JP3587379B2 - Automotive engine valve train shims and lifters, and combinations of these with camshafts - Google Patents
Automotive engine valve train shims and lifters, and combinations of these with camshafts Download PDFInfo
- Publication number
- JP3587379B2 JP3587379B2 JP2001117680A JP2001117680A JP3587379B2 JP 3587379 B2 JP3587379 B2 JP 3587379B2 JP 2001117680 A JP2001117680 A JP 2001117680A JP 2001117680 A JP2001117680 A JP 2001117680A JP 3587379 B2 JP3587379 B2 JP 3587379B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- thin film
- shim
- dlc thin
- lifter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Valve-Gear Or Valve Arrangements (AREA)
- Physical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、摩擦特性及び耐久性に優れた自動車エンジン動弁系シム又はリフター、及びこれらとカムシャフトの組合せに係り、更に詳細には、自動車用内燃機関の動弁系部品であるカムロブの相手材の摺動部へ表面処理として適用される、PVDアークイオンプレーティング法により成膜されたDLC薄膜について、耐久信頼性を付与し、且つ低摩擦係数を実現する技術に関するものである。
【0002】
【従来の技術】
自動車内燃機関において、カムロブとその相手材のリフター又はリフター冠面に取り付けられるシムとの間で発生する摩擦力は、特にアイドルを含む低回転数域において、内燃機関全体の機械損失の20%を占め、ここでのフリクション低減は自動車の燃費低減に直結する重要技術である。
カムロブとリフター間の摺動は、内燃機関内で最も面圧が高い部類に属し、機構上、カムロブとリフター間の油膜が切れる瞬間を含むため、潤滑状態としては極めて厳しい状況と言える。このため、ここでのフリクションを低減する方法としては、双方の表面粗さを平滑にすることで潤滑状態を改善し、カムロブとリフターとの直接接触(メタルコンタクト)を減らすことや、固体潤滑材を含む表面処理や添加剤を用いることでメタルコンタクト時のフリクションを下げることが有効である。
最近、このような点に着目し、リフター側の表面粗さを平滑にした上で窒化チタン(TiN)や窒化クロム(Cr2N)といった硬質薄膜を適用した例や、固体潤滑材の二硫化モリブデン(MoS2)を分散した樹脂材を摺動部にコーティングした例が知られている。
【0003】
ところで、PVD法やCVD法による硬質薄膜の最大のメリットは、めっき等の表面処理や熱処理等の表面硬化処理に比べて著しく高い表面硬さが得られる点にあり、摺動部位に適用することで、従来に比し耐摩耗性を大幅に向上することが期待できる。
また、潤滑下においては、摩耗による表面粗さの悪化を抑制できるため、表面粗さの悪化により相手材を摩耗させることや、相手材との直接接触(メタルコンタクト)が増加することによる摩擦力の増大を防ぎ、潤滑状態を初期の状態のまま長期間に亘り維持することを可能にする。更に、かかる硬質薄膜自体が硬いことで相手材をなじませることにより、平滑化した面粗度を得る機能も期待でき、その結果、双方の粗さが平滑化して潤滑状態を良好な状態に改善することも期待できる。
【0004】
一方、硬質薄膜の一種であるダイヤモンドライクカーボン(DLC)膜を始めとした非晶質系の炭素膜では、膜自体の硬さが硬いことに加え、膜自体に固体潤滑材としての性質があり、無潤滑下においては著しく低い摩擦係数を示すことが知られている。
なお、潤滑油中では、接点をミクロに見た場合、油膜を介して相手材と摺動する部位と、双方の表面粗さの突起部が直接接触(メタルコンタクト)する部位とに分類でき、直接接触するような部位においては、DLC膜の適用によりそこで発生する摩擦力を低減する効果が無潤滑下の場合と同様に期待され、近年、内燃機関の低フリクション化技術として摺動部材への適用が検討されている。
【0005】
ところが、PVDやCVD法による硬質薄膜は、めっき等の表面処理と比較して膜自体の内部応力が高く、膜の硬さが著しく高いため、機械部品の摺動部材として用いると、膜の基材からの剥離や膜の割れの発生が課題となることが多い。なお、膜の剥離に関しては、膜と基材との密着性を考慮して適当な中間層を設けることや、膜を多層構造とすることで内部応力を緩和して改善する手法がこれまでに提案されている。
【0006】
しかし、膜自体の割れやそれに伴う剥離に関して、特に硬質炭素薄膜の表面粗さや形状、相手材の粗さや形状を規定しこれを改善した例はあまり知られていない。
これまでに提案されたものとしては、相手材となるカム側の粗さを規定した例がある(特開平11−294118号公報)。この技術では、カムの粗さをある値以下とすることで、膜への入力を制御し、膜に発生する剥離を抑制する考えを採用している。
また、膜の表面形態を規定した例では、アーク式イオンプレーティング法により成膜した膜に関して、表面に残存するマクロパーティクル(ドロップレット)の高さと量を規定したものがある(特開平7−118832号公報)。
【0007】
【発明が解決しようとする課題】
しかしながら、本発明者らがこれまでにPVDアークイオンプレーティング法による硬質炭素薄膜をリフター部品に適用し、様々な解析を進めてきた結果、上述のような従来の提案に係る手法では必ずしも膜の耐久性を十分に確保できないことがあることを知見した。
即ち、まず、相手材となるカム側の粗さを規定した例(特開平7−294118号公報)では、カムの粗さを規定しているが、アークイオンプレーティング法による硬質炭素膜の膜側の表面粗さがある値を超えると、カムの粗さによらず、カムとの摺動により生じる膜の傷やそれに伴う剥離が発生することがある。
【0008】
一方、膜の表面形態を規定した例(特開平7−118832号公報)では、アークイオンプレーティング法により成膜した膜に関して、表面に残存するマクロパーティクル(ドロップレット)の高さと量を規定しているが、ここで膜表面の形態をある範囲に規定した理由は、相手材の表面を研磨することに関し、必要以上に相手材を研磨させないため、及び如何に相手材の表面粗さを短期間に平滑化させるかであり、剥離に関する詳細な機構を考慮して設定されたものではない。従って、この規定範囲にあっても、膜及び相手材の表面粗さや形状によっては剥離が発生することがある。更に、従来のTiNやCrN等の膜に対し、硬質炭素薄膜では脆性的な傾向が強いため、それぞれの膜質に合った詳細な規定が必要であることも、本発明者らの解析により明らかになってきた。
以上のような理由から、従来技術による提案手法では、期待した硬質炭素薄膜による効果を十分に得ることのできないことが明らかになった。
【0009】
本発明は、このような従来技術の有する課題や上記知見に着目してなされたものであり、その目的とするところは、めっき等の表面処理に比べて硬度が極めて高いために一般に延性が少ないとされる硬質薄膜について、摺動部品に適用した際に起こり得る膜の割れや剥離等を抑え、耐久信頼性を確保し、且つ低摩擦係数を実現するものであって、摩擦特性及び耐久性に優れた自動車エンジン動弁系シム及びリフター、並びにこれらとカムシャフトの組合せを提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、DLC薄膜の表面硬さと膜厚に応じた表面粗さや形状、及び相手材の表面粗さや形状などを適切に制御することにより、上記目的が達成できることを見出し、本発明を完成するに至った。
【0011】
即ち、本発明の自動車エンジン動弁系シム又はリフターは、内燃機関用吸排気バルブを駆動するためにカムシャフトのカムロブを相手材として摺動する自動車エンジン動弁系シム又はリフターであって、
上記カムロブを相手材として摺動する面の最表面に、アーク式イオンプレーティング法により成膜された炭素から成るDLC薄膜が被覆され、
このDLC薄膜は、その表面硬さがヌープ硬さで1500〜4500kg/mm2で、膜厚が0.3〜2.0μmであり、且つ表面粗さRy(μm)が、次式
Ry<{(0.75−Hk/8000)×h+0.07/0.8}…(A)
(式中のhは上記DLC薄膜の厚さ(μm)、Hkは上記DLC薄膜のヌープ硬さ(kg/mm2)を示す)で表される関係を満足し、
DLC薄膜成膜前の基材の表面粗さがRaで0.03μm以下であり、且つ成膜後の摺動面の凸形状の最大値が10μm以下であることを特徴とする。
【0012】
また、本発明の自動車エンジン動弁系シム又はリフターは、上記DLC薄膜成膜前の基材の表面硬さがHRCで45以上であることを特徴とする。
【0013】
また、本発明の自動車エンジン動弁系シム又はリフターとカムシャフトとの組合せは、上述の如きシム又はリフターと、カムシャフトとの組合せであって、
上記カム又はリフターと組み合わされる上記カムシャフトのカムロブ面の表面粗さRaが0.08μm以下であり、且つこのシャフト方向のカムロブノーズ部での断面粗さ曲線について、凹凸形状の最大値が10μm以下であることを特徴とする。
【0014】
【作用】
本発明においては、DLC薄膜の厚さと硬さにより、その膜が許容できる負荷の入力条件が決まる。このため、与えられた膜と適用された部位の摺動条件に対し、膜の表面粗さや形状、相手材の表面粗さや形状の各因子を適切に規定することで、膜に対する入力条件をある範囲内に制御し、適用された部位での膜の割れや剥離の発生を未然に防ぎ、膜としての機能を長期間に亘り維持することが可能となる。
【0015】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明は、内燃機関用動弁部品であるカムフォロア、カムロブ部と摺動する相手材であるシム及びリフター冠面に、アークイオンプレーティング法によるDLC薄膜を施し、この膜についての表面粗さや形状、相手材の粗さや形状を規定することにより、膜としての信頼性を改善することを目的とする。
【0016】
本発明者らが、アーク式イオンプレーティング法によるDLC薄膜をカムロブ部と摺動する相手材に適用した場合について鋭意解析した結果、特に摺動中にDLC薄膜に傷が生じたり、これに伴う剥離が発生する点について、膜の硬さや表面粗さ、厚さ、基材の形状、相手材の表面粗さ、形状との関係が明らかになった。
摺動によりカムの相手材に施したDLC薄膜に傷が入る場合、傷の形態はいずれも膜が割れて、そのまま膜が微視的に剥がれたり、又はこの剥がれた断片を引き摺ることにより更に大きな傷に発展することが確認された。
【0017】
傷が発生する要因は、いずれも膜に対する負荷が問題となっており、単に曲率を持ったカムロブと平坦なシムの線接触から想定される面圧のみの問題であれば、DLC薄膜の膜厚がある一定以上の値であればこのような割れには至らない。
負荷が過大になる原因としては、一つは従来から知られている、PVDアークイオンプレーティング法により成膜した膜特有の特徴である、膜内に生じるデポシットがある。このデポシットは、成膜中、膜の原料となるターゲットから飛来する粒子が単一なイオン又は原子状ではなく、クラスター又は溶融状態で飛来したものがそのまま粒子として膜に残存するもので、更にその周囲をDLC薄膜が積み重なるように成長するため、硬質の粒状突起として膜内に分布する。
これらは摺動中に容易に脱落するため、接触部に巻き込まれた場合、カムロブからの押し付け力を粒子を介してDLC薄膜を伝搬することとなり、この部位での局所的な圧力は、カムロブのマクロな曲率を基に弾性変形を考慮して算出されるヘルツ面圧に比べ遙かに高いものであり、膜の割れを誘発する原因となる。
更に、カムロブとの滑り接触により剪断力がこれに加わるため、傷は外周に向けて筋状に発展し、膜自体のマクロな剥離に至る。
【0018】
もう一つの原因は、カムロブの表面粗さが粗いことであり、粗さの突起が局所的な面圧を増大してしまう場合と、カムとシムの線接触が双方の平坦度が悪い場合に点接触となる場合である。
特に、カムロブとシムの平坦度が悪いことで点接触になるケースは、上述のデポシットとの複合効果により、膜の割れを大きく加速する要因となり得る。
【0019】
またこの一方で、カムロブと、DLC薄膜を施した相手材シム及びリフターとの摺動においては、DLC薄膜の厚さや膜の硬さが膜の割れ発生の要因となり得ることが解析により明らかになった。
膜の厚さが厚いほど、ある荷重で粒子を押し付けた場合の変形量が減少するため、負荷に対する割れ発生への抵抗が高まる。即ち、それぞれの摺動条件における負荷に応じ、ある一定の膜厚さが必要となる。また、硬さについては、一般の硬さと延性はトレードオフの関係があり、膜が硬いほど膜の延性が低下することが知られている。即ち、膜の硬さがある程度低い方が膜の割れに対する抵抗が増すこととなる。
【0020】
以上の解析から、カムロブの相手材摺動部へDLC薄膜を施した場合に、膜の硬さと厚さを基に薄膜の表面粗さを規定し、更にはカムロブの表面粗さや基材とカムロブの形状を詳細に規定することで、DLC薄膜による低摩擦係数を安定して得る方法を本発明者らは見出した。
以下、本発明において、DLC薄膜及びこれと摺動するカムロブなどについて、膜の硬さや厚さなどを規定した根拠について説明する。
【0021】
本発明において、請求項1で、カムロブの相手材シム及びリフターの摺動部に施す、アーク式イオンプレーティング法により成膜された炭素から成るDLC薄膜の膜の厚さを0.3μm以上と規定した理由は、カムロブからの入力を想定した場合、実験的にこの値以上でないと膜自体の割れが発生することが分かったためである。
一方、厚さを2.0μm以下とした理由は、この値を超えると、成膜により膜に大きな残留応力が発生し、基材自体の反りが問題となるためである。膜自体の反りは、カムロブとの接触において点接触を促す方向であるため、これ以上の膜厚では間接的に接触不良により膜の割れを加速する要因となる。
【0022】
また、DLC薄膜の表面粗さの規定は、膜の硬さと厚さとの関係より規定を行った。
ヌープ硬さHkのDLC薄膜が許容する接触部でのデポシット粒子又はカムロブの粗さ突起による押し込み深さh’は、DLC薄膜の膜の厚さをhとした場合、実験的にh’/h=0.6−Hk/10000…(1)との関係が求められた。
一方、DLC薄膜の表面粗さRyは、種々の膜に関して調査した結果、膜内に残存するデポシット高さをaとした場合、a=0.8Ry−0.07…(2)なる関係が成立することが分かった。
DLC薄膜がそれ自体に内在するデポシットにより、傷やそれに伴う割れ、剥離に至る場合については、DLC薄膜の表面粗さを規定することで防げるため、デポシットがそのまま押し込み深さとして、a<h’を満たせばよい。
以上の関係から、これに基づく次式(A)
Ry<{(0.75−Hk/8000)×h+0.07/0.8}…(A)
による規定を請求項1で行った。
【0023】
また、請求項1は、DLC薄膜を施すシム及びリフターを構成する基材に関して規定する。
基材の表面粗さは、DLC薄膜の膜厚が非常に薄いことから、成膜した後も膜表面の粗さとして反映される。このため、基材の表面粗さが粗い場合、膜表面の粗さの突起部がカムロブとの局部的な接触面圧を増大させ、膜の割れを誘発する原因となる。また、基材の形状に関しては、DLC薄膜の成膜後、膜の残留応力により形状が凸となり易く、この凸高さが高すぎる場合、カムロブとの当たりが線接触から点接触へと悪化し、デポシットや異物噛み込み時の面圧の増大を大きく増幅させることが解析により明らかになった。
実験的に、基材の表面粗さをRaで0.03μm以下、凸形状についてはDLC薄膜を成膜した後の最終状態で10μm以下であれば、DLC薄膜の傷や割れ、及びこれらに伴う剥離に繋がらないことを確認した。
【0024】
更に、請求項2では、シム及びリフターの基材について、摺動部での表面硬さの規定を行っている。
カムロブとの摺動において、接触部での弾性変形量については、DLC薄膜の硬さや厚さのみならず基材硬さの影響も大きく、これがある値以下の場合、基材の変形に伴い薄膜内には過大な応力が発生し、膜の割れ発生に繋がる。
カムロブとの接触において発生する最大面圧は0.5〜0.7GPa程度であり、この範囲内においては、基材の硬さをHRCで45以上とすれば、基材の変形に伴う炭素薄膜の割れ発生を抑えられることを実験的に確認した。
【0025】
請求項3は、上述のような本発明のシムやリフターと、カムシャフトの組合せに関するものであり、この場合、シムやリフターの相手材となるカムロブの表面粗さ、及び形状を規定している。
カムロブの表面粗さがRaで0.08μm以下であれば、カムロブの表面粗さの突起によるDLC薄膜の割れ発生を抑えることができる。表面粗さが0.08μmを超えると、これに応じてDLC薄膜の膜厚を厚い側に規定する必要があり、膜厚の設定範囲は極めて狭い範囲となる。
一方、カムロブのカム軸方向の形状については、相手材との摺動において片当たりを誘発するものであり、接触部の面圧を著しく向上させるため、デポシット又は油中に含まれる異物の噛み込みの影響を大きく加速する要因となる。この凹凸が10μm以下であれば、DLC薄膜の割れの発生を抑制することができる。
【0026】
以上に説明した本発明のシム、リフター及びこれらとカムシャフトとの組合せにおいて、摺動面の最表面に被覆するDLC薄膜としては、アーク式イオンプレーティングによるダイヤモンドライクカーボン(DLC)薄膜に限定される。
【0027】
図1に本発明のシムの一例を示し、図2に本発明のバルブリフターの一例を示す。図1及び図2において、符号1はシムの基材、2はDLC薄膜、3はバルブリフターの基材、4はDLC薄膜を示している。
【0028】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0029】
(実施例1〜6、比較例1〜8)
本発明の効果は、シムにDLC薄膜を成膜することでカムロブとの間の摩擦損失を低減することと、この特性を維持する十分な耐久性を得ることにある。これらの効果を確認するため、仕様の異なる複数のカムロブと、摺動部にDLC薄膜を成膜したシムを用い、カムシャフトをモータで直接駆動するエンジン実験によりフリクションの評価と耐久性の評価を行った。試験した組合せの詳細を実施例1〜6、比較例1〜8として表1に示す。
ここで用いたDLC薄膜は、全てPVDアーク式イオンプレーティング法により成膜したもので、成膜条件を変更することで所定の表面硬さや、膜厚を実現し、また、表面粗さについては、一部の仕様につき必要に応じて成膜後に研磨加工を実施し、所定の表面粗さに仕上げた。カムロブとシム基材についても、同様に仕上げ加工の条件を変更することで、所定の表面粗さと形状に仕上げた。
【0030】
次に、エンジンでの評価条件を説明する。
試験装置はV6型3000ccのエンジンの片バンク(右)3気筒を取り出したもので、モータにより吸気側のカムシャフト軸を直接駆動する機構である。
駆動時に発生するトルクを1回転で平均し、これをカムロブ/シム間のフリクションの代用値とした。シムに成膜したDLC薄膜の耐久性は一定時間摺動した後に開封確認し、膜の割れや剥離の発生状況を確認することで評価した。
フリクション評価は、耐久性評価の後に実施した。フリクション性能の比較対象として、現在広く用いられているリン酸マンガン被膜処理を施したシムの試験も行った。なお、試験は全て新品の試験片を用いて実施した。試験条件の詳細を以下に示す。また、実施例及び比較例の試験結果を表1に示す。
【0031】
カム軸回転数:2000rpm(クランク軸4000rpm)
耐久評価試験時間:100時間
開封確認時期:1時間、100時間(試験終了後)
潤滑温度:110℃
フリクション評価:100時間試験終了後、1000rpmで5分間保持し、 この間の平均値から算出した。
潤滑試験時の油種:市販エンジン油、10W30SG規格
バルブリフター材質:SCM415浸炭焼き入れ材
カムロブ(シャフト)材質:FCAルチル鋳鉄
【0032】
【表1】
【0033】
表1に示した試験結果について説明すると、実施例1〜6はいずれも本発明の範囲に属するものであり、リン酸マンガン処理のシムを用いた組合せである比較例8に対し、全ての組合せで著しく低いフリクション特性が得られ、また、100時間のエンジン試験後も、シムに成膜したDLC薄膜にはフリクション性能に影響する傷や膜の割れ、及びこれに伴う剥離は殆ど認められず、十分な耐久性を確認することができた。
【0034】
比較例1は、シムに成膜されたDLC薄膜の硬さと厚さを請求項1で規定する数式に代入し、算出される表面粗さの上限に対し、表面のデポシットが多いために、シムの表面粗さが大きく超えた仕様であり、試験1時間後の時点でDLC薄膜には放射状の傷とこれに伴う膜の剥離が確認された。
また、比較例2は、シムに成膜されたDLC薄膜の厚さが請求項1で規定する厚さ0.3μmに対して0.2μmと薄く、試験1時間後の時点でDLC薄膜には膜の割れによる膜の剥離が主にシム中央部で多く確認された。
比較例3は、シムに成膜されたDLC薄膜の厚さが請求項1で規定する上限厚さ2μmに対し2.2μmと厚く、成膜後のシムの凸形状も高さ10μmを12μmと超しており、試験1時間後の時点でDLC薄膜には放射状の傷とこれに伴う膜の剥離が確認された。
【0035】
比較例4は、シムの基材粗さが請求項1で規定される粗さRa0.03μmに比べRa0.06μmと粗く、試験1時間後の時点でDLC薄膜には加工目に沿った膜の剥離が中央部に確認され、100時間後の時点ではシム全体で膜のマクロな剥離が中央部に確認され、100時間後の時点ではシム全体で膜のマクロな剥離が認められた。
比較例5は、カムロブの表面粗さが請求項3で規定する値Ra0.08μmに対しRa0.12μmと粗く、試験1時間後の時点でDLC薄膜には放射状の傷とこれに伴うマクロな膜の剥離が確認された。
比較例6は、カムロブの凹形状の高さが請求項1で規定する値10μmに対し12μmと大きく、試験1時間後の時点でDLC薄膜には主に中央部で膜の割れに伴う剥離が確認され、100時間後の時点では全体に亘って膜の剥離が認められた。
【0036】
比較例7は、シム基材の表面粗さが請求項2で規定する値HRC45以上に対しHRC40と低く、試験1時間後の時点でDLC薄膜には主に中央部で膜の割れに伴う剥離が確認され、100時間後の時点では全体に亘って膜の剥離が認められた。
比較例8は、フリクションの比較を行うためにシムにリン酸マンガン処理を施したもので、フリクショントルクは1.2N/mと、実施例1〜6に比べて大幅に高い値を示した。
【0037】
以上より、実施例はいずれも比較例に比べて優れたフリクション特性と耐久性を示し、本発明の規定による効果を確認した。なお、現時点においては、フリクション特性の観点から、実施例1が最も良好な態様ということができる。
【0038】
以上、本発明を好適実施例により詳細に説明したが、本発明はこれら実施例に限定されるものではなく、当業者は本発明の開示の範囲内において種々の変形実施が可能である。
【0039】
【発明の効果】
以上説明してきたように、本発明によれば、DLC薄膜の表面硬さと膜厚に応じた表面粗さや形状、及び相手材の表面粗さや形状などを適切に制御することとしたため、めっき等の表面処理に比べて硬度が極めて高いために一般に延性が少ないとされるDLC薄膜について、摺動部品に適用した際に起こり得る膜の割れや剥離等を抑え、耐久信頼性を確保し、且つ低摩擦係数を実現するものであって、摩擦特性及び耐久性に優れた自動車エンジン動弁系シム及びリフター、並びにこれらとカムシャフトの組合せを提供することができる。
【図面の簡単な説明】
【図1】本発明のDLC薄膜を施したシムの一例を示す断面図である。
【図2】本発明のDLC薄膜を施したバルブリフターの一例を示す断面図である。
【符号の説明】
1 基材(シム)
2 DLC薄膜
3 基材(バルブリフター)
4 DLC薄膜 [0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automotive engine valve operating shim or lifter having excellent friction characteristics and durability, and a combination of these with a camshaft, and more particularly, to a counterpart of a cam lobe which is a valve operating system component of an internal combustion engine for an automobile. The present invention relates to a technique for imparting durability reliability and realizing a low coefficient of friction for a DLC thin film formed by PVD arc ion plating, which is applied as a surface treatment to a sliding portion of a material.
[0002]
[Prior art]
In an automobile internal combustion engine, the frictional force generated between the cam lobe and the lifter of the counterpart or the shim attached to the crown of the lifter accounts for 20% of the mechanical loss of the entire internal combustion engine, particularly in the low speed range including idle. The reduction of friction here is an important technology directly linked to the reduction of fuel consumption of automobiles.
The sliding between the cam lobe and the lifter belongs to the class having the highest surface pressure in the internal combustion engine, and includes the moment when the oil film between the cam lobe and the lifter is cut due to the mechanism. For this reason, as a method of reducing the friction here, the lubrication state is improved by smoothing the surface roughness of both, reducing the direct contact (metal contact) between the cam lobe and the lifter, or solid lubricant It is effective to reduce the friction at the time of metal contact by using a surface treatment or an additive containing.
Recently, focusing on such points, examples of applying a hard thin film such as titanium nitride (TiN) or chromium nitride (Cr 2 N) after smoothing the surface roughness on the lifter side, disulfide of solid lubricant An example in which a sliding part is coated with a resin material in which molybdenum (MoS 2 ) is dispersed is known.
[0003]
By the way, the biggest merit of the hard thin film by the PVD method or the CVD method is that the surface hardness is remarkably higher than the surface treatment such as plating or the surface hardening treatment such as heat treatment, and it is applied to the sliding part. Therefore, it can be expected that the wear resistance will be greatly improved as compared with the prior art.
In addition, under lubrication, the deterioration of surface roughness due to wear can be suppressed, so the frictional force due to wear of the mating material due to the deterioration of surface roughness and increased direct contact (metal contact) with the mating material. Increase, and it is possible to maintain the lubrication state in the initial state for a long period of time. In addition, the hard thin film itself is hard, so it can be expected to have a smooth surface roughness by adapting the mating material. As a result, both roughnesses are smoothed and the lubrication state is improved. You can also expect to.
[0004]
On the other hand, amorphous carbon films such as diamond-like carbon (DLC) film, which is a kind of hard thin film, have properties as a solid lubricant in addition to the hardness of the film itself. It is known that the friction coefficient is remarkably low under no lubrication.
In addition, in the lubricating oil, when the contact point is seen microscopically, it can be classified into a part that slides with the counterpart material through the oil film, and a part where both surface roughness protrusions directly contact (metal contact), In parts that are in direct contact, the effect of reducing the frictional force generated by the application of the DLC film is expected in the same way as in the case of non-lubricated. Application is under consideration.
[0005]
However, a hard thin film by PVD or CVD method has a higher internal stress of the film itself than a surface treatment such as plating, and the hardness of the film is remarkably high. In many cases, peeling from the material or cracking of the film becomes a problem. In addition, with regard to film peeling, there have been methods to improve by reducing the internal stress by providing an appropriate intermediate layer in consideration of the adhesion between the film and the substrate, or by making the film a multilayer structure. Proposed.
[0006]
However, with respect to the cracking of the film itself and the accompanying delamination, there are few known examples in which the surface roughness and shape of the hard carbon thin film and the roughness and shape of the counterpart material are specified and improved.
As what has been proposed so far, there is an example in which the roughness on the cam side as a counterpart material is defined (Japanese Patent Laid-Open No. 11-294118). This technology adopts the idea of controlling the input to the film and suppressing the peeling generated on the film by setting the cam roughness to a certain value or less.
Further, in the example in which the surface form of the film is defined, there is one in which the height and amount of macroparticles (droplets) remaining on the surface are defined for the film formed by the arc ion plating method (Japanese Patent Laid-Open No. 7-1990). No. 118832).
[0007]
[Problems to be solved by the invention]
However, the present inventors have applied a hard carbon thin film by a PVD arc ion plating method to a lifter part so far, and as a result of various analyzes, the conventional proposals as described above do not always require a film. It has been found that durability may not be sufficiently secured.
That is, first, in the example in which the roughness on the cam side which is the counterpart material is defined (Japanese Patent Laid-Open No. 7-294118), the roughness of the cam is defined, but the hard carbon film formed by the arc ion plating method is used. When the surface roughness on the side exceeds a certain value, the film may be scratched due to sliding with the cam or may be peeled off without depending on the cam roughness.
[0008]
On the other hand, in an example in which the surface form of the film is defined (Japanese Patent Laid-Open No. 7-118832), the height and amount of macro particles (droplets) remaining on the surface are defined for the film formed by the arc ion plating method. However, the reason that the form of the film surface is defined in a certain range is related to polishing the surface of the counterpart material, so that the counterpart material is not polished more than necessary, and how the surface roughness of the counterpart material is reduced in a short period of time. It is not set in consideration of a detailed mechanism related to peeling. Therefore, even within this specified range, peeling may occur depending on the surface roughness and shape of the film and the counterpart material. Furthermore, it is clear from the analysis by the present inventors that a hard carbon thin film tends to be brittle compared to conventional films such as TiN and CrN, so that detailed regulation suitable for each film quality is necessary. It has become.
For the reasons described above, it has been clarified that the proposed method according to the prior art cannot sufficiently obtain the expected effect of the hard carbon thin film.
[0009]
The present invention has been made by paying attention to such problems of the prior art and the above knowledge, and the object of the present invention is generally low in ductility because of its extremely high hardness compared to surface treatment such as plating. For the hard thin film that is used, it prevents cracking and peeling of the film that can occur when applied to sliding parts, ensures durability reliability, and realizes a low coefficient of friction. It is an object of the present invention to provide an automobile engine valve train shim and lifter excellent in combination with a camshaft.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors appropriately control the surface roughness and shape according to the surface hardness and film thickness of the DLC thin film and the surface roughness and shape of the counterpart material. Thus, the inventors have found that the above object can be achieved and have completed the present invention.
[0011]
That is, the automobile engine valve train shim or lifter of the present invention is an automobile engine valve train shim or lifter that slides with a cam lobe of a camshaft as a counterpart material to drive an intake / exhaust valve for an internal combustion engine,
The outermost surface of the surface that slides with the cam lobe as a counterpart material is coated with a DLC thin film made of carbon formed by an arc ion plating method,
This DLC thin film has a Knoop hardness of 1500 to 4500 kg / mm 2 , a film thickness of 0.3 to 2.0 μm, and a surface roughness Ry (μm) of the following formula Ry <{ (0.75−Hk / 8000) × h + 0.07 / 0.8} (A)
(Where h represents the thickness (μm) of the DLC thin film, and Hk represents the Knoop hardness (kg / mm 2 ) of the DLC thin film).
The surface roughness of the base material before the DLC thin film formation is 0.03 μm or less in Ra, and the maximum value of the convex shape of the sliding surface after the film formation is 10 μm or less .
[0012]
In addition, the automobile engine valve operating shim or lifter according to the present invention is characterized in that the surface hardness of the base material before the DLC thin film is formed is 45 or more in HRC.
[0013]
Further, the combination of the automobile engine valve train shim or lifter and the camshaft of the present invention is a combination of the shim or lifter and the camshaft as described above,
The cam lobe surface roughness Ra of the camshaft combined with the cam or lifter is 0.08 μm or less, and the maximum value of the concavo-convex shape is 10 μm or less for the cross-sectional roughness curve at the cam lobe nose portion in the shaft direction. It is characterized by being.
[0014]
[Action]
In the present invention, the input condition of the load that the film can tolerate is determined by the thickness and hardness of the DLC thin film . For this reason, there are input conditions for the film by appropriately defining the factors of the surface roughness and shape of the film and the surface roughness and shape of the mating material for the given film and the applied sliding condition. Controlling within the range, it is possible to prevent the occurrence of cracking or peeling of the film at the applied site, and to maintain the function as a film for a long period of time.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The present invention provides a cam follower that is a valve operating part for an internal combustion engine, a shim and a lifter crown surface that slide against a cam lobe part, and a DLC thin film by an arc ion plating method, and the surface roughness and shape of this film The object is to improve the reliability of the film by defining the roughness and shape of the counterpart material.
[0016]
The present inventors have, as a result of intensive analyzed when applied to the mating member which slides with the cam lobe portion of DLC film by arc ion plating method, or cause scratches DLC film especially during sliding, accompanying Regarding the point at which peeling occurs, the relationship between the film hardness, surface roughness, thickness, shape of the base material, surface roughness of the counterpart material, and shape has been clarified.
When the DLC thin film applied to the mating member of the cam is damaged by sliding, the form of the scratch is larger by either cracking the film and peeling the film microscopically or by dragging the peeled piece. It was confirmed that it developed into a wound.
[0017]
The cause of scratches is that the load on the film is a problem. If the problem is only the surface pressure assumed from the line contact between a cam lobe with a curvature and a flat shim, the film thickness of the DLC thin film If the value exceeds a certain value, such cracks do not occur.
One cause of the excessive load is a deposit that occurs in the film, which is a characteristic characteristic of the film formed by the PVD arc ion plating method, which is conventionally known. In this deposit, the particles flying from the target, which is the raw material of the film, are not in the form of single ions or atoms, but the particles flying in the cluster or molten state remain in the film as they are. Since the DLC thin film grows around the periphery, it is distributed in the film as hard granular protrusions.
Since these easily fall off during sliding, when they are caught in the contact portion, the pressing force from the cam lobe propagates through the DLC thin film through the particles, and the local pressure at this site is It is much higher than the Hertz surface pressure calculated in consideration of elastic deformation based on the macro curvature, and causes the film to crack.
Further, since a shearing force is applied to the cam lobe by sliding contact with the cam lobe, the flaw develops in a streak toward the outer periphery, leading to macro peeling of the film itself.
[0018]
Another cause is that the surface roughness of the cam lobe is rough, when the protrusions of the roughness increase the local surface pressure, and when the flatness of both the cam and shim is poor. This is a point contact.
In particular, the case of point contact due to the poor flatness of the cam lobe and the shim can be a factor that greatly accelerates the film cracking due to the combined effect with the above-described deposit.
[0019]
On the other hand, the analysis reveals that the thickness of the DLC thin film and the hardness of the film can cause cracking in the sliding of the cam lobe with the DIM thin film shim and lifter. It was.
As the thickness of the film increases, the amount of deformation when the particles are pressed with a certain load decreases, and thus the resistance to cracking with respect to the load increases. That is, a certain film thickness is required according to the load under each sliding condition. Regarding hardness, it is known that general hardness and ductility have a trade-off relationship, and that the film becomes harder as the film becomes harder. That is, the resistance against cracking of the film increases as the hardness of the film decreases to some extent.
[0020]
From the above analysis, when the DLC thin film is applied to the sliding part of the cam lobe, the surface roughness of the thin film is defined based on the hardness and thickness of the film. Furthermore, the surface roughness of the cam lobe and the substrate and cam lobe The present inventors have found a method for stably obtaining a low coefficient of friction by a DLC thin film by prescribing the shape in detail.
Hereinafter, the grounds for defining the hardness and thickness of the DLC thin film and the cam lobe sliding with the DLC thin film in the present invention will be described.
[0021]
In the present invention, the thickness of the DLC thin film made of carbon formed by the arc type ion plating method , which is applied to the sliding member of the mat member shim and the lifter of the cam lobe according to claim 1, is 0.3 μm or more. The reason for the definition is that, assuming an input from a cam lobe, it has been experimentally found that the film itself cracks unless this value is exceeded.
On the other hand, the reason why the thickness is set to 2.0 μm or less is that when this value is exceeded, a large residual stress is generated in the film due to the film formation, and warping of the base material itself becomes a problem. Since the warpage of the film itself is a direction in which point contact is promoted in contact with the cam lobe, a film thickness larger than this becomes a factor that indirectly accelerates film cracking due to contact failure.
[0022]
Also, the surface roughness of the DLC thin film was defined from the relationship between the hardness and thickness of the film.
The indentation depth h ′ due to the roughness protrusion of the deposit particles or cam lobe at the contact portion allowed by the DLC thin film having Knoop hardness Hk is experimentally h ′ / h when the thickness of the DLC thin film is h. = 0.6−Hk / 10000 (1) was obtained.
On the other hand, as for the surface roughness Ry of the DLC thin film, the relationship of a = 0.8Ry−0.07 (2) is established when the height of the deposit remaining in the film is a as a result of investigation on various films. I found out that
When the DLC thin film itself has a defect, it can be prevented from being scratched and cracked or peeled off by defining the surface roughness of the DLC thin film. Should be satisfied.
From the above relationship, the following formula (A) based on this
Ry <{(0.75−Hk / 8000) × h + 0.07 / 0.8} (A)
Is defined in claim 1.
[0023]
Further, claim 1 defines the base material constituting the shim and lifter for applying the DLC thin film .
The surface roughness of the substrate is reflected as the roughness of the film surface even after the film formation because the DLC thin film is very thin. For this reason, when the surface roughness of the substrate is rough, the projections having the roughness of the film surface increase the local contact surface pressure with the cam lobe and cause the film to crack. In addition, regarding the shape of the substrate, after the DLC thin film is formed, the shape tends to become convex due to the residual stress of the film, and when the convex height is too high, the contact with the cam lobe deteriorates from line contact to point contact. The analysis revealed that the increase in surface pressure during depot sit and foreign object biting is greatly amplified.
Experimentally, if the surface roughness of the substrate is Ra 0.03 μm or less, and the convex shape is 10 μm or less in the final state after the DLC thin film is formed, the DLC thin film is scratched or cracked, and accompanying these It was confirmed that it did not lead to peeling.
[0024]
Further, in
When sliding with the cam lobe, the amount of elastic deformation at the contact portion is greatly affected not only by the hardness and thickness of the DLC thin film but also by the hardness of the base material. Excessive stress is generated in the interior, leading to the occurrence of film cracking.
The maximum surface pressure generated in contact with the cam lobe is about 0.5 to 0.7 GPa. Within this range, if the hardness of the base material is 45 or more in HRC, the carbon thin film accompanying the deformation of the base material It was experimentally confirmed that the occurrence of cracks in the steel was suppressed.
[0025]
The third aspect relates to the combination of the shim or lifter of the present invention as described above and the camshaft. In this case, the surface roughness and the shape of the cam lobe which is the mating member of the shim or lifter are defined. .
If the surface roughness of the cam lobe is 0.08 μm or less in Ra, the occurrence of cracks in the DLC thin film due to the protrusion of the surface roughness of the cam lobe can be suppressed. If the surface roughness exceeds 0.08 μm, it is necessary to define the thickness of the DLC thin film on the thicker side accordingly, and the setting range of the film thickness is extremely narrow.
On the other hand, the shape of the cam lobe in the cam shaft direction induces a single contact in sliding with the counterpart material, and the contact pressure of the foreign material contained in the deposit or oil is significantly increased to significantly improve the contact surface pressure. It will be a factor that greatly accelerates the impact of. If this unevenness is 10 μm or less, the occurrence of cracks in the DLC thin film can be suppressed.
[0026]
In the combination of the shim and lifter of the present invention described above and the camshaft, the DLC thin film that covers the outermost surface of the sliding surface is limited to a diamond-like carbon (DLC) thin film formed by arc ion plating. The
[0027]
FIG. 1 shows an example of the shim of the present invention, and FIG. 2 shows an example of the valve lifter of the present invention. 1 and 2, reference numeral 1 denotes a shim base, 2 denotes a DLC thin film , 3 denotes a valve lifter base, and 4 denotes a DLC thin film .
[0028]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
[0029]
(Examples 1-6, Comparative Examples 1-8)
The effect of the present invention is to reduce the friction loss with the cam lobe by forming a DLC thin film on the shim and to obtain sufficient durability to maintain this characteristic. In order to confirm these effects, friction evaluation and durability evaluation were conducted by engine experiments in which a camshaft was directly driven by a motor using a plurality of cam lobes with different specifications and shims with a DLC thin film formed on the sliding part. went. Details of the tested combinations are shown in Table 1 as Examples 1 to 6 and Comparative Examples 1 to 8.
The DLC thin films used here were all formed by the PVD arc type ion plating method. By changing the film forming conditions, a predetermined surface hardness and film thickness were realized. Then, polishing was performed after film formation as necessary for some specifications to finish to a predetermined surface roughness. The cam lobe and shim base material were also finished to a predetermined surface roughness and shape by changing the finishing conditions in the same manner.
[0030]
Next, the evaluation conditions in the engine will be described.
The test apparatus is a V6 type 3000cc engine, one bank (right) with three cylinders taken out, and is a mechanism that directly drives the camshaft shaft on the intake side by a motor.
The torque generated during driving was averaged for one rotation, and this was used as a substitute value for the friction between the cam lobe and shim. The durability of the DLC thin film formed on the shim was evaluated by confirming the opening after sliding for a certain period of time and confirming the state of occurrence of cracking or peeling of the film.
The friction evaluation was performed after the durability evaluation. As a comparison target of friction performance, a shim subjected to a manganese phosphate coating treatment, which is widely used at present, was also tested. All tests were performed using new test pieces. Details of the test conditions are shown below. In addition, Table 1 shows the test results of Examples and Comparative Examples.
[0031]
Camshaft rotation speed: 2000 rpm (crankshaft 4000 rpm)
Endurance evaluation test time: 100 hours Opening confirmation time: 1 hour, 100 hours (after the test is completed)
Lubrication temperature: 110 ° C
Friction evaluation: After completion of the 100-hour test, it was held at 1000 rpm for 5 minutes and calculated from the average value during this period.
Oil type during lubrication test: Commercial engine oil, 10W30SG standard valve lifter material: SCM415 carburizing and quenching material cam lobe (shaft) material: FCA rutile cast iron [0032]
[Table 1]
[0033]
The test results shown in Table 1 will be described. Examples 1 to 6 all belong to the scope of the present invention, and all combinations with respect to Comparative Example 8 which is a combination using a manganese phosphate-treated shim. In the DLC thin film deposited on the shim, scratches and film cracking that affect the friction performance, and almost no delamination associated therewith were observed, even after 100 hours of engine testing. Sufficient durability was confirmed.
[0034]
In Comparative Example 1, the hardness and thickness of the DLC thin film formed on the shim are substituted into the formula defined in claim 1, and since the surface deposit is larger than the calculated upper limit of the surface roughness, the shim The surface roughness of the DLC film was greatly exceeded. At 1 hour after the test, the DLC thin film was confirmed to have radial scratches and accompanying film peeling.
Further, in Comparative Example 2, the thickness of the DLC thin film formed on the shim is as thin as 0.2 μm with respect to the thickness of 0.3 μm defined in claim 1. Much peeling of the film due to film cracking was observed mainly at the center of the shim.
In Comparative Example 3, the thickness of the DLC thin film formed on the shim is as thick as 2.2 μm with respect to the upper limit thickness of 2 μm defined in claim 1, and the convex shape of the shim after the film formation is as high as 10 μm as 12 μm. At 1 hour after the test, radial scratches and accompanying film peeling were confirmed on the DLC thin film.
[0035]
In Comparative Example 4, the base material roughness of the shim was as rough as 0.06 μm Ra compared to the roughness Ra 0.03 μm defined in claim 1 . Peeling was confirmed in the central part, and macroscopic peeling of the film was confirmed in the central part at 100 hours later, and macroscopic peeling of the film was observed in the entire shim after 100 hours.
In Comparative Example 5, the surface roughness of the cam lobe was as rough as Ra 0.12 μm with respect to the value Ra 0.08 μm specified in
In Comparative Example 6, the height of the concave shape of the cam lobe was as large as 12 μm with respect to the value 10 μm defined in claim 1 , and the DLC thin film had peeling due to the cracking of the film mainly at the center after 1 hour of the test. It was confirmed that peeling of the film was observed throughout 100 hours.
[0036]
In Comparative Example 7, the surface roughness of the shim base material is as low as HRC40 with respect to the value HRC45 or more specified in
In Comparative Example 8, the shim was subjected to manganese phosphate treatment to compare the friction, and the friction torque was 1.2 N / m, which was significantly higher than Examples 1-6.
[0037]
From the above, all of the examples showed superior friction characteristics and durability as compared with the comparative examples, and the effects of the present invention were confirmed. At the present time, it can be said that the first embodiment is the best mode from the viewpoint of friction characteristics.
[0038]
Although the present invention has been described in detail with reference to the preferred embodiments, the present invention is not limited to these embodiments, and those skilled in the art can make various modifications within the scope of the disclosure of the present invention.
[0039]
【The invention's effect】
As described above, according to the present invention, the surface roughness and shape according to the surface hardness and film thickness of the DLC thin film and the surface roughness and shape of the counterpart material are appropriately controlled. DLC thin film , which is generally considered to have low ductility due to its extremely high hardness compared to surface treatment, suppresses film cracking and peeling that can occur when applied to sliding parts, ensuring durability and low reliability. It is possible to provide an automobile engine valve train shim and lifter that achieves a friction coefficient and is excellent in friction characteristics and durability, and a combination of these with a camshaft.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a shim provided with a DLC thin film of the present invention.
FIG. 2 is a cross-sectional view showing an example of a valve lifter provided with the DLC thin film of the present invention.
[Explanation of symbols]
1 Substrate (Shim)
2 DLC
4 DLC thin film
Claims (3)
上記カムロブを相手材として摺動する面の最表面に、アーク式イオンプレーティング法により成膜された炭素から成るDLC薄膜が被覆され、
このDLC薄膜は、その表面硬さがヌープ硬さで1500〜4500kg/mm2で、膜厚が0.3〜2.0μmであり、且つ表面粗さRy(μm)が、次式
Ry<{(0.75−Hk/8000)×h+0.07/0.8}…(A)
(式中のhは上記DLC薄膜の厚さ(μm)、Hkは上記DLC薄膜のヌープ硬さ(kg/mm2)を示す)で表される関係を満足し、
DLC薄膜成膜前の基材の表面粗さがRaで0.03μm以下であり、且つ成膜後の摺動面の凸形状の最大値が10μm以下であることを特徴とする自動車エンジン動弁系シム又はリフター。An automotive engine valve train shim or lifter that slides with a cam lobe of a camshaft as a counterpart material to drive an intake / exhaust valve for an internal combustion engine,
The outermost surface of the surface that slides with the cam lobe as a counterpart material is coated with a DLC thin film made of carbon formed by an arc ion plating method,
The DLC thin film has a Knoop hardness of 1500 to 4500 kg / mm 2 , a film thickness of 0.3 to 2.0 μm, and a surface roughness Ry (μm) of the following formula Ry <{ (0.75−Hk / 8000) × h + 0.07 / 0.8} (A)
(Where h represents the thickness (μm) of the DLC thin film, and Hk represents the Knoop hardness (kg / mm 2 ) of the DLC thin film).
An automotive engine valve characterized in that the surface roughness of the base material before the DLC thin film formation is 0.03 μm or less in Ra, and the maximum value of the convex shape of the sliding surface after the film formation is 10 μm or less. System shim or lifter.
上記カム又はリフターと組み合わされる上記カムシャフトのカムロブ面の表面粗さRaが0.08μm以下であり、且つこのシャフト方向のカムロブノーズ部での断面粗さ曲線について、凹凸形状の最大値が10μm以下であることを特徴とする自動車エンジン動弁系シム又はリフターとカムシャフトとの組合せ。A combination of the shim or lifter according to claim 1 or 2 and a camshaft,
The cam lobe surface roughness Ra of the camshaft combined with the cam or the lifter is 0.08 μm or less, and the maximum value of the concavo-convex shape is 10 μm or less for the cross-sectional roughness curve at the cam lobe nose portion in the shaft direction. A combination of a vehicle engine valve train shim or lifter and a camshaft, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001117680A JP3587379B2 (en) | 2001-04-17 | 2001-04-17 | Automotive engine valve train shims and lifters, and combinations of these with camshafts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001117680A JP3587379B2 (en) | 2001-04-17 | 2001-04-17 | Automotive engine valve train shims and lifters, and combinations of these with camshafts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002309912A JP2002309912A (en) | 2002-10-23 |
JP3587379B2 true JP3587379B2 (en) | 2004-11-10 |
Family
ID=18968184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001117680A Expired - Lifetime JP3587379B2 (en) | 2001-04-17 | 2001-04-17 | Automotive engine valve train shims and lifters, and combinations of these with camshafts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3587379B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3555844B2 (en) | 1999-04-09 | 2004-08-18 | 三宅 正二郎 | Sliding member and manufacturing method thereof |
JP3776754B2 (en) * | 2001-06-12 | 2006-05-17 | Tdk株式会社 | Sim with DLC |
EP1450008B1 (en) | 2002-09-27 | 2013-02-20 | Nissan Motor Company Limited | Automobile engine valve mechanism system shim and lifter, and combination of these and cam shaft |
JP2004137535A (en) * | 2002-10-16 | 2004-05-13 | Nissan Motor Co Ltd | Hard carbon film slide member |
JP2004138128A (en) | 2002-10-16 | 2004-05-13 | Nissan Motor Co Ltd | Sliding member for automotive engine |
US6969198B2 (en) | 2002-11-06 | 2005-11-29 | Nissan Motor Co., Ltd. | Low-friction sliding mechanism |
JP4863152B2 (en) | 2003-07-31 | 2012-01-25 | 日産自動車株式会社 | gear |
KR101003865B1 (en) | 2003-08-06 | 2010-12-30 | 닛산 지도우샤 가부시키가이샤 | Low-Friction Sliding Mechanism, Low-Friction Agent Composition and Method of Friction Reduction |
JP4973971B2 (en) | 2003-08-08 | 2012-07-11 | 日産自動車株式会社 | Sliding member |
US7771821B2 (en) | 2003-08-21 | 2010-08-10 | Nissan Motor Co., Ltd. | Low-friction sliding member and low-friction sliding mechanism using same |
EP1508611B1 (en) | 2003-08-22 | 2019-04-17 | Nissan Motor Co., Ltd. | Transmission comprising low-friction sliding members and transmission oil therefor |
JP2006144100A (en) * | 2004-11-24 | 2006-06-08 | Nissan Motor Co Ltd | Sliding member for automobile engine |
JP4293370B2 (en) * | 2005-02-02 | 2009-07-08 | 株式会社リケン | Valve lifter |
JP4647528B2 (en) * | 2005-03-24 | 2011-03-09 | 本田技研工業株式会社 | Valve lifter and manufacturing method thereof |
JP4918972B2 (en) * | 2005-07-27 | 2012-04-18 | 日産自動車株式会社 | High speed sliding member |
JP5101879B2 (en) * | 2006-12-28 | 2012-12-19 | 株式会社小松製作所 | Sliding structure |
JP6359299B2 (en) * | 2014-03-14 | 2018-07-18 | 株式会社リケン | Sliding member |
-
2001
- 2001-04-17 JP JP2001117680A patent/JP3587379B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002309912A (en) | 2002-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3587379B2 (en) | Automotive engine valve train shims and lifters, and combinations of these with camshafts | |
EP1411145B1 (en) | Sliding structure for automotive engine | |
US7086362B2 (en) | Automotive engine valve mechanism system shim and lifter of these and cam shaft | |
US7246586B2 (en) | Wear-resistant coating and process for producing it | |
US20070224349A1 (en) | Wear-Resistant Coating and Method for Producing Same | |
WO1999047810A1 (en) | Combination of shim and cam | |
EP1691040A2 (en) | Valve lifter | |
JP4320605B2 (en) | A pair of sliding members | |
US8899200B2 (en) | Valve spring retainer for an internal combustion engine and a method of manufacturing the same | |
JPH11294118A (en) | Valve mechanism in internal combustion engine | |
WO2012081198A1 (en) | Drive cam and valve operating device for engine | |
JP4203971B2 (en) | Low friction carbon thin film | |
JP3639901B2 (en) | Rush adjuster | |
JPH05163909A (en) | Cam contact part structure of valve system in internal combustion engine | |
JP3795013B2 (en) | Valve lifter for valve operating mechanism of internal combustion engine | |
JP4372712B2 (en) | Titanium alloy valve lifter and manufacturing method thereof | |
CN1497147A (en) | Sliding structure for vehicle engine | |
JP2819946B2 (en) | Cam contact structure of valve train of internal combustion engine | |
JP2004176848A (en) | Combination of amorphous hard carbon coated member and ferrous member | |
KR100243840B1 (en) | Engine tappet | |
JPH11201136A (en) | Parts for internal combustion engine of automobile | |
JPH06137404A (en) | Cam follower and its manufacture | |
JPH03105004A (en) | Tappet structure | |
JPH0688506A (en) | Aluminum alloy-made valve lifter | |
JPH0578859A (en) | Surface reforming metallic member and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20040130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040412 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040621 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040805 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040805 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3587379 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080820 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080820 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100820 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110820 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110820 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120820 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120820 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |