[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3597947B2 - Motor using dynamic pressure bearing - Google Patents

Motor using dynamic pressure bearing Download PDF

Info

Publication number
JP3597947B2
JP3597947B2 JP14820796A JP14820796A JP3597947B2 JP 3597947 B2 JP3597947 B2 JP 3597947B2 JP 14820796 A JP14820796 A JP 14820796A JP 14820796 A JP14820796 A JP 14820796A JP 3597947 B2 JP3597947 B2 JP 3597947B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
peripheral surface
outer peripheral
motor
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14820796A
Other languages
Japanese (ja)
Other versions
JPH09308186A (en
Inventor
義和 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec America Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP14820796A priority Critical patent/JP3597947B2/en
Publication of JPH09308186A publication Critical patent/JPH09308186A/en
Application granted granted Critical
Publication of JP3597947B2 publication Critical patent/JP3597947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば光・磁気ディスク等の記録ディスクを回転駆動するために用いられる潤滑流体による動圧軸受を使用したモータに関する。
【0002】
【従来の技術】
従来から、軸部材とスリーブ部材とを相対的に回転自在に支持するために、両者間に介在させた潤滑流体の流体圧力を利用した動圧軸受が用いられている。この種の流体動圧軸受は、軸部材とスリーブ部材との間に、ラジアル荷重を支持するためのラジアル動圧軸受部及びスラスト荷重を支持するスラスト動圧軸受部が配設されている。そして、このような動圧軸受をモータに用いる場合には、軸部材又はスリーブ部材の一方が固定される。即ち、軸部材を固定したときには、軸固定型のモータとなり、スリーブ部材を固定したときには、軸回転型のモータとなる。
【0003】
【発明が解決しようとする課題】
この種の動圧軸受では、次の通りの解決すべき問題が存在する。即ち、動圧軸受で使用する潤滑流体つまり潤滑オイルは、通常、その粘度が高温時に低下し、低温時に上昇し、従って、動圧軸受の発生動圧は高温時には大きく、低温時には小さくなる。このため、使用温度範囲の上限での軸受剛性を確保すべく軸受仕様を設定すれば、低温での軸受剛性が過大になり、また、常温での軸受剛性を適正にすべく設定すれば、使用温度上限近くでは剛性不足となり、軸受剛性の温度依存性が非常に大きいと言った問題がある。
【0004】
ここで、軸部材の熱膨張係数をスリーブ部材のそれより大きくして、軸部材とスリーブ部材との間のクリアランスを温度に応じて制御し、軸受剛性の温度依存性を補償することも考えられるが、この場合、軸部材の円筒状外周面及びスリーブ部材の円筒状内周面に高い加工精度が要求され、製造が困難になる問題を有している。しかも、高温時には、クリアランスが極端に小さくなり、軸部材に対してスリーブ部材がロックされる危険性がある。
【0005】
本発明は、従来の技術の有するこのような問題点に留意してなされたものであり、その目的とするところは、比較的簡単な構成で動圧軸受における軸受剛性の温度依存性を大幅に低減し、使用温度範囲内において適正な軸受剛性を安定して得ることができる動圧軸受を使用したモータを提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の動圧軸受を使用したモータにおいては、円筒状外周面を有する軸部材と、この円筒状外周面に対向する円筒状内周面を有し軸部材に対し相対的に回転自在であるスリーブ部材と、前記円筒状外周面と前記円筒状内周面との一方もしくは両方に形成され軸方向に間隔を介して配置されたヘリングボーン状溝からなる一対のラジアル動圧発生溝と、前記円筒状外周面と前記円筒状内周面との間に介在された潤滑流体とを備え、軸部材とスリーブ部材のうち固定側に、前記動圧発生溝の中央部と両端部とのそれぞれの中間部を動圧の低い領域に連通する連通路を設け、この連通路に、高温時に開口面積が小になり低温時に開口面積が大になる開口を有する制御弁を配置したことを特徴とするものである。
【0007】
この場合、前記動圧の低い領域を、前記円筒状外周面と前記円筒状内周面との間における、前記一対の動圧発生溝間とするのが望ましく、また、前記制御弁を、断面扇状の開口を有し前記固定側の材質より熱膨張係数の大なる材質により形成された円柱体より構成するのが好ましい。
【0008】
【発明の実施の形態】
本発明の実施の形態について、図面を参照しつつ詳述する。
図1は、例えば磁気ディスクを回転駆動する軸固定型のスピンドルモータを示す断面図である。この例では、記録媒体駆動装置の基盤もしくはこれに固定されるモータブラケット2の円形嵌合孔4に、上下方向の軸心線を有する固定の軸部材6の下端部が嵌合固定されている。軸部材6は、上部にスラスト板8が、上端にカバープレート10がそれぞれ外嵌固定され、スラスト板8より下側の外周面に円筒状外周面12が形成されている。
【0009】
軸部材6には、回転スリーブ体14が回転自在に外嵌されている。回転スリーブ体14の下部の小径のスリーブ部16は内周面に円筒状内周面18を有し、軸部材6におけるスラスト板8の下側の部分に外嵌され、その円筒状内周面18が軸部材6の円筒状外周面12に対向している。回転スリーブ体14の上部の拡径部20は、上端部に内嵌固定されたスラストカバー22と共にスラスト板8の上下及び外周部を囲んでいる。
【0010】
回転スリーブ体14の外周部には略円筒状のハブ24が外嵌固定され、ハブ24の下部内周側にロータマグネット26が内嵌固定されている。ステータコアにステータコイルが巻回されてなるステータ28が、ブラケット2に円形嵌合孔4と同軸に突設された支持筒30に外嵌固定され、ロータマグネット26と径方向に相対して回転駆動部を構成している。
【0011】
スラストカバー22の内周下部には、内上方に傾斜するテーパ部32が形成され、軸部材6の外周部のうちスリーブ部16の下端部に相対する部分には、内下方に傾斜するテーパ部34が形成されている。軸部材6と回転スリーブ体14との間隙に、潤滑流体(液体)の一例としての潤滑オイル36が充填されている。その一端すなわちスラスト板8の上側の間隙における潤滑オイル36の内周端部は、スラストカバー22のテーパ部32の基部とスラスト板8の上面の間に臨んで外気に通じ、他端は軸部材6のテーパ部34の基部とスリーブ部16の内周面の間に臨んで外気に通じた状態で毛細管現象によってその潤滑オイル36が保持されている。
【0012】
スラスト板8の上下面、並びにスリーブ部16の内周面(円筒状内周面18)には、それぞれヘリングボーン状溝からなるスラスト動圧発生溝38、40並びにラジアル動圧発生溝42、44(破線で示す)が設けられ、回転スリーブ体14及びスラストカバー22の順方向回転により、それぞれの位置の潤滑オイル36に、スラスト荷重支持圧並びにラジアル荷重支持圧が発生する。これにより、スラスト板8の上下にスラスト動圧軸受手段が構成され、スリーブ部16の外周部にラジアル動圧軸受手段が構成される。なお、これらの溝は、それぞれ相対する部材の側に設けることもできる。
【0013】
軸部材6には、ラジアル動圧軸受手段における両動圧発生溝42、44のそれぞれの対応位置を動圧の低い領域つまり一対の動圧発生溝42、44間に連通する連通路46が設けられている。
すなわち、図2に示すように、まず、軸部材6の軸心位置に、その下端面からスラスト板8よりやや下側の位置にかけて軸方向の縦穴48が形成され、次に、上側のラジアル動圧発生溝42に対応する円筒状外周面12において、動圧発生溝42の中央部(山部)と両端部とのそれぞれの間における中途から前記縦穴48にかけてそれぞれ縦穴48に対し軸方向に直交する高圧側横穴50、51が形成されると共に、下側のラジアル動圧発生溝44に対応する円筒状外周面12において、動圧発生溝44の中央部と両端部とのそれぞれの間における中途から前記縦穴48にかけてそれぞれ縦穴48に対し軸方向に直交する高圧側横穴52、53が形成される。
【0014】
さらに、両ラジアル動圧発生溝42、44間の中間に対応する円筒状外周面12から縦穴48にかけて縦穴48に対し軸方向に直交する低圧側横穴54が形成され、最下段の横穴53より下側の縦穴48を封止部材56により閉塞することにより、円筒状外周面12と円筒状内周面18との間の間隙における、両ラジアル動圧発生溝42、44による動圧発生部分と両ラジアル動圧発生溝42、44間とを軸部材6内部でバイパスする連通路46が形成される。なお、図2では、軸部材6の各横穴50〜54の位置関係の理解のために便宜上スリーブ部16の動圧発生溝42、44が示されている。
【0015】
連通路46の低圧側横穴54には、高温時に開口面積が小になり低温時に開口面積が大になる開口を有する制御弁58が配置されている。具体的には、制御弁58は、図3に示すように、断面扇状の開口60を有し、軸部材6より熱膨張係数の大なる材質により形成された円柱体62よりなっている。この制御弁58を低圧側横穴54に取り付けるには、円柱体62をその開口60の両側面が内方に寄るように縮ませて低圧側横穴54に挿入することにより行われる。
【0016】
このような構成において、スピンドルモータが回転すると、両ラジアル動圧発生溝42、44を有するそれぞれのラジアル動圧軸受手段では、それらに存在する潤滑オイル36の圧力が高められ、かかるオイル層を介して回転スリーブ体14に作用するラジアル荷重を支持する。また、両スラスト動圧発生溝38、40を有するそれぞれのスラスト動圧軸受手段では、それらに存在する潤滑オイル36の圧力が高められ、このオイル層を介して回転スリーブ体14に作用するスラスト荷重を支持する。
【0017】
この動作時、軸部材6の円筒状外周面12とスリーブ部16の円筒状内周面18との間に充填された潤滑オイル36は、その一部が連通路46をバイパスし、循環される。すなわち、両ラジアル軸受手段では、ヘリングボーン溝である動圧発生溝42、44でのそれぞれの中央部が最も圧力大となり溝の両端部に向かうに従って圧力が徐々に小さくなる圧力勾配を呈するが、動圧発生溝42、44の溝領域全体が圧力発生部であり、この部分は高圧域である。他方、両ラジアル軸受手段間では、この部分の潤滑オイル36が両ラジアル軸受手段側に吸引されるため圧力小になり、低圧域となる。連通路46の高圧側横穴50、51、52、53はそれぞれ両ラジアル軸受手段の圧力発生部分に開口され、低圧側横穴54は両ラジアル軸受手段間の低圧域に開口されているため、上記した圧力差により前記圧力発生域それぞれの潤滑オイル36が連通路46内の各高圧側横穴50、51、52、53及び縦穴48を経て低圧側横穴54から前記低圧域に流れ、潤滑オイル36が循環される。
【0018】
潤滑オイル36は、低温時には粘性大、高温時には粘性小となり、何らの対策も施さなければ、動圧軸受部の発生動圧が低温時に高く、高温時に低くなる。上記制御弁58の円柱体62は、軸部材6より熱膨張係数の大なる材質により形成されているので、低温時に図4の実線の状態であった円柱体62が、高温時には同図1点鎖線に示すようにその開口60の両側面が開口内方に寄り、開口断面積が小さくなる。
【0019】
従って、高温時には潤滑オイル36の粘性が小さくなって発生動圧が低くなるが、連通路46の制御弁58における開口60の開口面積が小さくなって潤滑オイル36の循環量が大幅に制限されるため、ラジアル動圧軸受手段における発生動圧の圧力抜けを抑制し、動圧発生溝42、44全域で動圧を発生してラジアル荷重を支持する。
【0020】
他方、低温時には、制御弁58における開口60の開口面積が図2の実線のように大きくなり、潤滑オイル36の前記した循環により、動圧発生溝42、44の両端部から溝中途近くまでの部分で加圧された潤滑オイル36が連通路46を通して低圧側に逃げる。従って、ラジアル荷重を支持する動圧発生部は、動圧発生溝42、44のそれぞれの中央部分つまり動圧発生溝42においては高圧側横穴50、51間、動圧発生溝44においては高圧側横穴52、53間となり、ラジアル荷重を支持する動圧溝幅が小さくなる。この結果、低温時には潤滑オイル36の粘性が大きくなって発生動圧が高くなるが、動圧溝幅が小さくなることにより高温時とほぼ等しいラジアル荷重支持圧が得られることになる。
【0021】
このように、温度に応じて制御弁58における開口60の開口面積を変化させて動圧溝幅つまりベアリング幅を変化させることにより、温度に応じて潤滑オイル36の粘性が変化し発生動圧が変化してもラジアル動圧軸受手段における発生動圧の一定化を図ることができ、使用温度範囲内において軸受剛性をほぼ同レベルに保持することが可能になる。この結果、軸受剛性の温度依存性を減少することができるので、上限温度で必要な軸受剛性を確保した場合でも全使用温度範囲で軸損をほぼ同レベルに保持することができ、従来に比べ低温領域での軸損低減を実現でき、定格電流の低減に寄与することができる。
【0022】
なお、前記図3及び図4における円柱体62の材質(熱膨張係数)や長さ、開口60の開角等は、全使用温度範囲において軸受剛性をほぼ同レベルに保持することができるよう、スピンドルモータにおけるラジアル軸受手段の発生動圧や潤滑オイル36の特性(粘性)等に応じて適宜選定されるものである。
【0023】
以上、本発明に従う動圧軸受を使用したモータの実施の形態について詳述したが、本発明はこれら実施例に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更乃至修正が可能である。
【0024】
例えば、上述した実施の形態においては、軸固定型のスピンドルモータに適用した場合について説明したが、軸回転型のモータにおいても本発明を同様に実施することができる。この場合、回転する軸部材が挿入される固定のスリーブ部材に動圧発生領域と動圧の低い領域とを連通する連通路を設け、この連通路に制御弁を配置するようにすればよい。
【0025】
【発明の効果】
本発明は、以上説明したように構成されているので、次に記載する効果を奏する。
軸部材とスリーブ部材のうち固定側に、ヘリングボーン溝からなる動圧発生溝の中央部と両端部とのそれぞれの中間部と動圧の低い領域とを連通する連通路を設け、この連通路に、高温時に開口面積が小になり低温時に開口面積が大になる開口を有する制御弁を配置したので、高温時には潤滑流体の循環を抑制して動圧発生溝全域でのベアリング幅を確保し、粘性小の潤滑流体によっても所定の動圧を発生させることができると共に、低温時には潤滑流体の循環によって軸受荷重を支持するためのベアリング幅を実質上小さくし、粘性大の潤滑流体による高い発生動圧を高温時とほぼ等しい所定の動圧に押さえることができる。従って、使用温度範囲内における発生動圧の一定化を図り、軸受剛性をほぼ同レベルに保持でき、軸受剛性の温度依存性を減少することができる。この結果、上限温度で必要な軸受剛性を確保した場合でも全使用温度範囲で軸損をほぼ同レベルに保持することができ、従来に比べ低温領域での軸損低減を実現でき、定格電流の低減に大きく寄与することができる。
【図面の簡単な説明】
【図1】本発明の動圧軸受を使用したモータをスピンドルモータに適用した場合の実施の形態を示す切断正面図である。
【図2】図1の軸部材の斜視図である。
【図3】図1の制御弁の斜視図である。
【図4】図3の制御弁の正面図である。
【符号の説明】
6 軸部材
12 円筒状外周面
14 回転スリーブ体
16 スリーブ部
18 円筒状内周面
36 潤滑オイル
42、44 ラジアル動圧発生溝
46 連通路
58 制御弁
60 開口
62 円柱体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a motor using a hydrodynamic bearing using a lubricating fluid used for rotating a recording disk such as an optical / magnetic disk.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in order to relatively rotatably support a shaft member and a sleeve member, a dynamic pressure bearing utilizing the fluid pressure of a lubricating fluid interposed between the two has been used. In this type of fluid dynamic pressure bearing, a radial dynamic pressure bearing portion for supporting a radial load and a thrust dynamic pressure bearing portion for supporting a thrust load are disposed between a shaft member and a sleeve member. When such a dynamic pressure bearing is used for a motor, one of a shaft member and a sleeve member is fixed. That is, when the shaft member is fixed, the motor becomes a fixed shaft motor, and when the sleeve member is fixed, the motor becomes a shaft rotating motor.
[0003]
[Problems to be solved by the invention]
This type of dynamic bearing has the following problems to be solved. That is, the viscosity of the lubricating fluid, that is, the lubricating oil used in the dynamic pressure bearing usually decreases at a high temperature and increases at a low temperature. Therefore, the dynamic pressure generated by the dynamic pressure bearing is large at a high temperature and small at a low temperature. Therefore, if the bearing specifications are set to ensure the bearing rigidity at the upper limit of the operating temperature range, the bearing rigidity at low temperatures will be excessive, and if the bearing rigidity at room temperature is set appropriately, There is a problem that the rigidity is insufficient near the upper limit of the temperature, and the temperature dependence of the bearing rigidity is very large.
[0004]
Here, it is conceivable to make the thermal expansion coefficient of the shaft member larger than that of the sleeve member, control the clearance between the shaft member and the sleeve member according to the temperature, and compensate for the temperature dependence of the bearing rigidity. However, in this case, a high processing accuracy is required for the cylindrical outer peripheral surface of the shaft member and the cylindrical inner peripheral surface of the sleeve member, and there is a problem that manufacturing is difficult. In addition, at high temperatures, the clearance becomes extremely small, and there is a risk that the sleeve member is locked with respect to the shaft member.
[0005]
The present invention has been made in consideration of such problems of the prior art, and aims at significantly reducing the temperature dependence of the bearing stiffness of a hydrodynamic bearing with a relatively simple configuration. It is an object of the present invention to provide a motor using a dynamic pressure bearing which can reduce the temperature and stably obtain an appropriate bearing rigidity within an operating temperature range.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in a motor using the dynamic pressure bearing of the present invention, a shaft member having a cylindrical outer peripheral surface and a shaft member having a cylindrical inner peripheral surface opposed to the cylindrical outer peripheral surface are provided. On the other hand, a sleeve member that is relatively rotatable, and a pair of herringbone-shaped grooves formed on one or both of the cylindrical outer peripheral surface and the cylindrical inner peripheral surface and arranged at intervals in the axial direction. A radial dynamic pressure generating groove, and a lubricating fluid interposed between the cylindrical outer peripheral surface and the cylindrical inner peripheral surface; and a center of the dynamic pressure generating groove on a fixed side of a shaft member and a sleeve member. A control valve having a communication passage connecting an intermediate portion between the portion and both ends to a region having a low dynamic pressure, the communication passage having an opening having a small opening area at a high temperature and a large opening area at a low temperature. Are arranged.
[0007]
In this case, it is desirable that the region where the dynamic pressure is low is between the pair of dynamic pressure generating grooves between the cylindrical outer peripheral surface and the cylindrical inner peripheral surface. It is preferable to use a cylindrical body having a fan-shaped opening and made of a material having a larger thermal expansion coefficient than the material on the fixed side.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view showing a fixed shaft type spindle motor for rotating a magnetic disk, for example. In this example, the lower end of a fixed shaft member 6 having a vertical axis is fitted and fixed to the base of the recording medium driving device or the circular fitting hole 4 of the motor bracket 2 fixed thereto. . The shaft member 6 has a thrust plate 8 fixed at the upper portion and a cover plate 10 fixed at the upper end thereof, and a cylindrical outer peripheral surface 12 is formed on the outer peripheral surface below the thrust plate 8.
[0009]
A rotating sleeve body 14 is rotatably fitted to the shaft member 6. The small-diameter sleeve portion 16 at the lower portion of the rotary sleeve body 14 has a cylindrical inner peripheral surface 18 on the inner peripheral surface, and is externally fitted to a portion of the shaft member 6 below the thrust plate 8. Reference numeral 18 faces the cylindrical outer peripheral surface 12 of the shaft member 6. The enlarged diameter portion 20 at the upper part of the rotary sleeve body 14 surrounds the upper and lower portions and the outer peripheral portion of the thrust plate 8 together with the thrust cover 22 fixedly fitted at the upper end portion.
[0010]
A substantially cylindrical hub 24 is externally fitted and fixed to an outer peripheral portion of the rotating sleeve body 14, and a rotor magnet 26 is internally fixed to a lower inner peripheral side of the hub 24. A stator 28 having a stator coil wound around a stator core is externally fitted and fixed to a support cylinder 30 protruding from the bracket 2 coaxially with the circular fitting hole 4, and is rotationally driven relative to the rotor magnet 26 in the radial direction. Unit.
[0011]
A tapered portion 32 that slopes inward and upward is formed in the lower portion of the inner periphery of the thrust cover 22, and a portion of the outer peripheral portion of the shaft member 6 that faces the lower end of the sleeve portion 16 has a taper portion that slopes inward and downward. 34 are formed. A gap between the shaft member 6 and the rotary sleeve body 14 is filled with a lubricating oil 36 as an example of a lubricating fluid (liquid). One end, that is, the inner peripheral end of the lubricating oil 36 in the gap above the thrust plate 8 faces between the base of the tapered portion 32 of the thrust cover 22 and the upper surface of the thrust plate 8, and communicates with the outside air. The lubricating oil 36 is held between the base of the tapered portion 34 and the inner peripheral surface of the sleeve portion 16 and exposed to the outside air by capillary action.
[0012]
On the upper and lower surfaces of the thrust plate 8 and on the inner peripheral surface (cylindrical inner peripheral surface 18) of the sleeve portion 16, the thrust dynamic pressure generating grooves 38 and 40 and the radial dynamic pressure generating grooves 42 and 44 formed of herringbone grooves are respectively provided. (Shown by broken lines) are provided, and a forward rotation of the rotary sleeve body 14 and the thrust cover 22 generates a thrust load support pressure and a radial load support pressure in the lubricating oil 36 at each position. Thus, thrust dynamic pressure bearing means are formed above and below the thrust plate 8, and radial dynamic pressure bearing means are formed on the outer peripheral portion of the sleeve portion 16. Note that these grooves may be provided on the sides of the members facing each other.
[0013]
The shaft member 6 is provided with a communication passage 46 which communicates the corresponding position of the two dynamic pressure generating grooves 42, 44 in the radial dynamic pressure bearing means with a region where the dynamic pressure is low, that is, between the pair of dynamic pressure generating grooves 42, 44. Have been.
That is, as shown in FIG. 2, first, an axial vertical hole 48 is formed at the axial center position of the shaft member 6 from the lower end surface to a position slightly below the thrust plate 8. In the cylindrical outer peripheral surface 12 corresponding to the pressure generating groove 42, each of the dynamic pressure generating grooves 42 is orthogonal to the vertical hole 48 in the axial direction from the middle between the central portion (peak portion) and both ends to the vertical hole 48. High-pressure side holes 50 and 51 are formed, and in the cylindrical outer peripheral surface 12 corresponding to the lower radial dynamic pressure generating groove 44, a halfway between each of the central portion and both ends of the dynamic pressure generating groove 44. , And high-pressure side holes 52 and 53 which are orthogonal to the vertical hole 48 in the axial direction, respectively, are formed.
[0014]
Further, a low-pressure side hole 54 that is orthogonal to the vertical hole 48 in the axial direction is formed from the cylindrical outer peripheral surface 12 corresponding to the middle between the radial dynamic pressure generating grooves 42 and 44 to the vertical hole 48, and is lower than the lowermost horizontal hole 53. By closing the vertical hole 48 on the side with the sealing member 56, the dynamic pressure generating portions formed by the two radial dynamic pressure generating grooves 42 and 44 in the gap between the cylindrical outer peripheral surface 12 and the cylindrical inner peripheral surface 18 A communication passage 46 is formed to bypass between the radial dynamic pressure generating grooves 42 and 44 inside the shaft member 6. In FIG. 2, the dynamic pressure generating grooves 42 and 44 of the sleeve portion 16 are shown for convenience of understanding the positional relationship between the horizontal holes 50 to 54 of the shaft member 6.
[0015]
A control valve 58 having an opening having a small opening area at a high temperature and having a large opening area at a low temperature is disposed in the low-pressure side hole 54 of the communication passage 46. Specifically, as shown in FIG. 3, the control valve 58 has an opening 60 having a fan-shaped cross section, and is formed of a columnar body 62 formed of a material having a larger thermal expansion coefficient than the shaft member 6. The control valve 58 is attached to the low-pressure side hole 54 by shrinking the cylindrical body 62 so that both side surfaces of the opening 60 are shifted inward and inserting the same into the low-pressure side hole 54.
[0016]
In such a configuration, when the spindle motor rotates, the pressure of the lubricating oil 36 existing in each of the radial dynamic pressure bearing means having the two radial dynamic pressure generating grooves 42, 44 is increased, and the pressure is increased through the oil layer. To support the radial load acting on the rotating sleeve body 14. Further, in each thrust dynamic pressure bearing means having both thrust dynamic pressure generating grooves 38, 40, the pressure of the lubricating oil 36 existing in them is increased, and the thrust load acting on the rotary sleeve body 14 via this oil layer. Support.
[0017]
During this operation, the lubricating oil 36 filled between the cylindrical outer peripheral surface 12 of the shaft member 6 and the cylindrical inner peripheral surface 18 of the sleeve portion 16 partially circulates, bypassing the communication passage 46. . In other words, in the two radial bearing means, the central portion of each of the dynamic pressure generating grooves 42 and 44, which is a herringbone groove, has the highest pressure, and the pressure gradually decreases toward both ends of the groove. The entire groove area of the dynamic pressure generation grooves 42 and 44 is a pressure generation part, and this part is a high pressure area. On the other hand, between the two radial bearing means, the lubricating oil 36 in this portion is sucked toward the two radial bearing means, so that the pressure becomes small and the pressure becomes low. The high-pressure side holes 50, 51, 52, and 53 of the communication passage 46 are respectively opened in the pressure generating portions of the two radial bearing means, and the low-pressure side hole 54 is opened in the low-pressure region between the two radial bearing means. Due to the pressure difference, the lubricating oil 36 in each of the pressure generating areas flows from the low-pressure side hole 54 to the low-pressure area through the high-pressure side holes 50, 51, 52, 53 and the vertical hole 48 in the communication passage 46, and the lubricating oil 36 circulates Is done.
[0018]
The lubricating oil 36 has a high viscosity at a low temperature and a low viscosity at a high temperature, and if no measures are taken, the dynamic pressure generated by the dynamic pressure bearing portion is high at a low temperature and low at a high temperature. Since the cylindrical body 62 of the control valve 58 is made of a material having a larger thermal expansion coefficient than the shaft member 6, the cylindrical body 62 which was in the state of the solid line in FIG. As shown by the dashed line, both side surfaces of the opening 60 are shifted toward the inside of the opening, and the sectional area of the opening is reduced.
[0019]
Therefore, at high temperatures, the viscosity of the lubricating oil 36 decreases and the generated dynamic pressure decreases, but the opening area of the opening 60 in the control valve 58 of the communication passage 46 decreases, and the circulation amount of the lubricating oil 36 is greatly restricted. Therefore, the pressure drop of the generated dynamic pressure in the radial dynamic pressure bearing means is suppressed, and the dynamic load is generated in the entire dynamic pressure generating grooves 42 and 44 to support the radial load.
[0020]
On the other hand, when the temperature is low, the opening area of the opening 60 in the control valve 58 increases as shown by the solid line in FIG. 2, and the circulation of the lubricating oil 36 extends from both ends of the dynamic pressure generating grooves 42 and 44 to near the middle of the grooves. The lubricating oil 36 pressurized in the portion escapes to the low pressure side through the communication passage 46. Therefore, the dynamic pressure generating portion that supports the radial load is located between the high pressure side holes 50 and 51 in the central portions of the dynamic pressure generating grooves 42 and 44, that is, in the dynamic pressure generating groove 42, and the high pressure side in the dynamic pressure generating groove 44. There is a gap between the lateral holes 52 and 53, and the width of the dynamic pressure groove for supporting the radial load is reduced. As a result, at low temperatures, the viscosity of the lubricating oil 36 increases and the generated dynamic pressure increases. However, the width of the dynamic pressure grooves is reduced, so that a radial load supporting pressure substantially equal to that at high temperatures can be obtained.
[0021]
As described above, by changing the opening area of the opening 60 of the control valve 58 according to the temperature and changing the dynamic pressure groove width, that is, the bearing width, the viscosity of the lubricating oil 36 changes according to the temperature and the generated dynamic pressure is reduced. Even if it changes, the dynamic pressure generated in the radial dynamic pressure bearing means can be made constant, and the bearing rigidity can be maintained at substantially the same level within the operating temperature range. As a result, the temperature dependence of the bearing stiffness can be reduced, so even if the required bearing stiffness is secured at the upper limit temperature, the shaft loss can be maintained at substantially the same level over the entire operating temperature range. Reduction of shaft loss in a low temperature region can be realized, which can contribute to reduction of rated current.
[0022]
The material (thermal expansion coefficient) and length of the cylindrical body 62 and the opening angle of the opening 60 in FIGS. 3 and 4 are set so that the bearing rigidity can be maintained at substantially the same level over the entire operating temperature range. It is appropriately selected according to the dynamic pressure generated by the radial bearing means in the spindle motor, the characteristics (viscosity) of the lubricating oil 36, and the like.
[0023]
Although the embodiments of the motor using the dynamic pressure bearing according to the present invention have been described in detail above, the present invention is not limited to these examples, and various changes and modifications can be made without departing from the gist of the present invention. It is possible.
[0024]
For example, in the above-described embodiment, a case where the present invention is applied to a fixed shaft type spindle motor has been described. However, the present invention can be similarly applied to a shaft rotating type motor. In this case, the fixed sleeve member into which the rotating shaft member is inserted may be provided with a communication path that connects the dynamic pressure generation area and the low dynamic pressure area, and the control valve may be disposed in this communication path.
[0025]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
A communication path is provided on the fixed side of the shaft member and the sleeve member, the communication path communicating the respective intermediate portions of the dynamic pressure generating groove, which is a herringbone groove, with both ends, and a region where the dynamic pressure is low. In addition, a control valve with an opening that has a small opening area at high temperatures and a large opening area at low temperatures has been arranged, so that the circulation of lubricating fluid is suppressed at high temperatures to secure the bearing width over the entire dynamic pressure generating groove. In addition, a predetermined dynamic pressure can be generated even by a low-viscosity lubricating fluid, and at low temperatures, the bearing width for supporting the bearing load by circulating the lubricating fluid is substantially reduced, and a high-viscosity is generated by a high-viscosity lubricating fluid. The dynamic pressure can be suppressed to a predetermined dynamic pressure substantially equal to that at the time of high temperature. Therefore, the generated dynamic pressure can be made constant within the operating temperature range, the bearing stiffness can be maintained at substantially the same level, and the temperature dependency of the bearing stiffness can be reduced. As a result, even if the required bearing stiffness is secured at the upper limit temperature, the shaft loss can be maintained at substantially the same level over the entire operating temperature range. This can greatly contribute to reduction.
[Brief description of the drawings]
FIG. 1 is a cutaway front view showing an embodiment in which a motor using a dynamic pressure bearing of the present invention is applied to a spindle motor.
FIG. 2 is a perspective view of the shaft member of FIG.
FIG. 3 is a perspective view of the control valve of FIG. 1;
FIG. 4 is a front view of the control valve of FIG. 3;
[Explanation of symbols]
6 Shaft member 12 Cylindrical outer peripheral surface 14 Rotating sleeve body 16 Sleeve portion 18 Cylindrical inner peripheral surface 36 Lubricating oil 42, 44 Radial dynamic pressure generating groove 46 Communication passage 58 Control valve 60 Opening 62 Cylindrical body

Claims (3)

円筒状外周面を有する軸部材と、該円筒状外周面に対向する円筒状内周面を有し前記軸部材に対し相対的に回転自在であるスリーブ部材と、前記円筒状外周面と前記円筒状内周面との一方もしくは両方に形成され軸方向に間隔を介して配置された一対のラジアル動圧発生溝と、前記円筒状外周面と前記円筒状内周面との間に介在された潤滑流体とを備えたモータであって、
前記ラジアル動圧発生溝は中央部において最も圧力が大きく両端側では圧力が小さい動圧を発生するヘリングボーン形状溝であり、
前記軸部材と前記スリーブ部材のうち固定側には、
前記動圧発生溝の中央部と両端部とのそれぞれの軸方向中間部を動圧の低い領域に連通する連通路が設けられており、
該連通路に、高温時には開口面積が小になり低温時には開口面積が大になる開口を有する制御弁を配置した、ことを特徴とする動圧軸受を使用したモータ。
A shaft member having a cylindrical outer peripheral surface; a sleeve member having a cylindrical inner peripheral surface facing the cylindrical outer peripheral surface and rotatable relative to the shaft member; the cylindrical outer peripheral surface and the cylinder and Jo inner peripheral surface and one or both a pair that is formed is disposed axially through a distance in the radial hydrodynamic grooves of, interposed between the cylindrical outer peripheral surface and the cylindrical inner peripheral surface A motor with lubricating fluid,
The radial dynamic pressure generating groove is a herringbone-shaped groove that generates a dynamic pressure with a maximum pressure at the center and a small pressure at both ends,
On the fixed side of the shaft member and the sleeve member,
A communication path is provided, which communicates the respective axial middle portions of the central portion and both end portions of the dynamic pressure generating groove with a region having a low dynamic pressure,
A motor using a dynamic pressure bearing, wherein a control valve having an opening having a small opening area at a high temperature and having a large opening area at a low temperature is arranged in the communication passage.
前記動圧の低い領域は、前記円筒状外周面と前記円筒状内周面との間における、前記一対の動圧発生溝間である請求項1記載の動圧軸受を使用したモータ。The motor using the dynamic pressure bearing according to claim 1, wherein the low dynamic pressure region is between the pair of dynamic pressure generating grooves between the cylindrical outer peripheral surface and the cylindrical inner peripheral surface. 前記制御弁は、断面扇状の開口を有し前記固定側の材質より熱膨張係数の大なる材質により形成された円柱体よりなる、請求項1または2記載の動圧軸受を使用したモータ。The motor using the dynamic pressure bearing according to claim 1 or 2, wherein the control valve is a cylindrical body having an opening having a fan-shaped cross section and having a larger thermal expansion coefficient than the material on the fixed side.
JP14820796A 1996-05-16 1996-05-16 Motor using dynamic pressure bearing Expired - Fee Related JP3597947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14820796A JP3597947B2 (en) 1996-05-16 1996-05-16 Motor using dynamic pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14820796A JP3597947B2 (en) 1996-05-16 1996-05-16 Motor using dynamic pressure bearing

Publications (2)

Publication Number Publication Date
JPH09308186A JPH09308186A (en) 1997-11-28
JP3597947B2 true JP3597947B2 (en) 2004-12-08

Family

ID=15447666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14820796A Expired - Fee Related JP3597947B2 (en) 1996-05-16 1996-05-16 Motor using dynamic pressure bearing

Country Status (1)

Country Link
JP (1) JP3597947B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010010901A (en) * 1999-07-23 2001-02-15 이형도 Motor
DE102007051227A1 (en) * 2007-10-26 2009-04-30 Schaeffler Kg Electric direct drive device
EP4022746A1 (en) * 2019-10-08 2022-07-06 Neapco Intellectual Property Holdings, LLC Lubricant supported electric motor including a bearing structure

Also Published As

Publication number Publication date
JPH09308186A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
JP3558768B2 (en) Motor with hydrodynamic bearing
JP3462982B2 (en) Hydrodynamic bearing device and electric motor
JP3206191B2 (en) Spindle motor and method for assembling the same
JP3652875B2 (en) motor
JPH11187611A (en) Spindle motor and rotating body device using the motor as driving source of rotating body
US6955469B2 (en) Dynamic pressure bearing device
KR100616615B1 (en) Hydrodynamic Bearing Spindle Motors
JP3597947B2 (en) Motor using dynamic pressure bearing
JP3685426B2 (en) Hydrodynamic bearing device
JP4360482B2 (en) Hydrodynamic bearing device
US7144161B2 (en) Hydrodynamic bearing system for a rotary bearing of spindle motors
JP3597944B2 (en) Motor using dynamic pressure bearing
JP3549367B2 (en) Hydrodynamic bearing device and electric motor
JP3558710B2 (en) Electric motor
JP3184795B2 (en) Spindle motor and rotating device using the spindle motor as a driving source of the rotating body
JP3554485B2 (en) Fluid dynamic bearing motor
JP3549389B2 (en) Hydrodynamic bearing device and electric motor
JP3629106B2 (en) Hydrodynamic bearing device and motor equipped with the same
JPH06319240A (en) Spindle motor
JP2002054628A (en) Dynamic pressure fluid bearing device and spindle motor
JP2001124059A (en) Dynamic pressure bearing unit
JP3635541B2 (en) Spindle motor
JP2004108546A (en) Hydrodynamic bearing device and spindle motor using the same
JP3381981B2 (en) Spindle motor
JPH06311695A (en) Spindle motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees