[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000014127A - Gate drive circuit for voltage-driven semiconductor device - Google Patents

Gate drive circuit for voltage-driven semiconductor device

Info

Publication number
JP2000014127A
JP2000014127A JP10195110A JP19511098A JP2000014127A JP 2000014127 A JP2000014127 A JP 2000014127A JP 10195110 A JP10195110 A JP 10195110A JP 19511098 A JP19511098 A JP 19511098A JP 2000014127 A JP2000014127 A JP 2000014127A
Authority
JP
Japan
Prior art keywords
voltage
gate
turned
reverse bias
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10195110A
Other languages
Japanese (ja)
Other versions
JP3568024B2 (en
Inventor
Kunio Matsubara
邦夫 松原
Kiyoaki Sasagawa
清明 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19511098A priority Critical patent/JP3568024B2/en
Publication of JP2000014127A publication Critical patent/JP2000014127A/en
Application granted granted Critical
Publication of JP3568024B2 publication Critical patent/JP3568024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To lower a spike voltage at turning off, and to shorten the operation starting time by clamping a gate voltage at turning off to a voltage between a reverse bias voltage and a threshold voltage only for a constant time, and returning it to the reverse bias voltage after that. SOLUTION: If a signal changes from an on-signal to an off-signal, a transistor TR4 is turned on instantly, and a current flows between the base and the emitter of a transistor TR3 and turns it on. Following this, charging of the capacitor (input capacity) between the gate and the emitter of an insulated gate bipolar transistor IGBT is started toward a reverse bias voltage, and the insulated gate bipolar transistor IGBT starts its turn-on operation. Then when it reaches the zener voltage VZD1 of a zener diode ZD1, the transistor TR3 is turned off, and the charging into the input capacity of the insulated gate bipolar transistor IGBT is stopped and the voltage between the gate and the emitter is clamped. Here, the value of the zener voltage VZD1 is set to a value, which makes the gate voltage a value between a threshold voltage and the reverse bias voltage. If the transistor TR4 is turned off, if time set by a timer passes after inputting of an off-signal, a gate voltage clamping circuit GC is cut off, and the insulated gate bipolar transistor IGBT is turned off by the reverse bias voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力変換装置を
構成するIGBT(絶縁ゲートバイポーラトランジス
タ)等の、電圧駆動型半導体素子のゲート駆動回路に関
する。
The present invention relates to a gate drive circuit for a voltage-driven semiconductor device such as an IGBT (Insulated Gate Bipolar Transistor) constituting a power converter.

【0002】[0002]

【従来の技術】図5に電圧駆動型半導体素子としてIG
BTを用いた電圧形インバータの従来例を示す。これ
は、直流電圧源Ed、平滑用コンデンサCF 、IGBT
素子Q11,Q12,Q21,Q22から構成され、例
えばQ12とQ21をオンすることで正の直流電圧を、
また、Q11とQ22をオンすることで負の直流電圧を
出力するようになっている。出力電圧が正→負と交互に
出力されることにより、交流電圧が出力され、これによ
って、負荷抵抗RL と負荷リアクトルLに負荷電流IL
を流すようにしている。
2. Description of the Related Art FIG.
A conventional example of a voltage source inverter using a BT is shown. This includes a DC voltage source Ed, a smoothing capacitor C F , an IGBT
It comprises elements Q11, Q12, Q21 and Q22. For example, turning on Q12 and Q21 produces a positive DC voltage.
Further, by turning on Q11 and Q22, a negative DC voltage is output. By alternately outputting the output voltage from positive to negative, an AC voltage is output, whereby the load current I L is applied to the load resistance RL and the load reactor L.
Is flowing.

【0003】図6は図5の電圧形インバータでQ21が
スイッチングするときの等価回路図であり、同図のLm
は回路の配線インダクタンス、FDW11はQ11に内
蔵されているフリーホィールダイオードを示す。図7
に、Q21ターンオフ時のコレクタ−エミッタ間電圧V
CEおよびコレクタ電流IC の波形を示す。図6におい
て、Q21がオン状態の時はEd→Lm→RL →L→Q
21→Edの経路で電流が流れる。Q21がターンオフ
すると、Q21のコレクタ−エミッタ間電圧VCEが、図
7のように上昇する。VCEが直流電圧Edに達しFDW
11がオンすることによって、負荷電流IL はFDW1
1に転流して、コレクタ電流IC が図7のように減少す
る。この電流変化率(減少率)−di/dtにより、回
路配線インダクタンスLmに誘起電圧VLm(=ΔVSP
が発生するため、Q21に対して図7に示すように、E
d+ΔVSPが印加される。スパイク電圧ΔVSPはLm×
(−di/dt)となるので、ΔVSPを減少させるため
には、回路配線インダクタンスLmまたは電流変化率−
di/dtを低減する必要がある。しかし、回路配線イ
ンダクタンスLmの低減には回路配線上の制約(制限)
があるので、ΔVSPを減少させるには電流変化率−di
/dtを低減させるのが一般的な方法である。
FIG. 6 is an equivalent circuit diagram when Q21 switches in the voltage source inverter of FIG.
Denotes a wiring inductance of the circuit, and FDW11 denotes a free wheel diode built in Q11. FIG.
And the collector-emitter voltage V when the Q21 is turned off.
Shows the waveform of the CE and the collector current I C. In FIG. 6, when Q21 is on, Ed → Lm → RL → L → Q
A current flows through a path from 21 to Ed. When Q21 is turned off, the collector of Q21 - emitter voltage V CE rises as shown in FIG. 7. V CE reaches DC voltage Ed and FDW
By 11 is turned on, the load current I L FDW1
Commutated to 1, the collector current I C decreases as shown in FIG. 7. The induced voltage V Lm (= ΔV SP ) is applied to the circuit wiring inductance Lm by the current change rate (decrease rate) -di / dt.
As shown in FIG. 7, E21 is generated for Q21.
d + ΔV SP is applied. Spike voltage ΔV SP is Lm ×
(−di / dt), and to reduce ΔV SP , the circuit wiring inductance Lm or the current change rate −
It is necessary to reduce di / dt. However, there is a restriction (limitation) on the circuit wiring to reduce the circuit wiring inductance Lm.
Therefore, to reduce ΔV SP , the current change rate −di
It is a general method to reduce / dt.

【0004】図8に、電流変化率−di/dtを低減さ
せる方法の従来例を示す。これは、IGBTのゲート駆
動回路を示すもので、ターンオフ時には図8のM−N1
5間にオフゲート用電源が接続される。そのとき、電流
はゲート電源(M)→IGBTゲート入力容量(IGB
Tゲート−エミッタ間)→Rg(off)→TR2→ゲ
ート電源(N15)のルートで流れる。この電流が流れ
るとIGBT入力容量に逆バイアス電圧が充電されるこ
とによって、IGBTがターンオフする。その際、ゲー
ト抵抗Rg(off)を大きくすることにより、IGB
T入力容量に対する充電時間を遅らせて、ゲート電圧を
緩やかに変化させることができる。これにより、IGB
Tの電流変化率−di/dtが低減され、その結果、ス
パイク電圧ΔVSPを図9の点線で示すように低減するこ
とができる。なお、オフ用ゲート電源の電圧値を小さく
し、逆バイアス電圧を浅くすることで、ゲート電圧を緩
やかに変化させることができる。これによっても、IG
BTの電流変化率−di/dtが低減され、スパイク電
圧ΔVSPを低減できる。
FIG. 8 shows a conventional example of a method for reducing the current change rate -di / dt. This shows an IGBT gate drive circuit, and when turned off, M-N1 of FIG.
The power supply for off-gate is connected between 5. At that time, the current is changed from the gate power supply (M) to the IGBT gate input capacitance (IGB
It flows through the route of T gate-emitter) → Rg (off) → TR2 → gate power supply (N15). When this current flows, the IGBT input capacitor is charged with a reverse bias voltage, and the IGBT is turned off. At this time, by increasing the gate resistance Rg (off), the IGB
By delaying the charging time for the T input capacitance, the gate voltage can be gradually changed. Thereby, IGB
The current change rate -di / dt of T is reduced, and as a result, the spike voltage ΔV SP can be reduced as shown by the dotted line in FIG. The gate voltage can be changed gradually by reducing the voltage value of the off gate power supply and decreasing the reverse bias voltage. Because of this, IG
The current change rate -di / dt of the BT is reduced, and the spike voltage ΔV SP can be reduced.

【0005】[0005]

【発明が解決しようとする課題】上述のように、IGB
Tターンオフ時に、ゲート抵抗Rg(off)を大きく
することでスパイク電圧ΔVSPを低減できるが、図9に
示すようにオン・オフ信号が入力されてからIGBTが
動作するまでの時間遅れが増加するという問題がある。
また、逆バイアス電圧を浅くすることでも、スパイク電
圧ΔVSPを低減できるが、逆バイアス電圧が浅いと、種
々のノイズやゲート駆動回路の誤動作により、ゲート電
圧がIGBTのしきい値電圧を越えやすくなるため、I
GBTがオン(誤動作)しやすくなるという問題もあ
る。したがって、この発明の課題は素子ターンオフ時の
スパイク電圧の低減,オン・オフ信号が入力されてから
IGBTが動作するまでの時間短縮を図り、誤動作を防
止することにある。
As described above, IGB
At the time of T-turn-off, the spike voltage ΔV SP can be reduced by increasing the gate resistance Rg (off), but the time delay from the input of the on / off signal to the operation of the IGBT increases as shown in FIG. There is a problem.
The spike voltage ΔV SP can also be reduced by making the reverse bias voltage shallow, but if the reverse bias voltage is shallow, the gate voltage easily exceeds the threshold voltage of the IGBT due to various noises and malfunctions of the gate drive circuit. So I
There is also a problem that the GBT is easily turned on (malfunction). SUMMARY OF THE INVENTION It is therefore an object of the present invention to reduce a spike voltage when an element is turned off, to shorten the time from when an on / off signal is input to when the IGBT operates, and to prevent malfunction.

【0006】[0006]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、電圧駆動型半導体素子か
らなる電力変換装置に対し、前記電圧駆動型半導体素子
のスイッチングを制御する制御装置と、この制御装置か
らの信号に基づき電圧駆動型半導体素子を駆動する駆動
回路と、電圧駆動型半導体素子のターンオフ時のゲート
電圧を一定期間クランプするクランプ回路とを設け、前
記電圧駆動型半導体素子ターンオフ時のゲート電圧を、
前記クランプ回路により逆バイアス電圧としきい値電圧
との間の電圧に一定時間だけクランプし、その後は逆バ
イアス電圧に戻すことにより、電圧駆動型半導体素子タ
ーンオフ時に発生するスパイク電圧の低減と、制御信号
を受けてから素子がターンオフ開始するまでの時間短縮
とを図るようにしている。上記請求項1の発明において
は、前記ゲート電圧をクランプする一定時間を、電圧駆
動型半導体素子のスパイク電圧発生期間とし、素子が通
常オフしている期間の誤動作防止を図ることができる
(請求項2の発明)。
According to the first aspect of the present invention, there is provided a control apparatus for controlling the switching of a voltage-driven semiconductor device in a power conversion device comprising the voltage-driven semiconductor device. A driving circuit for driving the voltage-driven semiconductor device based on a signal from the control device, and a clamp circuit for clamping a gate voltage when the voltage-driven semiconductor device is turned off for a predetermined period, wherein the voltage-driven semiconductor device is provided. The gate voltage when the element is turned off is
The clamp circuit clamps the voltage between the reverse bias voltage and the threshold voltage for a certain period of time, and thereafter returns to the reverse bias voltage, thereby reducing the spike voltage generated at the time of turning off the voltage-driven semiconductor element and controlling the control signal. Thus, the time from when the element is turned off to when the element is turned off is shortened. According to the first aspect of the present invention, the predetermined time during which the gate voltage is clamped is set as a spike voltage generation period of the voltage-driven semiconductor device, and malfunction can be prevented during a period in which the device is normally turned off. 2).

【0007】[0007]

【発明の実施の形態】図1はこの発明の実施の形態を示
す構成図、図2は図1で用いられるゲート電圧クランプ
回路の具体例を示す回路図である。すなわち、この発明
は従来例に対しゲート電圧クランプ回路GCを付加して
構成される。ゲート電圧クランプ回路GCとしては、例
えば図2に示すような、トランジスタTR3、MOSF
ET素子TR4、ツェナーダイオードZD1、コンデン
サC1、抵抗R1,R2,R3およびタイマーTM等か
らなる回路とすることができる。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a circuit diagram showing a specific example of a gate voltage clamp circuit used in FIG. That is, the present invention is configured by adding a gate voltage clamp circuit GC to the conventional example. As the gate voltage clamp circuit GC, for example, as shown in FIG.
A circuit including the ET element TR4, the Zener diode ZD1, the capacitor C1, the resistors R1, R2, R3, the timer TM, and the like can be provided.

【0008】次に、図2の回路の動作について、図3を
参照して説明する。なお、オフ用のゲート電源としては
15Vの電源が接続されているものとし、逆バイアス電
圧は−15Vであるとする。いま、図3のオン・オフ信
号がオンからオフに変わると、TR4が図示のように即
座にオンし、TR3のベース−エミッタ間に電流が流れ
てこれがオンする。TR3がオンすると、IGBTのゲ
ート−エミッタ間のコンデンサ(入力容量)が逆バイア
ス電圧に向かって充電を開始し、IGBTはターンオフ
動作を開始する。そして、ZD1のツェナー電圧VZD1
に達するとTR3がオフし、IGBTの入力容量への充
電が止まり、ゲート−エミッタ間の電圧がクランプされ
る。ここに、ツェナー電圧VZD1 の値は、ゲート電圧が
しきい値電圧から逆バイアス電圧の間になるような値に
設定するものとする。
Next, the operation of the circuit of FIG. 2 will be described with reference to FIG. It is assumed that a power supply of 15 V is connected as a gate power supply for turning off, and the reverse bias voltage is -15 V. Now, when the on / off signal in FIG. 3 changes from on to off, TR4 immediately turns on as shown, and a current flows between the base and the emitter of TR3 to turn it on. When TR3 is turned on, the capacitor (input capacitance) between the gate and the emitter of the IGBT starts charging toward the reverse bias voltage, and the IGBT starts to turn off. Then, the Zener voltage V ZD1 of ZD1
Is reached, TR3 is turned off, charging of the input capacitance of the IGBT is stopped, and the voltage between the gate and the emitter is clamped. Here, the value of the Zener voltage V ZD1 is set to a value such that the gate voltage is between the threshold voltage and the reverse bias voltage.

【0009】TR4のゲートにはタイマー回路TMが接
続されており、したがって、TR4はオフ信号が入力さ
れてからタイマー時間後にオフする。TR4がオフする
と、ゲート電圧クランプ回路GCは切り離され、IGB
Tのゲート−エミッタ間電圧VGEは逆バイアス電圧(−
15V)まで充電され、IGBTは完全なオフ状態とな
る。以上のように、ここではIGBTのターンオフ時に
は、IGBTのゲート電圧は図3に示すように、逆バイ
アス電圧としきい値電圧との間の電圧値にクランプされ
るため、従来のターンオフ時(図3の点線参照)に比べ
てIGBTの入力容量に緩やかに充電が行なわれ、した
がって図3に実線で示すように、IGBTの電流変化率
−di/dtが低減され、スパイク電圧も抑制されるこ
とになる。
A timer circuit TM is connected to the gate of TR4, so that TR4 turns off after a timer period from the input of the OFF signal. When TR4 is turned off, the gate voltage clamp circuit GC is disconnected, and IGB
The gate-emitter voltage V GE of T is the reverse bias voltage (−
15V), and the IGBT is completely turned off. As described above, when the IGBT is turned off, the gate voltage of the IGBT is clamped to a voltage value between the reverse bias voltage and the threshold voltage as shown in FIG. (See dotted line), the input capacitance of the IGBT is more slowly charged, and therefore, as shown by the solid line in FIG. 3, the current change rate -di / dt of the IGBT is reduced, and the spike voltage is suppressed. Become.

【0010】図4はこの発明によってスパイク電圧も抑
制する場合と、従来一般的に用いられるゲート抵抗の調
整によってスパイク電圧を抑制する従来方式の場合とを
比較説明するための波形図である。同図に示すように、
オン・オフ信号が入力されてからIGBTがターンオフ
動作を開始するまでの時間が、この発明による場合はT
1、従来方式の場合はT2で、T1<T2であることか
ら、この発明による場合の方が動作遅れ時間の増加を抑
制できることが分かる。
FIG. 4 is a waveform diagram for comparing and explaining the case where the spike voltage is suppressed by the present invention and the case of the conventional method which suppresses the spike voltage by adjusting the gate resistance which is generally used conventionally. As shown in the figure,
The time from the input of the on / off signal to the start of the turn-off operation of the IGBT is T according to the present invention.
1. In the case of the conventional method, T2 is satisfied, and T1 <T2. Therefore, it can be seen that the increase of the operation delay time can be suppressed in the case of the present invention.

【0011】また、ゲート電圧のクランプ時間を、電圧
駆動型半導体素子のスパイク電圧発生期間とすれば、オ
フ時におけるIGBTの誤動作を防ぐことが可能とな
る。さらに、ゲート電圧クランプ期間中にIGBT誤動
作によりこれがオンしてしまった場合でも、対向アーム
のIGBTはデッドタイム期間中でオフしているので、
アーム短絡となるおそれもない。
Further, if the clamp time of the gate voltage is the spike voltage generation period of the voltage-driven semiconductor element, it is possible to prevent the IGBT from malfunctioning when it is off. Further, even if the IGBT is turned on due to a malfunction of the IGBT during the gate voltage clamp period, the IGBT of the opposite arm is turned off during the dead time period.
There is no risk of arm short-circuit.

【0012】[0012]

【発明の効果】この発明によれば、ゲート電圧クランプ
回路を設けて、ターンオフ動作中にゲート電圧を一定期
間クランプし、その後は元に戻すことによってIGBT
スイッチング動作を緩やかにし、かつ、入力信号からス
イッチング動作までの遅れ時間を増加させることなく、
スパイク電圧を抑制することができる。また、ゲート電
圧をクランプする一定時間を、電圧駆動型半導体素子の
スパイク電圧発生期間に限定することで、スパイク電圧
の抑制効果だけでなく、IGBTターンオフおよび通常
オフ時のIGBT誤動作によるアーム短絡を防ぐことが
できるという利点もある。
According to the present invention, the gate voltage clamp circuit is provided to clamp the gate voltage for a certain period during the turn-off operation, and thereafter, to restore the IGBT to the original state.
Without slowing down the switching operation and increasing the delay time from the input signal to the switching operation,
Spike voltage can be suppressed. In addition, by limiting the fixed time for clamping the gate voltage to the spike voltage generation period of the voltage-driven semiconductor device, not only the effect of suppressing the spike voltage but also preventing the arm short circuit due to the IGBT turn-off and the IGBT malfunction during the normal off-time. There is also the advantage that it can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】図1のゲート電圧クランプ回路の具体例を示す
回路図である。
FIG. 2 is a circuit diagram showing a specific example of the gate voltage clamp circuit of FIG.

【図3】図2の動作説明図である。FIG. 3 is an operation explanatory diagram of FIG. 2;

【図4】スパイク電圧の抑制効果について、この発明に
よるものと従来方式とを比較して説明する説明図であ
る。
FIG. 4 is an explanatory diagram for explaining the effect of suppressing the spike voltage by comparing the effect according to the present invention with the conventional method.

【図5】IGBTを用いた電圧形インバータ主回路の一
般例を示す回路図である。
FIG. 5 is a circuit diagram showing a general example of a voltage-source inverter main circuit using an IGBT.

【図6】図5で素子Q21が動作する場合を説明するた
めの等価回路図である。
FIG. 6 is an equivalent circuit diagram for explaining a case where an element Q21 operates in FIG.

【図7】図6の動作説明図である。FIG. 7 is an operation explanatory diagram of FIG. 6;

【図8】ゲート駆動回路の従来例を示す回路図である。FIG. 8 is a circuit diagram showing a conventional example of a gate drive circuit.

【図9】図8の動作説明図である。FIG. 9 is an operation explanatory diagram of FIG. 8;

【符号の説明】[Explanation of symbols]

IF…インターフェイス回路、GC…ゲート電圧クラン
プ回路、TM…タイマー、TR1〜TR3…トランジス
タ、TR4…FET、ZD1…ツェナーダイオード、Q
11〜Q22,IGBT…スイッチ素子(絶縁ゲートバ
イポーラトランジスタ)、R…抵抗、C…コンデンサ、
Ed…直流電圧源、L…リアクトル。
IF: Interface circuit, GC: Gate voltage clamp circuit, TM: Timer, TR1 to TR3: Transistor, TR4: FET, ZD1: Zener diode, Q
11 to Q22, IGBT: switch element (insulated gate bipolar transistor), R: resistor, C: capacitor,
Ed: DC voltage source, L: Reactor.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H740 AA04 BA11 BB05 BB08 BB10 BC01 BC02 HH06 JA01 JB02 5J055 AX02 AX22 AX56 BX16 CX07 DX09 EX02 EX06 EX11 EY01 EY10 EY13 EY17 EY21 EZ16 GX01 GX04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H740 AA04 BA11 BB05 BB08 BB10 BC01 BC02 HH06 JA01 JB02 5J055 AX02 AX22 AX56 BX16 CX07 DX09 EX02 EX06 EX11 EY01 EY10 EY13 EY17 EY21 EZ16 GX01 GX04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電圧駆動型半導体素子からなる電力変換
装置に対し、 前記電圧駆動型半導体素子のスイッチングを制御する制
御装置と、この制御装置からの信号に基づき電圧駆動型
半導体素子を駆動する駆動回路と、電圧駆動型半導体素
子のターンオフ時のゲート電圧を一定期間クランプする
クランプ回路とを設け、 前記電圧駆動型半導体素子ターンオフ時のゲート電圧
を、前記クランプ回路により逆バイアス電圧としきい値
電圧との間の電圧に一定時間だけクランプし、その後は
逆バイアス電圧に戻すことにより、電圧駆動型半導体素
子ターンオフ時に発生するスパイク電圧の低減と、制御
信号を受けてから素子がターンオフ開始するまでの時間
短縮とを図ることを特徴とする電圧駆動型半導体素子の
ゲート駆動回路。
1. A control device for controlling the switching of the voltage-driven semiconductor device, and a drive for driving the voltage-driven semiconductor device based on a signal from the control device. A circuit and a clamp circuit for clamping a gate voltage at the time of turn-off of the voltage-driven semiconductor element for a certain period of time. The spike voltage generated at the time of turning off the voltage-driven semiconductor device is reduced by clamping the voltage to a voltage for a certain period of time and thereafter returning to the reverse bias voltage, and the time from receiving the control signal until the device starts turning off. A gate drive circuit for a voltage-driven semiconductor device, characterized by shortening.
【請求項2】 前記ゲート電圧をクランプする一定時間
を、電圧駆動型半導体素子のスパイク電圧発生期間と
し、素子が通常オフしている期間の誤動作防止を図るこ
とを特徴とする請求項1に記載の電圧駆動型半導体素子
のゲート駆動回路。
2. The device according to claim 1, wherein the predetermined time for clamping the gate voltage is a spike voltage generation period of the voltage-driven semiconductor device, and a malfunction is prevented during a period when the device is normally off. Gate drive circuit for a voltage-driven semiconductor device.
JP19511098A 1998-06-26 1998-06-26 Gate drive circuit for voltage driven semiconductor device Expired - Fee Related JP3568024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19511098A JP3568024B2 (en) 1998-06-26 1998-06-26 Gate drive circuit for voltage driven semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19511098A JP3568024B2 (en) 1998-06-26 1998-06-26 Gate drive circuit for voltage driven semiconductor device

Publications (2)

Publication Number Publication Date
JP2000014127A true JP2000014127A (en) 2000-01-14
JP3568024B2 JP3568024B2 (en) 2004-09-22

Family

ID=16335674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19511098A Expired - Fee Related JP3568024B2 (en) 1998-06-26 1998-06-26 Gate drive circuit for voltage driven semiconductor device

Country Status (1)

Country Link
JP (1) JP3568024B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8531857B2 (en) 2007-09-10 2013-09-10 Toyota Jidosha Kabushiki Kaisha Power supply device and method for driving the same
US9059709B2 (en) 2013-01-21 2015-06-16 Denso Corporation Gate drive circuit for transistor
CN106452404A (en) * 2016-07-25 2017-02-22 天津理工大学 Active gate control circuit and IGBT electromagnetic interference inhibition method thereof
CN115632642A (en) * 2022-12-21 2023-01-20 杭州飞仕得科技股份有限公司 IGBT turn-off voltage spike suppression circuit and related equipment
CN116722729A (en) * 2023-08-09 2023-09-08 苏州贝克微电子股份有限公司 Circuit for reducing turn-off peak voltage of switching tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005950A (en) * 2019-06-26 2021-01-14 株式会社デンソー Transistor drive circuit and gate voltage control method of transistor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8531857B2 (en) 2007-09-10 2013-09-10 Toyota Jidosha Kabushiki Kaisha Power supply device and method for driving the same
US9059709B2 (en) 2013-01-21 2015-06-16 Denso Corporation Gate drive circuit for transistor
CN106452404A (en) * 2016-07-25 2017-02-22 天津理工大学 Active gate control circuit and IGBT electromagnetic interference inhibition method thereof
CN106452404B (en) * 2016-07-25 2023-06-06 天津理工大学 Active gate control circuit and IGBT electromagnetic interference suppression method thereof
CN115632642A (en) * 2022-12-21 2023-01-20 杭州飞仕得科技股份有限公司 IGBT turn-off voltage spike suppression circuit and related equipment
CN115632642B (en) * 2022-12-21 2023-03-10 杭州飞仕得科技股份有限公司 IGBT turn-off voltage spike suppression circuit and related equipment
CN116722729A (en) * 2023-08-09 2023-09-08 苏州贝克微电子股份有限公司 Circuit for reducing turn-off peak voltage of switching tube
CN116722729B (en) * 2023-08-09 2023-11-03 苏州贝克微电子股份有限公司 Circuit for reducing turn-off peak voltage of switching tube

Also Published As

Publication number Publication date
JP3568024B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP3339311B2 (en) Driver circuit for self-extinguishing semiconductor device
JP4432215B2 (en) Semiconductor switching element gate drive circuit
EP0817381B1 (en) Semiconductor device drive circuit
JP3141613B2 (en) Method and circuit for driving voltage-driven element
JP2669117B2 (en) Drive circuit for voltage-driven semiconductor devices
EP1250741B1 (en) Inrush current limiting circuit, power source device and power conversion device
JPWO2009044602A1 (en) Gate drive circuit
JP3577807B2 (en) Driver circuit for self-extinguishing semiconductor device
JP3052792B2 (en) Inverter device
JPH05276761A (en) Method and circuit for detecting overcurrent in power semiconductor element and inverter using the same
JPH1075164A (en) Gate drive circuit for voltage control-type switching element
JP4100134B2 (en) Inverter
JP3532377B2 (en) Gate drive circuit for voltage driven switch element
JP4506276B2 (en) Drive circuit for self-extinguishing semiconductor device
JP2000014127A (en) Gate drive circuit for voltage-driven semiconductor device
CN118077128A (en) Driving circuit for power semiconductor element, power semiconductor module, and power conversion device
JPH0250518A (en) Driving circuit for static induced type self-arc extinction element and inverter device static induced type self-arc-suppressing element
JP2000324801A (en) Drive circuit for voltage-controlled semiconductor device
JP3337796B2 (en) Drive circuit for voltage-driven elements
JPH1169778A (en) Gate drive circuit in power converter
JP2000139071A (en) Gate driving circuit for power converter
JPH10209832A (en) Semiconductor switch circuit
JP3558324B2 (en) Gate drive device of voltage drive type device
JPH11234108A (en) Switching device for switching inductive load
JP2003143831A (en) Gate drive circuit

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees