[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3423140B2 - Banknote identification method - Google Patents

Banknote identification method

Info

Publication number
JP3423140B2
JP3423140B2 JP04132996A JP4132996A JP3423140B2 JP 3423140 B2 JP3423140 B2 JP 3423140B2 JP 04132996 A JP04132996 A JP 04132996A JP 4132996 A JP4132996 A JP 4132996A JP 3423140 B2 JP3423140 B2 JP 3423140B2
Authority
JP
Japan
Prior art keywords
bill
identified
waveform
fluctuation component
sensor input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04132996A
Other languages
Japanese (ja)
Other versions
JPH09231438A (en
Inventor
英隆 阪井
英樹 中島
宏之 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04132996A priority Critical patent/JP3423140B2/en
Publication of JPH09231438A publication Critical patent/JPH09231438A/en
Application granted granted Critical
Publication of JP3423140B2 publication Critical patent/JP3423140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inspection Of Paper Currency And Valuable Securities (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は紙幣識別方法に係
り、特に識別される紙幣の各種汚れ等による識別精度へ
の影響を抑制する紙幣識別方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bill discriminating method, and more particularly to a bill discriminating method for suppressing the influence on the discriminating accuracy due to various stains on bills to be discriminated.

【0002】[0002]

【従来の技術】本発明に先行する技術として特開昭60
−215293号公報がある。当該公報には紙幣を複数
のゾーンに分け、各ゾーンごとの検出データを前記各ゾ
ーンに対して予め求められている基準データと比較し、
前記各ゾーンにおける比較結果に基づいて前記紙幣を識
別する紙幣識別方法において、前記基準データを前記紙
幣の表裏、向き及び識別時の位置ずれに対応して複数個
設定すると共に、紙幣1枚に対して前記各ゾーンのデー
タを総計し、その総計値に対する比率値で基準パターン
データとして記憶しておき、前記検出データの総和値を
求めると共に、この総和値に対する比率値を検出パター
ンデータとして計算し、前記検出パターンデータが前記
基準パターンデータの許容値範囲内にある否かを判断
し、前記各ゾーン毎に前記基準パターンデータと前記検
出パターンデータとの差の絶対値を距離計算して総計
し、この距離計算の総計値が許容値よりも小さいか否か
を判断して紙幣識別を行うことを特徴とする紙幣識別方
法が開示されている。
2. Description of the Related Art As a technique prior to the present invention, Japanese Patent Laid-Open No. Sho 60
-215293 is available. In the publication, the banknote is divided into a plurality of zones, and the detection data for each zone is compared with reference data that is obtained in advance for each zone.
In the banknote identification method for identifying the banknote based on the comparison result in each zone, the reference data is set in plural corresponding to the front and back of the banknote, the orientation, and the positional deviation at the time of identification, and for one banknote. Then, the data of each zone is summed up and stored as reference pattern data with a ratio value to the total value, and a total value of the detection data is obtained, and a ratio value to this total value is calculated as detection pattern data, It is determined whether or not the detection pattern data is within the allowable value range of the reference pattern data, and the absolute value of the difference between the reference pattern data and the detection pattern data is calculated for each zone and totaled, There is disclosed a bill identifying method characterized by performing bill identification by determining whether the total value of the distance calculation is smaller than an allowable value.

【0003】[0003]

【発明が解決しようとする課題】上記従来の汚れ、歪
み、その他の理由による紙幣の識別のバラツキを閾値を
用いて吸収する方法では、ある程度の識別のバラツキを
許容してしまうため、偽券を真券と誤認してしまうとい
う問題点があり、識別精度の低下の原因となっていた。
In the conventional method of absorbing the variation of bill identification due to stains, distortion, and other reasons by using the threshold value, the variation of identification is allowed to some extent. There is a problem that it is mistakenly recognized as a genuine note, which is a cause of deterioration in identification accuracy.

【0004】そこで本発明では、汚れ、歪み等の影響を
受けることなく、精度良く紙幣の識別を行うことの従来
の方法とは全く識別に用いる紙幣の特徴量の異なる方法
を提供することを目的とする。
Therefore, the present invention aims to provide a method in which the characteristic amount of the bill used for the discrimination is completely different from the conventional method for discriminating the bill with high accuracy without being affected by dirt, distortion, and the like. And

【0005】[0005]

【課題を解決する為の手段】本発明では、従来の被識別
紙幣のセンサ入力波形をそのまま基準波形とパターン比
較する方法に代えて、基準となる複数の真券の紙幣上の
複数箇所から読み取られた該紙幣のセンサ入力波形に基
づいて基準となる波形を作成する第1ステップと、前記
複数の真券の各紙幣のセンサ入力波形と前記基準波形と
に基づいて、該各紙幣毎の不規則変動成分を抽出する第
2ステップと、該第2ステップにより抽出された各紙幣
毎の不規則変動成分に基づき、該各紙幣毎の不規則変動
成分の分布を時系列的に並べたデータ群からなる変動成
分推定モデルを作成する第3ステップと、被識別対象の
紙幣上の複数箇所から読み取られたセンサ入力波形と前
記基準波形とに基づいて、該被識別対象紙幣の補正用変
動成分を抽出する第4ステップと、該第4ステップによ
り抽出された前記被識別対象紙幣の補正用変動成分と、
前記変動成分推定モデルとに基づいて、前記被識別対象
紙幣の不規則変動成分を算出する第5ステップと、該第
5ステップにより算出された前記被識別対象紙幣の不規
則変動成分を用いて前記被識別紙幣のセンサ入力波形あ
るいは基準波形のいずれか一方を補正する第6ステップ
と、補正後のセンサ入力波形を元の基準波形あるいはセ
ンサ入力波形と補正された基準波形とを比較して、前記
被識別対象紙幣の真偽を判定する第7ステップと、より
なる紙幣識別方法である。
According to the present invention, instead of the conventional method of pattern-comparing the sensor input waveform of the identified bill with the reference waveform as it is, it is read from a plurality of locations on a plurality of genuine bills as a reference. Based on the first step of creating a reference waveform based on the sensor input waveform of the bill, and the sensor input waveform of each bill of the plurality of genuine bills and the reference waveform, A second step of extracting the regular fluctuation component, and a data group in which the distribution of the irregular fluctuation component of each bill is arranged in time series based on the irregular fluctuation component of each bill extracted in the second step. The third step of creating a fluctuation component estimation model consisting of, and based on the sensor input waveforms read from a plurality of locations on the bill to be identified and the reference waveform, the variation component for correction of the bill to be identified. Extract 4 and step, and correcting fluctuation component of the object to be identified banknotes extracted by said fourth step,
A fifth step of calculating an irregular variation component of the bill to be identified based on the variation component estimation model, and an irregular variation component of the bill to be identified calculated in the fifth step, The sixth step of correcting either the sensor input waveform or the reference waveform of the bill to be identified and the corrected sensor input waveform are compared with the original reference waveform or the sensor input waveform and the corrected reference waveform, It is a bill identifying method including a seventh step of determining the authenticity of the bill to be identified.

【0006】このため事前に複数枚の真券のセンサ入力
波形から汚れ、歪み等の変動成分を抽出し、自己回帰モ
デル、重回帰モデル、あるいはニューラルネットワーク
モデルによる学習により変動成分の推定モデルを作成す
る。
For this reason, fluctuation components such as stains and distortions are extracted from the sensor input waveforms of a plurality of genuine bills in advance, and an estimation model of the fluctuation components is created by learning with an autoregressive model, a multiple regression model, or a neural network model. To do.

【0007】このようにセンサ入力波形の変動成分を用
いて該入力波形自身あるいは基準波形を補正してから被
識別紙幣の真偽の識別を行うため、識別精度は汚れ等の
変動の影響を殆ど受けない精度の良いものとなる。
As described above, since the input waveform itself or the reference waveform is corrected by using the fluctuation component of the sensor input waveform and the true or false of the bill to be discriminated is discriminated, the discrimination accuracy is hardly affected by the fluctuation such as dirt. The accuracy is high.

【0008】[0008]

【発明の実施の形態】以下本発明の紙幣識別方法を推定
モデルの作成に自己(AR)回帰モデルを用いた一実施
形態について図面に基づき詳細に説明する。 (第1実施形態)本方法は事前処理と紙幣投入時処理と
に大きく分けられる。図1に被識別紙幣のセンサ入力波
形を変動成分モデルによって補正する実施例の概念図を
示す。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which a self-regressive (AR) regression model is used to create an estimation model in the bill identifying method of the present invention will be described in detail below with reference to the drawings. (First Embodiment) This method is roughly divided into a preprocessing and a bill insertion processing. FIG. 1 shows a conceptual diagram of an embodiment in which a sensor input waveform of an identified bill is corrected by a fluctuation component model.

【0009】事前処理は標準の真券紙幣のセンサ入力波
形から変動成分推定モデルを学習により作成する処理で
あり、図1(A)に開示されているように、まず、ステ
ップS1にて複数枚の真券(新札)をセンサの一つとし
てのイメージセンサによりセンシングして紙幣上のイメ
ージや文字等の輝度や濃度のセンサ入力波形を得、各入
力波形から基準波形(例えば入力平均波形)を得る。
The pre-processing is a processing for creating a fluctuation component estimation model from a sensor input waveform of a standard genuine bill by learning, and as shown in FIG. The real bill (new bill) of the bill is sensed by the image sensor as one of the sensors to obtain the sensor input waveform of the brightness and density of the image and letters on the bill, and the reference waveform (eg input average waveform) from each input waveform To get

【0010】次にステップS2で前記基準波形を用いて
前記真券の入力波形から汚れや、歪み等の変動成分を各
真券毎に抽出する。そしてステップS3にて抽出された
変動成分のデータを用いて学習データを作成する。
Next, in step S2, a variation component such as dirt or distortion is extracted from the input waveform of the genuine bill for each genuine bill by using the reference waveform. Then, learning data is created using the data of the fluctuation component extracted in step S3.

【0011】ここで言う学習に際しては、例えば図1
(A)に示すように得られた変動成分のデータを周期的
時系列信号とみなして、周知の自己回帰モデルの式に当
てはめ、式の係数を求めることを言う。
In the learning here, for example, FIG.
It means that the data of the fluctuation component obtained as shown in (A) is regarded as a periodic time series signal and is applied to a well-known autoregressive model equation to obtain the coefficient of the equation.

【0012】この場合の学習データは、紙幣を何枚か並
べて連続的に入力したときの変動成分の時系列波形デー
タに匹敵する。こうして作成された変動成分の周期的時
系列信号はステップS4において自己回帰分析の手法に
より学習され、学習の結果紙幣1枚分の変動成分の推定
モデルが作成される。
The learning data in this case is comparable to the time-series waveform data of the fluctuation component when several banknotes are arranged and continuously input. The periodic time series signal of the fluctuation component thus created is learned by the method of autoregressive analysis in step S4, and as a result of the learning, an estimation model of the fluctuation component for one bill is created.

【0013】このようにして事前処理を行った後、実際
に紙幣が投入された際の真偽判定を行う紙幣投入時処理
に移る。図1(B)に示すように、紙幣投入時処理で
は、まず、ステップS11で投入された被識別紙幣から
のイメージセンサ入力波形を入力する。
After performing the preprocessing in this way, the process shifts to bill insertion processing for making a genuine / counterfeit determination when a bill is actually inserted. As shown in FIG. 1 (B), in the bill insertion process, first, the image sensor input waveform from the identified bill inserted in step S11 is input.

【0014】次にステップS12で入力された被識別紙
幣の波形信号と前記基準波形との差分を取って汚れ、歪
み成分等の変動成分の抽出を行う。ステップS13では
前記ステップS12で得られた変動成分のデータに基づ
き、前記変動成分の推定モデルを用いた被識別紙幣の変
動成分の推定を自己回帰モデルを用いて行ない、推定変
動成分を算出する。ここで、推定の方法について説明す
ると、前記事前処理により、推定モデルが得られている
ので、自己回帰モデルの式と入力された被識別紙幣の変
動成分により推定される変動成分を算出する(ステップ
S13)。
Next, in step S12, a difference between the waveform signal of the bill to be identified and the reference waveform is calculated to extract a variation component such as a stain or a distortion component. In step S13, based on the data of the fluctuation component obtained in step S12, the fluctuation component of the identified banknote is estimated using the estimation model of the fluctuation component using an autoregressive model, and the estimated fluctuation component is calculated. Here, the estimation method will be described. Since the estimation model has been obtained by the pre-processing, the fluctuation component estimated by the formula of the autoregressive model and the fluctuation component of the input bill to be identified is calculated ( Step S13).

【0015】こうして得られた被識別紙幣の変動成分の
波形を用いて前記被識別紙幣のイメージセンサ入力波形
を補正する。この補正方法は、前記被識別紙幣のイメー
ジセンサ入力波形から推定された変動成分を減算して行
うか、あるいは基準波形に推定された変動成分を加算し
て補正を行うかである。
The waveform of the fluctuation component of the bill to be identified thus obtained is used to correct the image sensor input waveform of the bill to be identified. This correction method is performed by subtracting the estimated fluctuation component from the image sensor input waveform of the bill to be identified or by adding the estimated fluctuation component to the reference waveform to perform the correction.

【0016】最後に、ステップS15にて前記被識別紙
幣の補正されたイメージセンサ入力波形と基準波形とを
相互相関やパターンマッチング等の判定手法を用いて一
致度を算定し、一定の一致度が得られれば真と判定し、
それ以外は偽と判定して識別処理を終わる。 (第2実施形態)第2実施形態ではステップS1〜S1
3までは前記第1実施形態と全く同じ処理を行う。
Finally, in step S15, the matching degree of the corrected image sensor input waveform of the bill to be identified and the reference waveform is calculated by using a determination method such as cross-correlation or pattern matching. If it is obtained, it is judged as true,
Otherwise, it is determined to be false and the identification process ends. (Second Embodiment) In the second embodiment, steps S1 to S1.
Up to 3, the same processing as in the first embodiment is performed.

【0017】異なるところはステップS16において算
出された変動成分の推定値を用いて基準波形を補正し、
そして最後に、ステップS17にて前記被識別紙幣のイ
メージセンサ入力波形と補正された基準波形とを相互相
関やパターンマッチング等の判定手法を用いて一致度を
算定し、一定の一致度が得られれば真と判定し、それ以
外は偽と判定して識別処理を終わる。
The difference is that the reference waveform is corrected using the estimated value of the fluctuation component calculated in step S16,
Finally, in step S17, the degree of coincidence between the image sensor input waveform of the identified bill and the corrected reference waveform is calculated using a determination method such as cross-correlation or pattern matching to obtain a certain degree of coincidence. If it is determined to be true, otherwise it is determined to be false, and the identification process ends.

【0018】尚、前記事前処理あるいは投入後処理で
は、自己回帰モデルのみならず、重回帰モデルやニュー
ラルネットワークモデルを用いた推定モデルも利用でき
る。例えば重回帰モデルを用いた場合のデータの変動成
分の推定モデルの推定方法について説明すると、他変量
の対象となる要因データとして対象となるデータの位
置、データのばらつき、インクの濃さ、紙の劣化度等が
挙げられ、これらを基にして変動成分の重回帰モデルの
式を作成することになる。
In the pre-processing or post-processing, not only an auto-regressive model but also an estimation model using a multiple regression model or a neural network model can be used. For example, explaining the estimation method of the estimation model of the fluctuation component of the data when using the multiple regression model, the position of the target data as the factor data that is the target of the other variable, the variation of the data, the ink density, the paper Degradation degree and the like can be mentioned, and the formula of the multiple regression model of the fluctuation component is created based on these.

【0019】この場合対象となるデータの位置は紙幣を
取り込む際のエンコーダ等から入力すればよい。そして
データのばらつきは、入力されたセンサ信号と前記基準
波形の差分値の分散として得ればよい。
In this case, the position of the target data may be input from an encoder or the like when taking in a bill. The data variation may be obtained as the variance of the difference value between the input sensor signal and the reference waveform.

【0020】また紙幣に印刷されているインクの濃さは
やはりそのばらつきとして要因データを構成するので、
計算によって求めることができる。更に紙の劣化度につ
いては紙幣の白地の部分の透過率(入力データが透過セ
ンサから得られたものであればそのセンサ信号を併用で
きる)を用いて算出できる。
Further, since the density of the ink printed on the bill constitutes the factor data as the variation thereof,
It can be calculated. Further, the degree of deterioration of the paper can be calculated by using the transmittance of the white portion of the banknote (if the input data is obtained from the transmission sensor, the sensor signal can be used together).

【0021】もちろん自己回帰モデルに代えてニューラ
ルネットワークを用いることにより同様に汚れの推定モ
デルを得ることも可能である。以上のようにして重回帰
モデル、ニューラルネットワークモデルを用いた場合で
も、入力紙幣から変動成分としての汚れ、歪み成分の抽
出が行われ、事前処理における学習結果から変動成分と
しての汚れ成分の推定モデルの作成が行われると、この
推定モデルが紙幣投入時処理に使われ、被識別紙幣の入
力波形の補正あるいは基準波形の補正に活用される。
Of course, it is also possible to similarly obtain an estimation model of dirt by using a neural network instead of the autoregressive model. Even if the multiple regression model and neural network model are used as described above, the dirt and distortion components as the fluctuation component are extracted from the input bill, and the estimation model of the dirt component as the fluctuation component is obtained from the learning result in the preprocessing. When the above is created, this estimation model is used for the bill insertion process and is utilized for the correction of the input waveform or the reference waveform of the identified bill.

【0022】[0022]

【発明の効果】本発明は以上の説明のように従来の入力
された紙幣のパターンそれ自身を標準のパターンと比較
し、その差の幅が一定以上のときをもって偽券と判断す
る方法に代えて、入力紙幣のパターンから汚れ成分等の
変動成分を抽出し、これを用いて変動成分の推定モデル
を作成し、被識別識別紙幣の入力波形あるいは基準波形
の補正にこの推定モデルを活用し、補正した入力波形あ
るいは基準波形を比較して紙幣の真偽を判断するもので
あるから、識別される紙幣の変動成分の影響を受けずに
精度の良い真偽判定が行える効果が期待できる。
As described above, the present invention replaces the conventional method of comparing the inputted pattern of the banknote itself with the standard pattern and judging it as a counterfeit note when the width of the difference is a certain value or more. By extracting the fluctuation component such as the dirt component from the pattern of the input bill, creating an estimation model of the fluctuation component using this, and utilizing this estimation model to correct the input waveform or the reference waveform of the identified and identified bill, Since the authenticity of the bill is determined by comparing the corrected input waveform or the reference waveform, it is expected that the effect of accurate authenticity determination can be achieved without being affected by the fluctuation component of the identified bill.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の紙幣識別方法の第1実施形態の概要説
明図である。
FIG. 1 is a schematic explanatory diagram of a first embodiment of a bill identifying method of the present invention.

【図2】本発明の紙幣識別方法の第2実施形態の概要説
明図である。
FIG. 2 is a schematic explanatory diagram of a second embodiment of a bill identifying method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−101250(JP,A) 特開 平3−210692(JP,A) (58)調査した分野(Int.Cl.7,DB名) G07D 7/00 - 7/20 G06F 17/60 - 19/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-101250 (JP, A) JP-A-3-210692 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G07D 7/00-7/20 G06F 17/60-19/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 紙弊の所望領域をセンサによって検出
し、検出して得られたセンサ入力波形に基づいて該紙幣
の真偽を判定する紙幣識別方法において、 基準となる複数真券の紙幣上の複数箇所から読み取ら
れた該紙幣のセンサ入力波形に基づいて基準となる波形
を作成する第1ステップと、前記複数の真券の各紙幣の
センサ入力波形と前記基準波形とに基づいて、該各紙幣
毎の不規則変動成分を抽出する第2ステップと、該第2
ステップにより抽出された各紙幣毎の不規則変動成分
基づき、該各紙幣毎の不規則変動成分の分布を時系列的
に並べたデータ群からなる変動成分推定モデルを作成す
第3ステップと、被識別対象の紙幣上の複数箇所から
読み取られたセンサ入力波形前記基準波形とに基づい
て、該被識別対象紙幣の補正用変動成分を抽出する第4
ステップと、該第4ステップにより抽出された前記被識
別対象紙幣の補正用変動成分と前記変動成分推定モデ
とに基づいて、前記被識別対象紙幣の不規則変動成分
算出する第5ステップと、該第5ステップにより算出
された前記被識別対象紙幣の不規則変動成分を用いて前
記被識別紙幣のセンサ入力波形を補正する第6ステップ
と、補正後のセンサ入力波形を前記基準波形と比較し
、前記被識別対象紙幣の真偽を判定する第7ステップ
よりなる紙幣識別方法。
1. A sensor detects a desired area of paper failure.
The banknote based on the sensor input waveform obtained by detecting
In the banknote recognition method of determining the authenticity of, read from a plurality of locations on the bill of a plurality of genuine notes as a reference
Based on the first step of creating a waveform to be a reference, the plurality of the bill <br/> sensor input waveform genuine note and the reference waveform based on the bill sensor input waveform, respective bill
A second step of extracting a random variation component of each, said second
For the irregular fluctuation component of each banknote extracted by the step
Based on the time-series distribution of the irregular fluctuation component of each bill.
A third step of creating a fluctuation component estimation model consisting of data groups arranged from a plurality of locations on the object to be identified banknotes
Based on the read-out sensor input waveform and the reference waveform
And a fourth component for extracting a correction fluctuation component of the bill to be identified .
Step, and the identified person extracted in the fourth step
And correcting fluctuation component of another banknotes, on the basis of said variation component estimation model, the a fifth step of calculating a random variation component of the identified banknotes, calculated by the fifth step
The sixth step of correcting the sensor input waveform of the identified banknote using the irregular fluctuation component of the identified banknote to be identified, and comparing the corrected sensor input waveform with the reference waveform to identify the identified object. a seventh step of determining the authenticity of a bill, become more bill validation process.
【請求項2】 紙弊の所望領域をセンサによって検出
し、検出して得られたセンサ入力波形に基づいて該紙幣
の真偽を判定する紙幣識別方法において、 基準となる複数真券の紙幣上の複数箇所から読み取ら
れた該紙幣のセンサ入力波形に基づいて基準となる波形
を作成する第1ステップと、前記複数の真券の各紙幣の
センサ入力波形と前記基準波形とに基づいて、該各紙幣
毎の不規則変動成分を抽出する第2ステップと、該第2
ステップにより抽出された各紙幣毎の不規則変動成分
基づき、該各紙幣毎の不規則変動成分の分布を時系列的
に並べたデータ群からなる変動成分推定モデルを作成す
第3ステップと、被識別対象の紙幣上の複数箇所から
読み取られたセンサ入力波形前記基準波形とに基づい
て、該被識別対象紙幣の補正用変動成分を抽出する第4
ステップと、該第4ステップにより抽出された前記被識
別対象紙幣の補正用変動成分と前記変動成分推定モデ
とに基づいて、前記被識別対象紙幣の不規則変動成分
算出する第5ステップと、該第5ステップにより算出
された前記被識別対象紙幣の不規則変動成分を用いて前
記基準波形を補正する第6ステップと、補正後の基準波
形を前記被識別紙幣のセンサ入力波形と比較して、前記
被識別対象紙幣の真偽を判定する第7ステップとより
なる紙幣識別方法。
2. A sensor detects a desired area of paper failure.
The banknote based on the sensor input waveform obtained by detecting
In the banknote recognition method of determining the authenticity of, read from a plurality of locations on the bill of a plurality of genuine notes as a reference
Based on the first step of creating a waveform to be a reference, the plurality of the bill <br/> sensor input waveform genuine note and the reference waveform based on the bill sensor input waveform, respective bill
A second step of extracting a random variation component of each, said second
For the irregular fluctuation component of each banknote extracted by the step
Based on the time-series distribution of the irregular fluctuation component of each bill.
A third step of creating a fluctuation component estimation model consisting of data groups arranged from a plurality of locations on the object to be identified banknotes
Based on the read-out sensor input waveform and the reference waveform
And a fourth component for extracting a correction fluctuation component of the bill to be identified .
Step, and the identified person extracted in the fourth step
And correcting fluctuation component of another banknotes, on the basis of said variation component estimation model, the a fifth step of calculating a random variation component of the identified banknotes, calculated by the fifth step
A sixth step of correcting the reference waveform using the irregular fluctuation component of the identified banknote to be identified, and comparing the corrected reference waveform with the sensor input waveform of the identified banknote ,
A seventh step of determining the authenticity of the identification banknotes, become more bill validation process.
JP04132996A 1996-02-28 1996-02-28 Banknote identification method Expired - Lifetime JP3423140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04132996A JP3423140B2 (en) 1996-02-28 1996-02-28 Banknote identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04132996A JP3423140B2 (en) 1996-02-28 1996-02-28 Banknote identification method

Publications (2)

Publication Number Publication Date
JPH09231438A JPH09231438A (en) 1997-09-05
JP3423140B2 true JP3423140B2 (en) 2003-07-07

Family

ID=12605488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04132996A Expired - Lifetime JP3423140B2 (en) 1996-02-28 1996-02-28 Banknote identification method

Country Status (1)

Country Link
JP (1) JP3423140B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004326547A (en) * 2003-04-25 2004-11-18 Nippon Conlux Co Ltd Method and apparatus for identifying sheet of paper
JP2006202075A (en) * 2005-01-21 2006-08-03 Mars Engineering Corp Device and method for identifying banknote
CN102592352B (en) 2012-02-28 2014-02-12 广州广电运通金融电子股份有限公司 Recognition device and recognition method of papery medium

Also Published As

Publication number Publication date
JPH09231438A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
EP0881603B1 (en) Judging method of sheets, notes, etc. for forgery, and judging method of insertion direction of them
JP3423140B2 (en) Banknote identification method
JP3427000B2 (en) Judgment method for paper sheets
JP4724957B2 (en) Medium contamination degree judging device
JP2006301881A (en) Currency identifying device, currency identifying method and currency identifying program
JP3549935B2 (en) Paper sheet identification device
JPS62242291A (en) Identification of sheet paper
JP2816129B2 (en) Banknote identification method
JP3423136B2 (en) Paper sheet identification method
JPH04123191A (en) Coin discriminator
JP3423134B2 (en) Paper sheet identification method
JP3192970B2 (en) Paper sheet identification method
JP3141206B2 (en) Bill validator
JP3187698B2 (en) Paper sheet recognition device
JP3408075B2 (en) Banknote identification method
JP3209765B2 (en) Banknote recognition machine
JPH09259323A (en) Paper sheet identification device
JPH09265554A (en) Discriminating method for paper sheet
JP3192971B2 (en) Banknote identification method
JP3272803B2 (en) Media identification device
JPH1083473A (en) Method for recognizing paper money
JP2792703B2 (en) Paper sheet identification device
JPH10171993A (en) Authenticity discriminating device for medium
JPS62211792A (en) Paper money identifier
JPH02193289A (en) Method for correcting paper currency data

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term