JP3562123B2 - Achromatic gray coloring method for aluminum material - Google Patents
Achromatic gray coloring method for aluminum material Download PDFInfo
- Publication number
- JP3562123B2 JP3562123B2 JP08085196A JP8085196A JP3562123B2 JP 3562123 B2 JP3562123 B2 JP 3562123B2 JP 08085196 A JP08085196 A JP 08085196A JP 8085196 A JP8085196 A JP 8085196A JP 3562123 B2 JP3562123 B2 JP 3562123B2
- Authority
- JP
- Japan
- Prior art keywords
- bath
- coloring
- gray
- oxide film
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、アルミニウムまたはアルミニウム合金材(以下、アルミニウム材という。)の陽極酸化皮膜の着色法に関する。
【0002】
【従来の技術】
アルミニウム材は、軽量で加工性が良くかつ耐食性があるためサッシや内装パネル材などの建材、あるいは車両部品などに広く用いられているが、その耐食性向上のため陽極酸化皮膜処理を行うことが一般である。この皮膜は耐食性に優れているが、そのままでは金属地金の白色系の色合いであるため、多様な用途における色彩環境に合わない場合があり、また単調で趣味性に乏しいきらいがある。このため用途に応じて、各種の色の塗装や着色処理が施されることが多くなっている。中でも、電解着色処理は、陽極酸化処理によって形成された酸化皮膜の微細なポアー中に化学的に安定な金属塩類を析出せしめて着色するため環境に対して極めて安定しており、長期間に亘って屋外においても変色したり褪色することがなく、広く普及を見ている。
【0003】
また、最近では、建材や車両部品などアルミニウム材の用途が広まるにつれ、着色の色合いやその濃度等にも様々な要求が寄せられるようになってきている。例えば、従来建築用途向けにはブロンズ色などの濃い色調が主流であったが、近年、灰色系統のいわゆる無彩色系統の落ち着いた色調が好まれるようになってきている。従来の電解着色法によってはこれに応えて、このような色調を出そうとすることは困難であった。
【0004】
すなわち、従来のこのような灰色着色法として、特開昭61−143593号公報に記載されるNi−Zn浴中で電解着色する方法がある。この着色法によれば、あらかじめ陽極酸化処理を施したアルミニウム材をニッケル塩及び亜鉛塩を主成分として含有する着色浴に、グルコン酸等のニッケルイオンのマスキング剤、硫酸アンモニウムなどの支持電解質を添加してpH4.5以上に調整した電解着色浴中で、交流、直流または矩形波電流により電解着色することによって、陽極酸化皮膜を単純グレー色、または若干着色されたグレー系統の色調の着色皮膜を得る。この電解着色法の他の特徴は、ニッケル塩の陽極酸化皮膜の微細なポアー中への析出分散度を高めることにあって、これによって、その耐食性、耐摩耗性や付き廻り性も従来の電解着色皮膜に比して優れたものであり、他の方法によってこれ以上の着色効果を得ることは困難である。
しかしながら、このNi−Zn浴中でアルミニウム材の陽極酸化皮膜を電解着色して灰色の色調とする方法によっても、この着色法が本来ブロンズ系着色法であるため、電解条件などを種々変えて調整しても、得られる灰色にはなお黄色味が強く、より純粋な無彩色の灰色の色調を求める市場の要求を満足できなかった。
【0005】
【発明が解決しようとする課題】
本発明は、このような問題を解消すべく案出されたものであり、このNi−Zn浴法によって得られる耐食性、均一性に優れた電解着色皮膜を簡単な方法で安価に無彩色の灰色に転換することを目的とする。
【0006】
【課題を解決するための手段】
本第一の発明は、その目的を達成するため、アルミニウム材の陽極酸化皮膜をNi−Zn浴法によって電解着色した後で、モリブデン、タングステン、バナジウムのいずれかからなる混合原子価錯体を吸着させることによって灰色に着色させるものである。また本第二の発明は、アルミニウム材の陽極酸化膜にモリブデン、タングステン、バナジウムのいずれかからなる混合原子価錯体を吸着させて着色後、Ni−Zn浴法によって電解着色することによって灰色に着色させるものである。
【0007】
【作用】
本発明がその基礎とする第一工程のNi−Zn浴による電解着色法は、陽極酸化皮膜の微細な孔に、金属NiとZnとを還元して合金析出させて皮膜を灰色に着色するものである。この方法で着色した皮膜の分光反射率について見ると、図1に示すように明確なピークは現れず、長波長側でやや高くなる傾向を示す。このためこの皮膜の色は長波長側の光を若干多く反射して、黄みを帯びた灰色となる。
本発明の他の工程は、陽極酸化皮膜にモリブデン、タングステン、バナジウムのいずれかの混合原子価錯体を吸着させ、その混合原子価錯体色を発色させるものである。モリブデン酸を例にとると、モリブデン酸のアンモニウム塩などの水溶液にアルミニウム陽極酸化材を浸漬して、六価のモリブデン酸イオンを陽極酸化皮膜に吸着させ、次いで、塩化スズ、硫酸スズなどの二価のスズによって還元し、Mo(V)−O−Mo(VI)の混合原子価錯体をポアー中で形成させる。この原子価錯体は、モリブデン原子間の電子移動により青色に発色し、一般にモリブデンブルーと呼ばれる色を呈する。この方法で着色した皮膜の分光反射率特性は図2に示すように、明確なピークは表れず、長波長になるほど低くなる傾向があることが解る。
【0008】
このNi−Zn浴の電解着色皮膜に青色浸漬着色法を行うことにより、これら二つの分光反射率特性を重ね合わせることができる。すなわち、陽極酸化皮膜に対してこれら二つの着色法を順次行って後、その分光反射率特性を見ると、図3のようにこれら二つの分光反射率特性が重なって平坦な反射スペクトルとなり、特定の波長の色の表われない無彩色の灰色とすることができる。また、この着色皮膜の無彩色灰色の明度は、これらの各々の着色皮膜の反射強度から明かなように、これらの二つの着色工程の着色条件をそれぞれ調整することによって容易に制御することができる。
Ni−Zn浴電解着色法による着色皮膜は耐候性、耐光性及び均一性に優れており、上記第二の工程による着色皮膜もそれ自体が耐候性、耐光性に優れているため、本発明の着色皮膜は、従来の優れたNi−Zn浴電解着色法を利用しつつ、容易かつ安価にこれらの特性を兼ね備えた着色皮膜を得ることができる。
【0009】
【実施の形態】
本発明の着色法は、前半の工程として被処理材のアルミニウム材の脱脂処理、アルカリエッチング処理、脱スマット処理等の前処理を行い、硫酸等の酸性水溶液中で陽極酸化処理を行って、所定の膜厚の多孔性陽極酸化皮膜を形成する。これにNi−Zn浴法による電解着色処理及び浸漬着色処理を行って、灰〜黒の所要の無彩色に着色し、最後にアクリル樹脂によるクリヤー塗装を行って焼き付け処理して仕上げるか、または、沸騰水浸漬、封孔助剤入りの水に浸漬して封孔処理を行う。あるいは、上記工程において、電解着色処理と浸漬処理による着色処理の工程を前後入れ替えて行う。
【0010】
本発明に用いられるアルミニウム材は陽極酸化皮膜が形成可能であれば何でもよいが、JIS A1100材等の純Al系、JIS A6063材等のAl−Mg−Fe−Si系等の材質で、板、管、押出形材等の建材に用いられるものが好ましい。陽極酸化皮膜処理は、硫酸、蓚酸、スルホン酸等の通常の陽極酸化処理浴が使用できるが、慣用されている硫酸浴が好適である。硫酸浴法による場合10〜300g/l,浴温−5〜30℃で、膜厚3〜40μmの多孔性陽極酸化皮膜を形成する。
電解着色は、特開昭61−143593号公報記載のようなNi−Zn浴法すなわち、NiとZnの硫酸塩等を含む水溶液中で交流法、直流法あるいはパルス波形を用いる電解法等で行う。
【0011】
本発明の第一工程のNi−Zn浴による電解着色処理を具体的に説明すると、電解浴組成を、ニッケル塩として、硫酸ニッケル、硫酸ニッケルアンモニウム、酢酸ニッケル、スルファミン酸ニッケルを10〜200g/l、亜鉛塩として、硫酸亜鉛、塩化亜鉛、酢酸亜鉛を1〜50g/l(ただし、Ni:Znの濃度比=1:0.1〜0.5)、キレート化剤(NiとZnの電析速度を調節)として、酒石酸、クエン酸、グルコン酸、硼酸を1〜50g/l、支持電解質(浴の通電性を向上)として、硫酸マグネシウム、硫酸アンモニウムを1〜200g/l、アルミニウムイオン隠蔽剤として、酒石酸、クエン酸を4〜12g/l(Al化合物の析出による皮膜欠陥の誘発防止のため、Alイオン500PPM以下に維持)、からなるよう調整し、更に、規制成分として、1価の陽イオン(Na,K,NH4 )を20PPM以下(スポーリング発生の誘発防止)、浴のpHを4.5以上好ましくは5〜9(pHが4.5以下ではNi、Znの析出が困難)の範囲に維持する。陽極酸化皮膜を形成したアルミニウム材を上記電解浴中で、浴温15〜30℃、交流の周波数5〜100Hz、電解電圧10〜30V、で10秒〜15分間電解着色する。
【0012】
第2工程のモリブデン、タングステン、バナジウム等の混合原子価錯体の陽極酸化皮膜への吸着は、陽極酸化皮膜を形成したアルミニウム材を、モリブデン酸、タングステン酸、またはバナジン酸のアンモニウム塩、ナトリウム塩またはカリウム塩の水溶液からなる第1浴に浸漬してポアー中に吸着させた後、無機酸塩製還元剤としてスズ、鉄等の塩化物、硫酸塩の水溶液等からなる第2浴に浸漬してポアー中で部分的に還元処理して混合原子価錯体を生成・吸着させて行う。
混合原子価錯体による吸着処理浴の浴成分とその呈する色との関係を示すと以下のようになる。
Mo:(5−6価の混合系)・・・モリブデン酸のオキソ酸イオン、例えば(NH4 )2 MoO4 :モリブデンブルー、Moは、2〜6価の状態を取り得る、pHによって各種のポリ酸イオンが形成される。
W:(5−6価の混合系)・・・タングステン酸のオキソ酸イオン、例えばNa2 WO4 、タングステンブルー
V:(4−5価の混合系)・・・バナジン酸のオキソ酸イオン、例えば、Na3 VO4 、バナジンブルー
浴濃度は、飽和濃度までの任意の濃度でよいが、薄い場合は浸漬時間を長くすれば濃色化できる。例えば、第一浴と第2浴との濃度及び浸漬時間を、それぞれモリブデン酸アンモニウムが0.1〜400g/l、浴温0〜60℃で浸漬時間0.5〜15分、及び、硫酸スズ(II)0.1〜150g/l、浴温0〜60℃で浸漬時時間0.5〜15分間の範囲で、それぞれの濃度に合わせて浸漬時間を調節して着色処理を行う。
【0013】
ここで生じる反応は、陽極酸化皮膜の微細ポアー中に吸着されたモリブデン酸アンモニウムと浴中の硫酸スズとが反応して青色のMo(V)とMo(IV)の混合原子価錯体(モリブデンブルー)が生成するものであるが、どの程度のものが5価となっているかは現時点では確認手段がなく、明らかでない。
この混合原子価錯体は、陽極酸化皮膜中に吸着できればどのような方法でもよいが、混合原子価錯体は水溶液中では安定的に存在せず、また、沈澱し易いため、このように二浴方式での浸漬工程で混合原子価錯体を生成すると同時に吸着させる方法がよい。
この吸着工程により、電解着色により着色された陽極酸化皮膜は、その黄みをおびた灰色から無彩色の灰色となる。この方法によれば、これら電解着色と混合原子価錯体の吸着による着色との二つの工程について、それぞれ適当な条件を選ぶことにより灰〜黒色の明度の制御が容易にできる。
着色処理後は、目的に応じて封孔処理または電着塗装等の所要の処理を行う。
【0014】
実施例1
JIS A6063アルミニウム材を硫酸浴中で電流密度1.5A/dm2 で23分間電解して、10μmの陽極酸化皮膜を生成させた後、硼酸30g/l、硫酸ニッケル20g/l、硫酸亜鉛6g/l、硫酸マグネシウム25g/l、硫酸アンモニウム40g/lからなる電解着色浴(pH6.5)中で、商用交流17V定電圧で2分間電解して、黄みを帯びた灰色に着色した。
次いで、モリブデン酸アンモニウム20g/lの水溶液に5分間浸漬し、引き続いて、硫酸スズ(II)8g/lの水溶液に5分間浸漬して、モリブデンブルーを発色させ、封孔処理を施し、無彩色の灰色材を得た。測色値はL* =74.52、a* =0.05、b* =0.06であった。
ここで、L* 、a* 、b* は、日本工業規格(JIS Z8729)によるL* a* b* 表色系表示で、Ni−Zn浴による灰色着色皮膜は、L* 値で24〜80、a* は−1〜1、b* は1〜10のレベルであり、また、本発明での無彩色系の灰色は、L* 値で24〜80、a* は−1〜1、b* は−1〜1の範囲のものである。
【0015】
実施例2
JIS A6063アルミニウム材を硫酸浴中で電流密度1.5A/dm2 で23分間電解して、10μmの陽極酸化皮膜を生成させた後、モリブデン酸アンモニウム20g/lの水溶液に5分間浸漬し、引き続いて硫酸スズ(II)8g/lの水溶液に5分間浸漬して、モリブデンブルーを発色させた。
次いで、硼酸30g/l、硫酸ニッケル20g/l、硫酸亜鉛6g/l、硫酸マグネシウム25g/l、硫酸アンモニウム40g/lからなる電解着色浴(pH6.5)中で、商用交流17V定電圧で2分間電解して、封孔処理を施し、無彩色の灰色皮膜材を得た。測色値はL* =75.32、a* =0.06、b* =−0.1であった。
【0016】
実施例3
JIS A1100アルミニウム材を用いた以外は、実施例1と同様の条件で着色し、無彩色の灰色着色材が得られた。測色値はL* =68.42、a* =0.00、b* =0.12であった。
【0017】
実施例4
電解着色処理を4分間行った以外は、実施例1と同様の条件で着色し、濃い灰色材を得た。測色値はL* =52.22、a* =0.05、b* =0.18であった。
【0018】
実施例5
混合原子価錯体としてタングステン酸ナトリウム20g/lを用いた以外は、実施例1と同様の条件で着色し、灰色着色材を得た。測色値はL* =73.62、a* =0.02、b* =−0.06であった。
【0019】
実施例6
混合原子価錯体としてバナジン酸アンモニウム5g/lを用いた以外は、実施例1と同様の条件で着色し、灰色着色材を得た。測色値はL* =72.62、a* =0.02、b* =0.12であった。
【0020】
比較例
JIS A6063アルミニウム材を硫酸浴中で電流密度1.5A/dm2 で23分間電解して、10μmの陽極酸化皮膜を生成させた後、硼酸30g/l、硫酸ニッケル20g/l、硫酸亜鉛6g/l、硫酸マグシウム25g/l、硫酸アンモニウム40g/lからなる電解着色浴(pH6.5)中で、商用交流17V定電圧で2分間電解した。得られた試料の測色値はL* =76.68、a* =0.38、b* =3.25であって、黄みを帯びた灰色であった。
Ni−Zn浴電解着色法では、明度によって異なるものの、一般にb* は3以上となった。L* =75のときb* =3であって、L* が小さくなるにつれてb* は大きくなるため、明度が変わっても黄みを帯びた色となる。したがって、Ni−Zn浴電解着色法では、どの明度でも、無彩色の灰色を得ることはできない。
【0021】
【発明の効果】
以上に説明したように、本発明によれば、アルミニウム材の陽極酸化膜をNi−Zn浴電解着色法により着色して得られる耐候性、耐光性及び均一性に優れた着色皮膜を容易かつ安価に無彩色の灰色に転換することができる。
【図面の簡単な説明】
【図1】Ni−Zn浴電解着色法により着色したアルミニウム材の陽極酸化皮膜の分光反射率
【図2】モリブデン酸アンモニウム浸漬着色法により着色したアルミニウム材の陽極酸化皮膜の分光反射率
【図3】本発明の着色皮膜の分光反射率[0001]
[Industrial applications]
The present invention relates to a method for coloring an anodized film of aluminum or an aluminum alloy material (hereinafter, referred to as an aluminum material).
[0002]
[Prior art]
Aluminum materials are widely used for building materials such as sashes and interior panel materials or for vehicle parts because of their light weight, good workability, and corrosion resistance, but anodic oxide film treatment is generally performed to improve their corrosion resistance. It is. Although this film is excellent in corrosion resistance, since it has a white tint of metal intact as it is, it may not be suitable for a color environment in various uses, and is monotonous and lacks in taste. For this reason, depending on the application, painting and coloring treatment of various colors are often performed. Among them, the electrolytic coloring treatment is extremely stable to the environment because a chemically stable metal salt is precipitated in fine pores of an oxide film formed by the anodic oxidation treatment and colored, and is extremely stable for a long time. It does not discolor or fade even outdoors, and is widely used.
[0003]
In recent years, as the use of aluminum materials such as building materials and vehicle parts has become widespread, various demands have also been placed on the tint of coloring, the concentration thereof, and the like. For example, a dark color tone such as a bronze color has been mainly used for architectural applications in the past, but in recent years, a calm color tone of a so-called achromatic color system of a gray system has been favored. In response to this, it has been difficult to produce such a color tone by a conventional electrolytic coloring method.
[0004]
That is, as such a conventional gray coloring method, there is a method of electrolytic coloring in a Ni-Zn bath described in JP-A-61-143593. According to this coloring method, a masking agent for nickel ions, such as gluconic acid, and a supporting electrolyte, such as ammonium sulfate, are added to a coloring bath containing an aluminum material previously subjected to anodizing treatment as a main component containing nickel salts and zinc salts. The anodized film is colored in a simple gray color or a slightly colored gray color tone by electrolytic coloring with alternating current, direct current or rectangular wave current in an electrolytic coloring bath adjusted to pH 4.5 or higher. . Another feature of this electrolytic coloring method is that the degree of precipitation and dispersal of nickel salt in fine pores of the anodic oxide film is increased, thereby improving the corrosion resistance, abrasion resistance and throwing power of the conventional electrolytic coloring method. It is superior to a colored film, and it is difficult to obtain a further coloring effect by other methods.
However, even by a method of electrolytically coloring the anodic oxide film of the aluminum material in the Ni-Zn bath to obtain a gray color, since this coloring method is originally a bronze-based coloring method, it is adjusted by variously changing the electrolytic conditions and the like. However, the resulting gray still had a strong yellow tint, failing to satisfy the market demand for purer achromatic gray shades.
[0005]
[Problems to be solved by the invention]
The present invention has been devised in order to solve such a problem. An electrolytic colored film having excellent corrosion resistance and uniformity obtained by the Ni-Zn bath method can be obtained in an inexpensive achromatic gray color by a simple method. The purpose is to convert to.
[0006]
[Means for Solving the Problems]
According to the first aspect of the invention, in order to attain the object, after anodizing an aluminum oxide film by electrolytic coloring by a Ni-Zn bath method, a mixed valence complex composed of any of molybdenum, tungsten, and vanadium is adsorbed. It is colored in gray. Further, the second invention is characterized in that a mixed valence complex made of any of molybdenum, tungsten, and vanadium is adsorbed and colored on an anodic oxide film of an aluminum material, and then colored gray by electrolytic coloring by a Ni-Zn bath method. It is to let.
[0007]
[Action]
The electrolytic coloring method using a Ni-Zn bath in the first step on which the present invention is based is a method in which metallic Ni and Zn are reduced into fine pores of an anodized film and an alloy is deposited to color the film gray. It is. Looking at the spectral reflectance of the film colored by this method, a clear peak does not appear as shown in FIG. 1, and it tends to be slightly higher on the long wavelength side. For this reason, the color of this film reflects a little more light on the long wavelength side, and becomes yellowish gray.
In another step of the present invention, a mixed valence complex of molybdenum, tungsten, and vanadium is adsorbed on the anodic oxide film, and the mixed valence complex color is developed. Taking molybdic acid as an example, an aluminum anodic oxidizing material is immersed in an aqueous solution of an ammonium salt of molybdic acid to adsorb hexavalent molybdate ions to the anodic oxide film, and then to an aqueous solution of tin chloride, tin sulfate or the like. Reduction with valence tin causes the formation of a mixed valence complex of Mo (V) -O-Mo (VI) in the pore. The valence complex develops a blue color due to electron transfer between molybdenum atoms, and exhibits a color generally called molybdenum blue. As shown in FIG. 2, the spectral reflectance characteristic of the film colored by this method does not show a clear peak, but tends to decrease as the wavelength becomes longer.
[0008]
By performing a blue immersion coloring method on the electrolytic coloring film of the Ni-Zn bath, these two spectral reflectance characteristics can be superimposed. That is, after sequentially performing these two coloring methods on the anodic oxide film and looking at the spectral reflectance characteristics, as shown in FIG. 3, these two spectral reflectance characteristics overlap to form a flat reflection spectrum, Achromatic grey, which does not show the color of the wavelength. Further, the lightness of the achromatic gray of the colored film can be easily controlled by adjusting the coloring conditions of these two coloring steps, respectively, as apparent from the reflection intensity of each of the colored films. .
The colored film formed by the Ni-Zn bath electrolytic coloring method is excellent in weather resistance, light resistance and uniformity, and the colored film formed in the second step is itself excellent in weather resistance and light resistance. The colored film can easily and inexpensively obtain a colored film having these characteristics while utilizing a conventional excellent Ni-Zn bath electrolytic coloring method.
[0009]
Embodiment
In the coloring method of the present invention, a pretreatment such as a degreasing treatment, an alkali etching treatment, and a desmutting treatment of an aluminum material to be treated is performed as a first half step, and an anodizing treatment is performed in an acidic aqueous solution such as sulfuric acid. To form a porous anodic oxide film having a thickness of This is subjected to an electrolytic coloring treatment and a dip coloring treatment by a Ni-Zn bath method, and colored to a required achromatic color of gray to black, and finally a clear coating with an acrylic resin is performed and baked, or It is immersed in boiling water and immersed in water containing a sealing aid to perform a sealing treatment. Alternatively, in the above steps, the steps of the coloring treatment by the electrolytic coloring treatment and the immersion treatment are interchanged.
[0010]
The aluminum material used in the present invention may be any material as long as an anodic oxide film can be formed thereon. Pure aluminum materials such as JIS A1100 materials, Al-Mg-Fe-Si materials such as JIS A6063 materials, etc. Those used for building materials such as pipes and extruded profiles are preferred. For the anodic oxide film treatment, a normal anodic oxidation treatment bath such as sulfuric acid, oxalic acid or sulfonic acid can be used, but a commonly used sulfuric acid bath is preferred. In the case of the sulfuric acid bath method, a porous anodic oxide film having a thickness of 3 to 40 μm is formed at a bath temperature of -5 to 30 ° C. at a temperature of 10 to 300 g / l.
The electrolytic coloring is performed by a Ni-Zn bath method as described in JP-A-61-143593, that is, an AC method, a DC method, or an electrolytic method using a pulse waveform in an aqueous solution containing a sulfate of Ni and Zn. .
[0011]
The electrolytic coloring treatment using the Ni—Zn bath in the first step of the present invention will be specifically described. The composition of the electrolytic bath is 10 to 200 g / l of nickel sulfate, nickel ammonium sulfate, nickel acetate, and nickel sulfamate as nickel salts. 1 to 50 g / l of zinc sulfate, zinc chloride and zinc acetate as zinc salts (note that the concentration ratio of Ni: Zn = 1: 0.1 to 0.5), and a chelating agent (electrodeposition of Ni and Zn). 1-50 g / l of tartaric acid, citric acid, gluconic acid and boric acid, 1-200 g / l of magnesium sulfate and ammonium sulfate as supporting electrolytes (improving the electrical conductivity of the bath), and 1-200 g / l of aluminum sulfate as an aluminum ion concealing agent. , Tartaric acid, citric acid, 4 to 12 g / l (maintained at 500 ppm or less of Al ions to prevent induction of film defects due to precipitation of Al compounds). And integer, further, as a regulation component, monovalent cation (Na, K, NH 4) to 20PPM below (spalling occurrence of induced prevention), preferably 5 to 9 (pH pH 4.5 or more baths If it is less than 4.5, precipitation of Ni and Zn is difficult). The aluminum material having the anodic oxide film formed thereon is electrolytically colored in the electrolytic bath at a bath temperature of 15 to 30 ° C., an AC frequency of 5 to 100 Hz, and an electrolytic voltage of 10 to 30 V for 10 seconds to 15 minutes.
[0012]
In the second step, the adsorption of the mixed valence complex of molybdenum, tungsten, vanadium or the like to the anodic oxide film is performed by removing the aluminum material having the anodic oxide film formed thereon using an ammonium salt, a sodium salt of molybdic acid, tungstic acid, or vanadic acid. After being immersed in a first bath composed of an aqueous solution of a potassium salt and adsorbed in pores, it is immersed in a second bath composed of an aqueous solution of a chloride such as tin or iron or a sulfate as an inorganic acid salt reducing agent. The mixed valence complex is formed and adsorbed by partial reduction treatment in a pore.
The relationship between the bath components of the adsorption treatment bath with the mixed valence complex and the color it exhibits is as follows.
Mo: (5-6 valent mixed system) oxoacid ion of molybdic acid, for example, (NH 4 ) 2 MoO 4 : molybdenum blue, Mo can take a divalent to hexavalent state. Polyacid ions are formed.
W: (5-6 mixed system) oxoacid ion of tungstic acid, for example, Na 2 WO 4 , tungsten blue V: (4-5 valent mixed system) ... oxoacid ion of vanadic acid, For example, the concentration of the Na 3 VO 4 and vanadium blue baths may be any concentration up to the saturation concentration. For example, the concentration and immersion time of the first bath and the second bath are respectively 0.1 to 400 g / l of ammonium molybdate, 0.5 to 15 minutes of immersion time at a bath temperature of 0 to 60 ° C., and tin sulfate. (II) Coloring treatment is performed by adjusting the immersion time according to each concentration within a range of 0.1 to 150 g / l, bath temperature of 0 to 60 ° C, and immersion time of 0.5 to 15 minutes.
[0013]
The reaction occurring here is a reaction between the ammonium molybdate adsorbed in the fine pores of the anodized film and the tin sulfate in the bath, and the mixed valence complex of blue Mo (V) and Mo (IV) (molybdenum blue). ) Is generated, but it is not clear at this time how much pentavalent is present.
The mixed valence complex may be formed by any method as long as it can be adsorbed on the anodic oxide film. However, since the mixed valence complex does not exist stably in an aqueous solution and easily precipitates, a two-bath system is used. A method of producing a mixed valence complex and adsorbing it at the same time in the immersion step is preferable.
By this adsorption step, the anodic oxide film colored by the electrolytic coloring changes from its yellowish gray to achromatic gray. According to this method, the lightness of gray to black can be easily controlled by selecting appropriate conditions for the two steps of electrolytic coloring and coloring by adsorption of the mixed valence complex.
After the coloring treatment, a necessary treatment such as a sealing treatment or an electrodeposition coating is performed according to the purpose.
[0014]
Example 1
JIS A6063 aluminum material is electrolyzed in a sulfuric acid bath at a current density of 1.5 A / dm 2 for 23 minutes to form a 10 μm anodic oxide film, and then 30 g / l of boric acid, 20 g / l of nickel sulfate and 6 g / zinc sulfate. In an electrolytic coloring bath (pH 6.5) consisting of 25 g / l of magnesium sulfate and 40 g / l of ammonium sulfate, electrolysis was carried out at a constant voltage of 17 V for commercial alternating current for 2 minutes to give a yellowish gray color.
Then, it is immersed in an aqueous solution of 20 g / l of ammonium molybdate for 5 minutes, and subsequently, immersed in an aqueous solution of 8 g / l of tin (II) sulfate for 5 minutes to form molybdenum blue, subjected to sealing treatment, and subjected to achromatic coloration. Gray material was obtained. The colorimetric values were L * = 74.52, a * = 0.05, and b * = 0.06.
Here, L * , a * , and b * are represented by L * a * b * color system according to Japanese Industrial Standards (JIS Z8729), and a gray colored film formed by a Ni-Zn bath has an L * value of 24 to 80. , A * are -1 to 1 and b * are 1 to 10 levels. The achromatic gray in the present invention has an L * value of 24 to 80, and a * has -1 to 1, b * Is in the range of -1 to 1.
[0015]
Example 2
JIS A6063 aluminum material was electrolyzed in a sulfuric acid bath at a current density of 1.5 A / dm 2 for 23 minutes to form a 10 μm anodic oxide film, and then immersed in an aqueous solution of 20 g / l ammonium molybdate for 5 minutes. It was immersed in an aqueous solution of tin (II) sulfate 8 g / l for 5 minutes to develop molybdenum blue.
Then, in an electrolytic coloring bath (pH 6.5) consisting of boric acid 30 g / l, nickel sulfate 20 g / l, zinc sulfate 6 g / l, magnesium sulfate 25 g / l, and ammonium sulfate 40 g / l, at a constant voltage of 17 V commercial AC for 2 minutes. The cells were electrolyzed and sealed to obtain an achromatic gray film material. The colorimetric values were L * = 75.32, a * = 0.06, and b * =-0.1.
[0016]
Example 3
Coloring was carried out under the same conditions as in Example 1 except that JIS A1100 aluminum material was used, and an achromatic gray coloring material was obtained. The colorimetric values were L * = 68.42, a * = 0.00, and b * = 0.12.
[0017]
Example 4
Coloring was performed under the same conditions as in Example 1 except that the electrolytic coloring treatment was performed for 4 minutes to obtain a dark gray material. The colorimetric values were L * = 52.22, a * = 0.05, and b * = 0.18.
[0018]
Example 5
Coloring was performed under the same conditions as in Example 1 except that 20 g / l of sodium tungstate was used as the mixed valence complex, to obtain a gray coloring material. The colorimetric values were L * = 73.62, a * = 0.02, and b * =-0.06.
[0019]
Example 6
Coloring was performed under the same conditions as in Example 1 except that 5 g / l of ammonium vanadate was used as the mixed valence complex, to obtain a gray colored material. The colorimetric values were L * = 72.62, a * = 0.02, and b * = 0.12.
[0020]
Comparative Example JIS A6063 aluminum material was electrolyzed in a sulfuric acid bath at a current density of 1.5 A / dm 2 for 23 minutes to form a 10 μm anodic oxide film, and then boric acid 30 g / l, nickel sulfate 20 g / l, and zinc sulfate. In an electrolytic coloring bath (pH 6.5) composed of 6 g / l, magnesium sulfate 25 g / l, and ammonium sulfate 40 g / l, electrolysis was performed at a constant voltage of 17 V commercial AC for 2 minutes. The colorimetric values of the obtained sample were L * = 76.68, a * = 0.38, b * = 3.25, and were yellowish gray.
In the Ni-Zn bath electrolytic coloring method, b * was generally 3 or more, although it varied depending on the lightness. When L * = 75, b * = 3, and as L * decreases, b * increases, so that the color changes to yellowish even when the brightness changes. Therefore, in the Ni-Zn bath electrolytic coloring method, an achromatic gray cannot be obtained at any brightness.
[0021]
【The invention's effect】
As described above, according to the present invention, a colored film excellent in weather resistance, light resistance and uniformity obtained by coloring an anodic oxide film of an aluminum material by a Ni—Zn bath electrolytic coloring method is easy and inexpensive. Can be converted to a neutral gray.
[Brief description of the drawings]
FIG. 1 is a spectral reflectance of an anodic oxide film of an aluminum material colored by a Ni—Zn bath electrolytic coloring method. FIG. 2 is a spectral reflectance of an anodic oxide film of an aluminum material colored by an ammonium molybdate immersion coloring method. The spectral reflectance of the colored film of the present invention
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08085196A JP3562123B2 (en) | 1996-03-09 | 1996-03-09 | Achromatic gray coloring method for aluminum material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08085196A JP3562123B2 (en) | 1996-03-09 | 1996-03-09 | Achromatic gray coloring method for aluminum material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09241889A JPH09241889A (en) | 1997-09-16 |
JP3562123B2 true JP3562123B2 (en) | 2004-09-08 |
Family
ID=13729859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08085196A Expired - Fee Related JP3562123B2 (en) | 1996-03-09 | 1996-03-09 | Achromatic gray coloring method for aluminum material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3562123B2 (en) |
-
1996
- 1996-03-09 JP JP08085196A patent/JP3562123B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09241889A (en) | 1997-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1131160A (en) | Electrolytic colouring of anodised aluminium by means of optical interference effects | |
US4042468A (en) | Process for electrolytically coloring aluminum and aluminum alloys | |
KR960011248B1 (en) | Electrolytic process for coloring anodized aluminium surfaces with metal salts | |
US20050045487A1 (en) | Color stablization of anodized aluminum alloys | |
US4128460A (en) | Coloring by electrolysis of aluminum or aluminum alloys | |
JPH05125589A (en) | Improved electrolytic method for coloring anodized aluminum | |
JPH0313596A (en) | Colored surface formation of member composed of aluminum or aluminum alloy | |
CA1061280A (en) | Method for producing green-colored anodic oxide film on aluminum or aluminum base alloy articles | |
JP3562123B2 (en) | Achromatic gray coloring method for aluminum material | |
US5849169A (en) | Method for electrically coloring aluminum material and gray-colored aluminum material obtained thereby | |
JP3817772B2 (en) | Method for coloring anodized film of aluminum material | |
JPH11217693A (en) | Production of gray colored aluminum material and colored body thereof | |
US4806226A (en) | Process for electrolytically coloring aluminum material | |
JPH09241888A (en) | Method for coloring aluminum material yellowish brown | |
EP0936288A2 (en) | A process for producing colour variations on electrolytically pigmented anodized aluminium | |
JP3202949B2 (en) | Method for forming colored film of aluminum and aluminum alloy | |
JP3445154B2 (en) | Manufacturing method of colored aluminum material | |
KR870008059A (en) | Electrolytic coloring of chromium alloy | |
JPH10158891A (en) | Black aluminum material and coloration method of aluminum material | |
JPH0770791A (en) | Electrolytic coloring method for aluminum or aluminum alloy | |
JPH0665759B2 (en) | Method for coloring aluminum or aluminum alloy | |
JP2707008B2 (en) | Blue coloring method for aluminum or aluminum alloy | |
JPH11269696A (en) | Production of electrode deposition coated aluminum material | |
JP2003119594A (en) | Workpiece consisting of aluminum alloy and surface treatment method therefor | |
GB2127849A (en) | Electrocoloring aluminum or alloy thereof in a yellow to orange color |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040511 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040524 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |