pressure generated by the dynamic pressure bearing portion is high at a low temperature and low at a high temperature. Since the cylindrical body 62 of the control valve 58 is formed of a material having a larger thermal expansion coefficient than the shaft member 6, the cylindrical body 62 which was in the state of the solid line in FIG. As shown by the dashed line, both side surfaces of the opening 60 are shifted toward the inside of the opening, and the opening cross-sectional area is reduced. Therefore, at high temperatures, the viscosity of the lubricating oil 36 decreases and the generated dynamic pressure decreases. However, since the opening area of the opening 60 in the control valve 58 of the communication passage 46 decreases, the circulation amount of the lubricating oil 36 is limited. The pressure drop of the generated dynamic pressure in the radial dynamic pressure bearing means is suppressed, and as a result, it is possible to maintain a pressure at substantially the same level as the generated dynamic pressure at low temperatures.
[0020]
As described above, by changing the opening area of the opening 60 in the control valve 58 according to the temperature, it is possible to reduce the circulation amount of the lubricating oil 36 whose viscosity changes according to the temperature as the viscosity decreases. As a result, the dynamic pressure generated in the radial dynamic pressure bearing means can be made constant, and the bearing rigidity can be maintained at substantially the same level within the operating temperature range. As a result, the temperature dependence of the bearing stiffness can be reduced, so even if the required bearing stiffness is secured at the upper limit temperature, the shaft loss can be maintained at substantially the same level over the entire operating temperature range. Reduction of shaft loss in a low temperature region can be realized, which can contribute to reduction of rated current.
[0021]
The material (thermal expansion coefficient) and length of the cylindrical body 62 and the opening angle of the opening 60 in FIGS. 2 and 3 are set so that the bearing rigidity can be maintained at substantially the same level over the entire operating temperature range. It is appropriately selected according to the dynamic pressure generated by the radial bearing means in the spindle motor, the characteristics (viscosity) of the lubricating oil 36, and the like.
[0022]
Next, another example of the embodiment of the present invention will be described with reference to FIG. FIGS. 4A and 4B show the vicinity of the end of the low-pressure side hole 54 in the communication passage 46 formed in the shaft member 6 of FIG. 1, and those having the same reference numerals as those described above are the same or equivalent. Shall be shown.
[0023]
FIG. 4 shows a control valve 64 having an opening having a large opening area when the pressure is large and a small opening area when the pressure is small. The control valve 64 has a cylindrical outer peripheral surface 12 in the low pressure side hole 54 of the communication passage 46. A thin disk-shaped elastic member 66 is arranged at the end on the side to close the lateral hole 54, and a minute hole 68 that opens the communication passage 46 on the low pressure side is formed in the center of the elastic member 66.
[0024]
In such a configuration, during the rotation of the motor, if the dynamic pressure generated in the two radial bearing means is relatively low, the difference between the pressure in the bearing means and the pressure between the two bearing means is not so large. As shown in FIG. 4A, the elastic member 66 that receives the pressures of the high pressure side and the low pressure side on both surfaces through the communication passage 46 hardly deforms, and the lubrication circulates from the high pressure side to the low pressure side through the communication passage 46. The oil 36 is greatly constricted by the minute holes 68. As a result, the high-pressure side pressure does not decrease so much, and the bearing load is supported by this pressure.
[0025]
On the other hand, when the dynamic pressure generated in the two radial bearing means is large, the difference between the pressure in the bearing means and the pressure between the two bearing means becomes large, and as shown in FIG. The elastic member 66 which receives the pressures of the pressure side and the low pressure side on both sides is greatly deformed to the low pressure side, and accordingly, the minute holes 68 also expand so as to increase the opening area. As a result, a large amount of the high-pressure side lubricating oil 36 flows from the communication passage 46 to the low-pressure side through the minute holes 68 of the elastic member 66, relieves the pressure, reduces the pressure on the high-pressure side, and causes the two bearing means to generate the above-described dynamic power The pressure is maintained substantially equal to the case where the pressure is low, and the bearing load is supported.
[0026]
Therefore, by changing the opening area of the opening 68 in the control valve 64 in accordance with the pressure generated in the dynamic pressure bearing means, even if the viscosity of the lubricating oil 36 changes in accordance with the temperature and the generated pressure changes, especially when the temperature is low, When the viscosity increases and the pressure becomes excessive, the amount of circulation of the lubricating oil 36 can be increased and the pressure can be released, so that the dynamic pressure generated in the radial dynamic pressure bearing means can be made constant and used. Within the temperature range, the bearing stiffness can be maintained at substantially the same level.
[0027]
Next, still another example of the embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a control valve 70 having an opening having a large opening area when the pressure is high and a small opening area when the pressure is low as in the case of FIG. An elastic member 72 in the form of a thin disk is disposed at the end of the cylindrical outer surface 12 on the side of the cylindrical outer peripheral surface 12 so as to close the lateral hole 54, and a minute hole that opens the communication passage 46 at the center of the elastic member 72 on the low pressure side. In particular, a tapered surface 76 is formed on the communication passage 46 side of the minute hole 74 so that the diameter of the hole communicating with the region of high dynamic pressure is larger than the diameter of the hole communicating with the region of low dynamic pressure.
[0028]
With such a configuration, the small holes 74 of the elastic member 72 are easily subjected to the high-pressure side pressure by the tapered surface 76, and the deformation of the elastic member 72 and the change in the opening area of the small holes 74 due to the high-pressure side pressure are reduced. It is performed more accurately, the temperature dependence of the bearing stiffness is further reduced, and constant control of the bearing stiffness is ensured.
[0029]
The elastic coefficients and thicknesses of the elastic members 66 and 72 in FIGS. 4 and 5, the diameters of the minute holes 68 and 74, and the taper angle of the tapered surface 76 in FIG. It is appropriately selected according to the dynamic pressure generated by the radial bearing means in the spindle motor, the characteristics (viscosity) of the lubricating oil 36, and the like so as to maintain the level.
[0030]
Although the embodiments of the motor using the dynamic pressure bearing according to the present invention have been described in detail above, the present invention is not limited to these examples, and various changes and modifications can be made without departing from the gist of the present invention. It is possible.
[0031]
For example, in the above-described embodiment, a case where the present invention is applied to a fixed shaft type spindle motor has been described. However, the present invention can be similarly applied to a shaft rotating type motor. In this case, the fixed sleeve member into which the rotating shaft member is inserted may be provided with a communication path for communicating the high and low dynamic pressure areas, and the control valve may be disposed in this communication path.
[0032]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
In the motor using the dynamic pressure bearing according to claim 1, a communication path that connects a high dynamic pressure area and a low dynamic pressure area is provided on a fixed side of the shaft member and the sleeve member, and the communication path is provided in the communication path. Since a control valve having an opening with a small opening area at high temperature and a large opening area at low temperature is arranged, the opening of the communication passage is enlarged at low temperature to release high dynamic pressure generated by a viscous large lubricating fluid. At the time of high temperature, the opening of the communication passage can be made small to maintain a low dynamic pressure generated by the low-viscosity lubricating fluid. Therefore, the generated dynamic pressure can be made constant within the operating temperature range, the bearing stiffness can be maintained at substantially the same level, and the temperature dependency of the bearing stiffness can be reduced. As a result, even if the required bearing stiffness is secured at the upper limit temperature, the shaft loss can be maintained at substantially the same level over the entire operating temperature range. This can greatly contribute to reduction.
[0033]
In the motor using the dynamic pressure bearing according to claim 4, a communication path that connects a high dynamic pressure area and a low dynamic pressure area is provided on the fixed side of the shaft member and the sleeve member, and the communication path is provided in the communication path. Since a control valve having an opening having a large opening area when the pressure is large and having a small opening area when the pressure is small is arranged, a large dynamic pressure and a large opening of the communication passage are released to release a high generated dynamic pressure. With a small dynamic pressure, the opening of the communication passage can be made small and a low generated dynamic pressure can be maintained, the generated dynamic pressure can be kept constant, and the bearing rigidity can be maintained at almost the same level. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a cutaway front view showing an example of an embodiment in which a motor using a dynamic pressure bearing of the present invention is applied to a spindle motor.
FIG. 2 is a perspective view of the control valve of FIG. 1;
FIG. 3 is a front view of the control valve of FIG. 2;
FIG. 4 is a cutaway front view of a main part showing another example of the embodiment of the present invention, in which (a) shows a low pressure in the communication passage and (b) shows a high pressure.
FIG. 5 is a cutaway front view of a main part showing still another example of the embodiment of the present invention.
[Explanation of symbols]
6 Shaft member 12 Cylindrical outer peripheral surface 14 Rotating sleeve body 16 Sleeve portion 18 Cylindrical inner peripheral surface 36 Lubricating oil 42, 44 Radial dynamic pressure generating groove 46 Communication passage 58, 64, 70 Control valve 60 Opening 62 Cylindrical body 66, 72 Elastic members 68, 74 Micro holes 76 Tapered surface

Claims (7)

円筒状外周面を有する軸部材と、該円筒状外周面に対向する円筒状内周面を有し前記軸部材に対し相対的に回転自在であるスリーブ部材と、前記円筒状外周面と前記円筒状内周面との一方もしくは両方に形成され軸方向に間隔を介して配置された一対のラジアル動圧発生溝と、前記円筒状外周面と前記円筒状内周面との間に介在された潤滑流体とを備えたモータであって、
前記軸部材と前記スリーブ部材のうち固定側には、動圧の高い領域と低い領域とを連通する連通路が設けられており、該連通路に、高温時には開口面積が小になり低温時には開口面積が大になる開口を有する制御弁を配置した、ことを特徴とする動圧軸受を使用したモータ。
A shaft member having a cylindrical outer peripheral surface; a sleeve member having a cylindrical inner peripheral surface facing the cylindrical outer peripheral surface and rotatable relative to the shaft member; the cylindrical outer peripheral surface and the cylinder And a pair of radial dynamic pressure generating grooves formed on one or both of the inner peripheral surface and arranged at intervals in the axial direction, and were interposed between the cylindrical outer peripheral surface and the cylindrical inner peripheral surface. A motor provided with a lubricating fluid,
On the fixed side of the shaft member and the sleeve member, there is provided a communication passage communicating between a high dynamic pressure region and a low dynamic pressure region, and the communication passage has a small opening area at high temperature and an opening at low temperature. A motor using a dynamic pressure bearing, wherein a control valve having an opening having a large area is arranged.
前記連通路は、前記円筒状外周面と前記円筒状内周面との間における、前記一対のラジアル動圧発生溝による動圧発生部分と前記一対のラジアル動圧発生溝間とを連通するように設けられている、請求項1記載の動圧軸受を使用したモータ。The communication passage may communicate between a dynamic pressure generating portion formed by the pair of radial dynamic pressure generating grooves and the pair of radial dynamic pressure generating grooves between the cylindrical outer peripheral surface and the cylindrical inner peripheral surface. A motor using the dynamic pressure bearing according to claim 1 provided in the motor. 前記制御弁は、断面扇状の開口を有し前記固定側の材質より熱膨張係数の大なる材質により形成された円柱体よりなる、請求項1または2記載の動圧軸受を使用したモータ。The motor using the dynamic pressure bearing according to claim 1 or 2, wherein the control valve is a cylindrical body having an opening having a fan-shaped cross section and having a larger thermal expansion coefficient than the material on the fixed side. 円筒状外周面を有する軸部材と、該円筒状外周面に対向する円筒状内周面を有し前記軸部材に対し相対的に回転自在であるスリーブ部材と、前記円筒状外周面と前記円筒状内周面との一方もしくは両方に形成され軸方向に間隔を介して配置された一対のラジアル動圧発生溝と、前記円筒状外周面と前記円筒状内周面との間に介在された潤滑流体とを備えたモータであって、
前記軸部材と前記スリーブ部材のうち固定側には、動圧の高い領域と低い領域とを連通する連通路が設けられており、該連通路に、圧力大の時には開口面積が大になり圧力小の時には開口面積が小になる開口を有する制御弁を配置した、ことを特徴とする動圧軸受を使用したモータ。
A shaft member having a cylindrical outer peripheral surface; a sleeve member having a cylindrical inner peripheral surface facing the cylindrical outer peripheral surface and rotatable relative to the shaft member; the cylindrical outer peripheral surface and the cylinder And a pair of radial dynamic pressure generating grooves formed on one or both of the inner peripheral surface and arranged at intervals in the axial direction, and were interposed between the cylindrical outer peripheral surface and the cylindrical inner peripheral surface. A motor provided with a lubricating fluid,
On the fixed side of the shaft member and the sleeve member, there is provided a communication passage that communicates between a high dynamic pressure region and a low dynamic pressure region. A motor using a dynamic pressure bearing, wherein a control valve having an opening whose opening area becomes small when the motor is small is arranged.
前記連通路は、前記円筒状外周面と前記円筒状内周面との間における、前記一対のラジアル動圧発生溝による動圧発生部分と前記一対のラジアル動圧発生溝間とを連通するように設けられている、請求項4記載の動圧軸受を使用したモータ。The communication passage may communicate between a dynamic pressure generating portion formed by the pair of radial dynamic pressure generating grooves and the pair of radial dynamic pressure generating grooves between the cylindrical outer peripheral surface and the cylindrical inner peripheral surface. A motor using the dynamic pressure bearing according to claim 4, wherein the motor is provided in the motor. 前記制御弁は、微小孔を有する弾性部材により構成されている、請求項4または5記載の動圧軸受を使用したモータ。The motor using the dynamic pressure bearing according to claim 4 or 5, wherein the control valve is configured by an elastic member having a minute hole. 前記弾性部材の微小孔は、動圧の高い領域に連通する側の孔径が動圧の低い領域に連通する側より大きく形成されている、請求項6記載の動圧軸受を使用したモータ。7. The motor using the dynamic pressure bearing according to claim 6, wherein the minute hole of the elastic member has a larger diameter on a side communicating with a region having a high dynamic pressure than on a side communicating with a region having a low dynamic pressure.
JP13078696A 1996-04-26 1996-04-26 Motor using dynamic pressure bearing Expired - Fee Related JP3597944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13078696A JP3597944B2 (en) 1996-04-26 1996-04-26 Motor using dynamic pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13078696A JP3597944B2 (en) 1996-04-26 1996-04-26 Motor using dynamic pressure bearing

Publications (2)

Publication Number Publication Date
JPH09298860A JPH09298860A (en) 1997-11-18
JP3597944B2 true JP3597944B2 (en) 2004-12-08

Family

ID=15042655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13078696A Expired - Fee Related JP3597944B2 (en) 1996-04-26 1996-04-26 Motor using dynamic pressure bearing

Country Status (1)

Country Link
JP (1) JP3597944B2 (en)

Also Published As

Publication number Publication date
JPH09298860A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
JP3558768B2 (en) Motor with hydrodynamic bearing
JP3184794B2 (en) Spindle motor and rotating device using the spindle motor as a driving source of the rotating body
JP3462982B2 (en) Hydrodynamic bearing device and electric motor
JP3652875B2 (en) motor
JP3665549B2 (en) Thrust dynamic pressure bearing and spindle motor provided with the same
JPH06269142A (en) Spindle motor and its assembly method
US6250808B1 (en) Motor having a plurality of dynamic pressure bearings
JP2004011897A (en) Dynamic-pressure bearing device
JP2000186717A (en) Fluid dynamic pressure bearing, spindle motor, and rotor device
US7059773B2 (en) Hydrodynamic bearing, spindle motor and hard disk drive
JP4360482B2 (en) Hydrodynamic bearing device
US7144161B2 (en) Hydrodynamic bearing system for a rotary bearing of spindle motors
JP3685426B2 (en) Hydrodynamic bearing device
JP3597944B2 (en) Motor using dynamic pressure bearing
JP3597947B2 (en) Motor using dynamic pressure bearing
JP3549367B2 (en) Hydrodynamic bearing device and electric motor
JP3184795B2 (en) Spindle motor and rotating device using the spindle motor as a driving source of the rotating body
JP2004084897A (en) Dynamic pressure bearing, rotary body device and motor
JP2007024267A (en) Fluid bearing device and motor equipped with the same
JP4121144B2 (en) Spindle motor and disk drive device using this spindle motor
JP4202080B2 (en) Hydrodynamic bearing device and spindle motor using the same
JP4392112B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND SPINDLE MOTOR HAVING THE SAME
JP2003065324A (en) Hydrodyanamic type bearing apparatus
JP2004052987A (en) Dynamic pressure bearing, spindle motor, and recording disk driving device
JP2001124059A (en) Dynamic pressure bearing unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees