[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3408075B2 - Banknote identification method - Google Patents

Banknote identification method

Info

Publication number
JP3408075B2
JP3408075B2 JP23796296A JP23796296A JP3408075B2 JP 3408075 B2 JP3408075 B2 JP 3408075B2 JP 23796296 A JP23796296 A JP 23796296A JP 23796296 A JP23796296 A JP 23796296A JP 3408075 B2 JP3408075 B2 JP 3408075B2
Authority
JP
Japan
Prior art keywords
image data
data
reference image
bill
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23796296A
Other languages
Japanese (ja)
Other versions
JPH1083472A (en
Inventor
英樹 中島
宏之 巽
英隆 阪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23796296A priority Critical patent/JP3408075B2/en
Publication of JPH1083472A publication Critical patent/JPH1083472A/en
Application granted granted Critical
Publication of JP3408075B2 publication Critical patent/JP3408075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inspection Of Paper Currency And Valuable Securities (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は紙幣の識別方法に係
り、特に識別される紙幣の各種汚れによる識別精度への
影響を抑制し、高精度で且つ高速判定のできる識別方法
に関する。 【0002】 【従来の技術】本発明に先行する技術として特開昭60
−215293号公報がある。当該公報には紙幣を複数
のゾーンに分け、各ゾーン毎の検出データを前記各ゾー
ンに対して予め定められている基準データと比較し、前
記各ゾーンにおける比較結果に基づいて前記紙幣を識別
する紙幣識別方法において、前記紙幣の表裏、向き及び
識別時の位置ずれに対応して複数個設定すると共に、紙
幣1枚に対して前記各ゾーンのデータを総計し、その総
計値に対する比率値で基準パターンデータとして記憶し
ておき、前記検出データの総和値を求めると共に、この
総和値に対する比率値を検出パターンデータとして計算
し、前記検出パターンデータが前記基準パターンデータ
の許容値範囲内にあるか否かを判断し、前記各ゾーン毎
に前記基準パターンデータと前記検出パターンデータと
の差の絶対値を距離計算して総計し、この距離計算の総
計値が許容値よりも小さいか否かを判断して紙幣識別を
行うことを特徴とする紙幣識別方法が開示されている。 【0003】 【発明が解決しようとする課題】ところで、上記従来の
技術においては、汚れ、歪み、その他の理由による識別
のバラツキを許容してしてしまうため、偽券を真券と誤
認してしまう問題があり、識別精度の低下の原因となっ
ていた。 【0004】本発明は、このような従来の方法による問
題点を解決するために成されたものであり、汚れ、歪等
の影響を受けることなく、精度良く且つ高速に紙葉類の
識別を行う方法を提供することを目的とする。 【0005】 【課題を解決するための手段】本発明方法は、複数の真
券の基準紙幣の画像データを得、得られた画像データを
クラスタ分析して幾つかのデータパターンに分類して複
数の基準画像データを作成し、入力された被識別紙幣の
入力画像データと前記複数の基準画像データとの差分を
夫々算出し、汚れ、歪み等の第1の不規則成分を抽出
し、該第1の不規則成分に基づいて前記複数の基準画像
データの各基準画像データに対応する第2の不規則成分
を予測し、前記第2の不規則成分と前記第1の不規則成
分との差分二乗和を算出し、算出された差分二乗和が最
小値となる基準画像データを選択し、該選択された基準
画像データに対応する前記差分二乗和の値と予め定めら
れた閾値との大小比較によって真券、偽券の判定を行う
方法である。 【0006】 【0007】 【0008】 【発明の実施の形態】以下本発明の紙幣の識別方法をそ
の一実施形態について、図面に基づき詳細に説明する。 【0009】本発明方法は大きく分けて事前処理と紙幣
投入時処理に分けられ、図1、図2は夫々事前処理及び
紙幣投入時処理の基本アルゴリズムを示すフローチャー
トである。 【0010】まず事前処理では予め用意した複数の真券
紙幣の投入によってプログラムが開始される(ステップ
S1)と、紙幣の光学センサによる多値の濃淡データが
取込まれる(ステップS2)。 【0011】取込まれた濃淡データは縦軸に階調値、横
軸にポイントをとってプロットすると図3に示すような
波形図となる。これら複数の波形図を用いてクラスタ分
析を施し、互いによく類似している波形図同士を一つの
まとまり(クラスタ)として分類する(ステップS
3)。 【0012】そして得られた各クラスタについて夫々平
均的な波形図を作成し、複数の基準画像データ(波形
図)を作成する(ステップS4)。クラスタ分析の手法
を図4のフローチャートに示す。ステップS31でプロ
グラムが開始されると、まずステップS32で初期化と
してクラスタ分類しようとする紙幣の枚数をNにセット
する。 【0013】次に各紙幣間の画像空間上での距離(類似
度に相当する)を夫々計算により求めておく(ステップ
S33)。ステップS34でクラスタの個数KをK=N
にセットする。そしてステップS33で先に求めておい
た紙幣間の距離データを用いて最も距離の近いクラスタ
の組を選択する(ステップS35)。 【0014】クラスタの組が選択されると対象となるク
ラスタの組は一つのクラスタに統合される(ステップS
36)。従ってステップS37でK=K−1に変更す
る。ステップS38ではステップS37の結果Kが1に
なったか否かを判定する。そしてKが2以上の場合は新
たに統合されたクラスタを含めて再度最も近いクラスタ
の組を検索し選択する(ステップS39)。 【0015】前記ステップS38でKが1となるまで上
述した類似クラスタ統合の処理を繰り返す。そしてKは
K=1となると処理を終了し、ステップS40で樹状図
を作成する(図5参照)。 【0016】こうして得られた樹状図に基づいて適当な
個数の複数の基準波形を作成して紙幣投入時処理に移行
する。例えば図5の例では、距離Aを閾値とすると得ら
れる基準波形は1個となり、Bとすると2個となり、C
とすると3個となる。前記図3では閾値をCとし3個の
基準波形を作成した例を示している。 【0017】紙幣投入時処理ではプログラムをステップ
S11で開始するとまず被識別紙幣の画像データを取込
む(ステップS12)。この画像データは事前処理と同
じく波形図で形成される。 【0018】次に搬送ずれ修正処理、レベル合わせ処理
等が施された後、ステップS13で前記事前処理で作成
された基準波形データとの差分をとり、紙幣についた汚
れや歪み等の不規則成分(第1の不規則成分)の抽出処
理を行う。 【0019】そして得られた不規則成分を用いてAR
(自己回帰)モデル等を用いた不規則成分(第2の不規
則成分)の予測処理(ステップS14)が行われる。ス
テップS15では前記抽出された不規則成分及び予測さ
れた各基準波形に対応する不規則成分を用いて差分二乗
和を計算し、予測誤差を算出する。 【0020】そして得られた差分二乗和の値が最も小さ
い基準画像波形データを選択し(ステップS16)、選
択された基準画像波形データと入力画像波形データとの
前記差分二乗和の値と予め定められた閾値との比較にに
よって、真偽の判定がなされる(ステップS17)。 【0021】 【発明の効果】本発明は以上の説明のように被識別紙幣
の取込画像データと基準画像データとの比較によって真
偽を判定する場合において、基準画像データを類似度に
よって分類された幾つかの組に分けてその代表データと
被識別紙幣の画像データとの比較によって真偽を判定さ
せることにより精度をあまり低下させることなく高速な
真偽の判定が行える。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a method for identifying banknotes, and more particularly, to suppressing the influence of various types of dirt on the identified banknotes to the identification accuracy, and achieving high accuracy and high speed. It relates to an identification method that can be determined. 2. Description of the Related Art A prior art of the present invention is disclosed in
No. 215293. In this publication, a bill is divided into a plurality of zones, detection data for each zone is compared with reference data predetermined for each zone, and the bill is identified based on a comparison result in each zone. In the bill discriminating method, a plurality of bills are set in accordance with the front and back, the orientation, and the displacement at the time of discrimination, and the data of each zone are totaled for one bill, and a standard value is determined by a ratio value to the total value. It is stored as pattern data, a total value of the detection data is obtained, and a ratio value to the total value is calculated as detection pattern data, and whether or not the detection pattern data is within an allowable value range of the reference pattern data is determined. Is determined, and the absolute value of the difference between the reference pattern data and the detected pattern data is calculated for each of the zones, and the total is calculated. The total value banknote identification method and performing to the bill validator determines whether less than the allowable value is disclosed. [0003] In the above-mentioned prior art, however, discrepancies in identification due to dirt, distortion, and other reasons are tolerated. There is a problem that the identification accuracy is reduced. SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the conventional method, and is capable of accurately and quickly identifying paper sheets without being affected by dirt, distortion and the like. The aim is to provide a way to do so. According to the method of the present invention, image data of a plurality of genuine reference banknotes is obtained, and the obtained image data is subjected to cluster analysis and classified into several data patterns to obtain a plurality of data. of creating the reference image data, the difference was calculated respectively between the input image data with the plurality of reference image data of the identified bill input, extracts dirt, the first irregular components such as distortion, said first The plurality of reference images based on one irregular component
A second irregular component corresponding to each reference image data of the data is predicted, and a sum of squares of differences between the second irregular component and the first irregular component is calculated. This is a method of selecting reference image data having a minimum value, and determining a genuine bill or a fake bill by comparing the value of the sum of squared differences corresponding to the selected reference image data with a predetermined threshold. . An embodiment of the method for identifying bills according to the present invention will be described below in detail with reference to the accompanying drawings. The method of the present invention is broadly divided into pre-processing and bill insertion processing. FIGS. 1 and 2 are flowcharts showing basic algorithms of the pre-processing and bill insertion processing, respectively. First, in the preprocessing, when a program is started by inserting a plurality of genuine bills prepared in advance (step S1), multi-value density data by an optical sensor of the bills is fetched (step S2). The plotted gray-scale data is shown in FIG. 3 by plotting the gradation value on the vertical axis and the point on the horizontal axis. Cluster analysis is performed using the plurality of waveform diagrams, and waveform diagrams that are very similar to each other are classified as one unit (cluster) (Step S).
3). Then, an average waveform diagram is created for each of the obtained clusters, and a plurality of reference image data (waveform diagrams) are created (step S4). The method of cluster analysis is shown in the flowchart of FIG. When the program is started in step S31, first, in step S32, the number of banknotes to be cluster-sorted as initialization is set to N. Next, the distance (corresponding to the similarity) between the bills in the image space is calculated (step S33). In step S34, the number K of clusters is calculated as K = N
Set to. Then, using the distance data between the banknotes previously obtained in step S33, a cluster set having the closest distance is selected (step S35). When a set of clusters is selected, the set of target clusters is integrated into one cluster (step S
36). Therefore, in step S37, K is changed to K-1. In step S38, it is determined whether or not the result K of step S37 has become 1. If K is 2 or more, the nearest cluster set including the newly integrated cluster is searched and selected again (step S39). The similar cluster integration process described above is repeated until K becomes 1 in step S38. When K = 1, the process ends, and a tree diagram is created in step S40 (see FIG. 5). Based on the tree diagram thus obtained, an appropriate number of a plurality of reference waveforms are created, and the processing shifts to a bill insertion process. For example, in the example of FIG. 5, the reference waveform obtained when the distance A is a threshold is one, the reference waveform is B when the distance is B, and the reference waveform is C.
Then there are three. FIG. 3 shows an example in which the threshold value is C and three reference waveforms are created. In the processing at the time of bill insertion, when the program is started in step S11, image data of a bill to be identified is first taken in (step S12). This image data is formed in a waveform diagram as in the preprocessing. Next, after carrying out a conveyance deviation correcting process, a level adjusting process, etc., in step S13, a difference from the reference waveform data created in the pre-process is obtained, and irregularities such as dirt and distortion on the bill are obtained. A component (first irregular component) extraction process is performed. Using the obtained irregular component, AR
(Auto regression) Irregular component (second irregularity)
The prediction process (step S14) for the rule component is performed. In step S15, a sum of squared differences is calculated using the extracted irregular component and the irregular component corresponding to each predicted reference waveform, and a prediction error is calculated. Then, the reference image waveform data having the smallest value of the obtained sum of squared differences is selected (step S16), and the value of the sum of squared differences between the selected reference image waveform data and the input image waveform data is determined in advance. By the comparison with the threshold value thus determined, the authenticity is determined (step S17). According to the present invention, when the authenticity is determined by comparing the captured image data of the banknote to be identified with the reference image data as described above, the reference image data is classified according to the similarity. By comparing the representative data with the image data of the banknote to be identified by dividing the set into several sets, the authenticity can be determined at high speed without significantly lowering the accuracy.

【図面の簡単な説明】 【図1】本発明の紙幣識別方法の一実施方法における事
前処理を示すフローチャートである。 【図2】本発明の紙幣識別方法の一実施方法における紙
幣投入時処理を示すフローチャートである。 【図3】本発明の紙幣識別方法の一実施方法の概念図で
ある。 【図4】クラスタ分析手法を用いた基準画像データ生成
方法を示すフローチャートである。 【図5】樹状図の例を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart showing pre-processing in an embodiment of a bill discriminating method of the present invention. FIG. 2 is a flowchart showing a bill insertion process in a bill discriminating method according to an embodiment of the present invention. FIG. 3 is a conceptual diagram of one embodiment of a bill discriminating method of the present invention. FIG. 4 is a flowchart illustrating a reference image data generation method using a cluster analysis method. FIG. 5 is a diagram showing an example of a dendrogram.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−182063(JP,A) 特開 平2−108187(JP,A) 特開 平3−210692(JP,A) 特開 平6−44437(JP,A) (58)調査した分野(Int.Cl.7,DB名) G07D 7/00 - 7/20 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-182063 (JP, A) JP-A-2-108187 (JP, A) JP-A-3-210692 (JP, A) JP-A-6-106 44437 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G07D 7/ 00-7/20

Claims (1)

(57)【特許請求の範囲】 【請求項1】 複数の真券の基準紙幣の画像データを
得、得られた画像データをクラスタ分析して幾つかのデ
ータパターンに分類して複数の基準画像データを作成
し、入力された被識別紙幣の入力画像データと前記複数
の基準画像データとの差分を夫々算出し、汚れ、歪み等
第1の不規則成分を抽出し、該第1の不規則成分に基
づいて前記複数の基準画像データの各基準画像データに
対応する第2の不規則成分を予測し、前記第2の不規則
成分と前記第1の不規則成分との差分二乗和を算出し、
算出された差分二乗和が最小値となる基準画像データを
選択し、該選択された基準画像データに対応する前記差
分二乗和の値と予め定められた閾値との大小比較によっ
て真券、偽券の判定を行うことを特徴とする紙幣識別方
法。
(57) [Claims 1] A plurality of reference images are obtained by obtaining image data of a plurality of genuine reference banknotes, classifying the obtained image data into clusters and classifying them into several data patterns. create a data difference and the respective calculation of the inputted plurality of reference image data and the input image data of the identified bill was, dirt, and extracting a first random components such as distortion, said first non Each reference image data of the plurality of reference image data is
Predicting a corresponding second irregular component, calculating a sum of squared differences between the second irregular component and the first irregular component,
The calculated difference sum of squares selects the reference image data having the minimum value, and the true and false bills are obtained by comparing the value of the difference square sum corresponding to the selected reference image data with a predetermined threshold. A bill discriminating method characterized by performing the following judgment.
JP23796296A 1996-09-09 1996-09-09 Banknote identification method Expired - Fee Related JP3408075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23796296A JP3408075B2 (en) 1996-09-09 1996-09-09 Banknote identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23796296A JP3408075B2 (en) 1996-09-09 1996-09-09 Banknote identification method

Publications (2)

Publication Number Publication Date
JPH1083472A JPH1083472A (en) 1998-03-31
JP3408075B2 true JP3408075B2 (en) 2003-05-19

Family

ID=17023053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23796296A Expired - Fee Related JP3408075B2 (en) 1996-09-09 1996-09-09 Banknote identification method

Country Status (1)

Country Link
JP (1) JP3408075B2 (en)

Also Published As

Publication number Publication date
JPH1083472A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
US8249327B2 (en) Method for detecting monetary banknote
JP5044567B2 (en) Medium item confirmation device and self-service device
JP4932177B2 (en) Coin classification device and coin classification method
US7738690B2 (en) Verification method for determining areas within an image corresponding to monetary banknotes
JP3408075B2 (en) Banknote identification method
JPH08221632A (en) Genuineness judging method for printed pattern
EP1324280A1 (en) Method and apparatus for classifying currency articles
JP3423140B2 (en) Banknote identification method
JP3423136B2 (en) Paper sheet identification method
JP3187698B2 (en) Paper sheet recognition device
JP2816129B2 (en) Banknote identification method
JP3192970B2 (en) Paper sheet identification method
JP3718613B2 (en) Method and apparatus for determining coin authenticity based on image
JP3192971B2 (en) Banknote identification method
JP3423134B2 (en) Paper sheet identification method
JPH09259323A (en) Paper sheet identification device
JPH1083473A (en) Method for recognizing paper money
JP3296872B2 (en) Coin identification method
JPH09120469A (en) Medium category decision method
EP1324281A1 (en) Method and apparatus for classifying currency articles
JPH09282516A (en) Authenticity discriminating method for printing pattern
JP4598264B2 (en) Coin identification device
JPH09265554A (en) Discriminating method for paper sheet
JPH0654183A (en) Copying machine with variable securities forgery preventing function
JP2001084378A (en) Method and device for extracting feature block

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees