JP3416716B2 - Method for forming oxide film on semiconductor substrate surface - Google Patents
Method for forming oxide film on semiconductor substrate surfaceInfo
- Publication number
- JP3416716B2 JP3416716B2 JP22818597A JP22818597A JP3416716B2 JP 3416716 B2 JP3416716 B2 JP 3416716B2 JP 22818597 A JP22818597 A JP 22818597A JP 22818597 A JP22818597 A JP 22818597A JP 3416716 B2 JP3416716 B2 JP 3416716B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- film
- heat treatment
- semiconductor substrate
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Formation Of Insulating Films (AREA)
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、半導体集積回路な
どに用いられる、金属―酸化膜−半導体デバイス、すな
わちMOS(metal oxide semiconductor)デバイス、と
りわけMOSトランジスタおよびMOS容量の極薄ゲー
ト酸化膜および容量酸化膜等に応用が可能な半導体基板
表面の酸化膜の形成処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-oxide film-semiconductor device, that is, a MOS (metal oxide semiconductor) device used in semiconductor integrated circuits and the like, and more particularly to an ultrathin gate oxide film and a capacitor of a MOS transistor and a MOS capacitor. The present invention relates to a method of forming an oxide film on the surface of a semiconductor substrate, which can be applied to an oxide film and the like.
【0002】[0002]
【従来の技術】半導体デバイス、特にMOSトランジス
タ、MOS容量のゲート酸化膜、および容量酸化膜に
は、通常、シリコンデバイスの場合、二酸化シリコン膜
(以下、酸化膜と称する)が用いられる。これらの酸化膜
には、高い絶縁破壊耐圧、高い絶縁破壊電荷量が要求さ
れる。そのため、ウエーハの洗浄は非常に重要な工程の
一つとして位置付けられている。2. Description of the Related Art Semiconductor devices, especially MOS transistors, MOS oxide gate oxide films, and capacitor oxide films are usually formed of a silicon dioxide film in the case of a silicon device.
(Hereinafter referred to as an oxide film) is used. These oxide films are required to have a high dielectric breakdown voltage and a high dielectric breakdown charge amount. Therefore, wafer cleaning is positioned as one of the very important steps.
【0003】ウエーハは、これが洗浄されると同時に、
低い固定電荷密度、低い界面準位密度など高品質が要求
される。一方、デバイスの微細化、高集積化に伴い、ゲ
ート酸化膜や容量酸化膜は、薄膜化しており、たとえ
ば、0.1μm以下のデザインルールでは、4nm以下の極
薄ゲート酸化膜が要求される。At the same time that the wafer is washed,
High quality such as low fixed charge density and low interface state density is required. On the other hand, with the miniaturization and high integration of devices, the gate oxide film and the capacitive oxide film have become thinner. For example, a design rule of 0.1 μm or less requires an ultrathin gate oxide film of 4 nm or less. .
【0004】従来、MOSトランジスタのゲート酸化膜
は、600℃以上の高温で、半導体基板を乾燥酸素や水
蒸気などの酸化性雰囲気に暴露することで形成する方法
が採用されている。Conventionally, a method of forming a gate oxide film of a MOS transistor by exposing a semiconductor substrate to an oxidizing atmosphere such as dry oxygen or water vapor at a high temperature of 600 ° C. or higher has been adopted.
【0005】また、熱酸化以外には、モノシランを熱分
解させ、基板表面に堆積させる化学的気相堆積法なども
用いられる。In addition to thermal oxidation, a chemical vapor deposition method in which monosilane is thermally decomposed and deposited on the surface of the substrate is also used.
【0006】さらに、低温で酸化膜を成長させる方法と
しては、酸化性の強い、硝酸などの薬液中に半導体基板
を浸し、化学的な酸化膜を形成する方法があるが、成長
できる膜厚範囲が限られており、約lnm以上の膜厚の酸
化膜を成長させることができないと言う問題点があり、
ゲート酸化膜として供することができない。Further, as a method of growing an oxide film at a low temperature, there is a method of forming a chemical oxide film by immersing a semiconductor substrate in a chemical solution such as nitric acid having a strong oxidizing property. However, there is a problem that an oxide film having a thickness of about 1 nm or more cannot be grown.
It cannot be used as a gate oxide film.
【0007】しかし、従来の比較的高温での熱酸化で
は、4nm以下の酸化膜の形成時に膜厚の制御性に欠ける
という問題があった。However, the conventional thermal oxidation at a relatively high temperature has a problem that the controllability of the film thickness is insufficient when forming an oxide film of 4 nm or less.
【0008】また、膜厚の制御性を向上させるために低
温での酸化を行うと、形成された酸化膜の膜質の点で、
界面準位密度が高いこと、および固定電荷密度が高いこ
となどの問題があった。When oxidation is performed at a low temperature in order to improve the controllability of the film thickness, the quality of the oxide film formed is
There are problems such as high interface state density and high fixed charge density.
【0009】さらに、化学的気相堆積法により堆積した
酸化膜も、膜厚制御性および膜質の点で同様の問題をか
かえている。Furthermore, the oxide film deposited by the chemical vapor deposition method also has the same problems in terms of film thickness controllability and film quality.
【0010】そこで、これらの問題点を解決するための
方法として、たとえば、特開平9−45679号公報に
記載の酸化膜の形成方法が提案されている。Therefore, as a method for solving these problems, for example, a method for forming an oxide film is proposed in Japanese Patent Laid-Open No. 9-45679.
【0011】この方法の概略を図4に基づいて説明す
る。The outline of this method will be described with reference to FIG.
【0012】まず、半導体基板1上に分離領域2と活性
領域4を形成する。活性領域4表面には、自然酸化膜9
が存在している(図4(a))。First, the isolation region 2 and the active region 4 are formed on the semiconductor substrate 1. A natural oxide film 9 is formed on the surface of the active region 4.
Exists (FIG. 4 (a)).
【0013】この状態で、次に、ウエーハを公知のRC
A洗浄方法(W.Kern,D.A.Plutien:RCAレビュ
ー31,18ページ,1970年参照)により、ウエー
ハを洗浄した後、希HF溶液に浸潰して、シリコン表面
の自然酸化膜8を除去する(図4(b))。In this state, next, the wafer is mounted on a known RC.
A cleaning method (W. Kern, D.A. Plutien: RCA review 31, page 18, 1970) is used to clean the wafer, and then the wafer is immersed in a dilute HF solution to remove the native oxide film 8 on the silicon surface. (Fig. 4 (b)).
【0014】続いて、ウエーハをリンス(洗浄)した後、
これを熱硝酸に浸漬し、シリコン基板1上に表面厚さ
0.1〜1.5nmの範囲の化学的酸化膜(第l酸化膜)5を
形成する(図4(c))。Then, after rinsing (washing) the wafer,
This is dipped in hot nitric acid to form a chemical oxide film (first oxide film) 5 having a surface thickness in the range of 0.1 to 1.5 nm on the silicon substrate 1 (FIG. 4 (c)).
【0015】次に、第1酸化膜5上に酸化触媒機能を有
する金属薄膜(たとえば白金薄膜)6を蒸着法により厚さ
1〜30nmの範囲で形成する(図4(d))。Next, a metal thin film (for example, a platinum thin film) 6 having an oxidation catalyst function is formed on the first oxide film 5 by a vapor deposition method in a thickness range of 1 to 30 nm (FIG. 4 (d)).
【0016】しかる後、25〜600℃の温度でかつ酸
化雰囲気中で熱処理を行って第2酸化膜7を形成する
(図4(e))。Thereafter, heat treatment is performed at a temperature of 25 to 600 ° C. in an oxidizing atmosphere to form the second oxide film 7.
(Fig. 4 (e)).
【0017】このとき、第2酸化膜7の厚さは、1〜2
0nm程で、膜厚は熱処理温度や熱処理時間によって制御
することが可能である。At this time, the thickness of the second oxide film 7 is 1 to 2
At about 0 nm, the film thickness can be controlled by the heat treatment temperature and the heat treatment time.
【0018】[0018]
【発明が解決しようとする課題】図4に示した従来技術
の方法は、600℃以下の比較的低温、かつ、数nmの薄
い酸化膜を制御性良く形成することができるという利点
があるものの、次の問題が残されている。The method of the prior art shown in FIG. 4 has the advantage that a relatively low temperature of 600 ° C. or less and a thin oxide film of several nm can be formed with good controllability. , The following problems remain.
【0019】すなわち、図4の方法で形成される酸化膜
の界面準位密度は、低温熱酸化法や化学的気相堆積法に
よる酸化膜での値よりは低いものの、ゲート酸化膜の要
求品質である1×1011eVcm-2以下の値は達成するこ
とができない。That is, although the interface state density of the oxide film formed by the method of FIG. 4 is lower than that of the oxide film formed by the low temperature thermal oxidation method or the chemical vapor deposition method, the required quality of the gate oxide film is required. Values below 1 × 10 11 eVcm −2 cannot be achieved.
【0020】界面準位密度の値が1×1011eVcm-2を
超えていると、トランジスタのホットキャリア特性を劣
化させるのみならず、トランジスタのしきい値電圧の不
安定性、キャリアの移動動度の低下など、特に微細デバ
イスでは致命的な問題を引き起こす。When the value of the interface state density exceeds 1 × 10 11 eVcm −2 , not only the hot carrier characteristics of the transistor are deteriorated, but also the instability of the threshold voltage of the transistor and the mobility of carriers are increased. It causes fatal problems, especially in fine devices.
【0021】本発明は、上記の問題点を解決するために
なされたもので、図4に示した方法を更に改善すること
によって、界面準位密度の値が更に低く、半導体基板表
面に高品質の酸化膜を形成処理する方法を提供すること
を課題とする。The present invention has been made in order to solve the above-mentioned problems, and by further improving the method shown in FIG. 4, the value of the interface state density is further lowered and a high quality is obtained on the surface of the semiconductor substrate. It is an object of the present invention to provide a method for forming an oxide film of the above.
【0022】[0022]
【課題を解決するための手段】本発明は、上記の課題を
解決するため、半導体基板表面の酸化膜の処理方法にお
いて、次の手段を講じている。In order to solve the above problems, the present invention takes the following means in a method of treating an oxide film on the surface of a semiconductor substrate.
【0023】すなわち、請求項1記載の発明では、半導
体基板表面に酸化膜を形成するのに際し、半導体基板上
に厚さ0.1〜1.5nmの範囲の第1酸化膜を形成し、次
いで、前記第1酸化膜上に酸化触媒機能を有する金属薄
膜を厚さ1〜30nmの範囲で形成し、しかる後に、6
00℃以下の温度でかつ酸化雰囲気中で第1熱処理を行
って第2酸化膜を形成する半導体基板表面の酸化膜の形
成処理方法において、第1の熱処理後に、酸化触媒機能
を有する金属薄膜上に、1〜1000nmの厚さのアル
ミニウム膜を形成し、酸化雰囲気でない雰囲気中におい
て、600℃以下の温度で第2の熱処理を行うことを特
徴としている。That is, according to the first aspect of the present invention, when forming the oxide film on the surface of the semiconductor substrate, the first oxide film having a thickness of 0.1 to 1.5 nm is formed on the semiconductor substrate, and then the first oxide film is formed. A metal thin film having an oxidation catalyst function is formed on the first oxide film in a thickness range of 1 to 30 nm.
The shape of the oxide film on the surface of the semiconductor substrate in which the first heat treatment is performed at a temperature of 00 ° C. or lower in an oxidizing atmosphere to form a second oxide film.
In the treatment method, after the first heat treatment, the oxidation catalyst function
On a metal thin film having a thickness of 1 to 1000 nm.
It is characterized in that the minium film is formed and the second heat treatment is performed at a temperature of 600 ° C. or lower in an atmosphere which is not an oxidizing atmosphere.
【0024】請求項2記載の発明では、半導体基板表面
に酸化膜を形成するのに際し、半導体基板上に厚さ0.
1〜1.5nmの範囲の第1酸化膜を形成し、次いで、
前記第1酸化膜上に酸化触媒機能を有する金属薄膜を厚
さ1〜30nmの範囲で形成し、しかる後に、600℃
以下の温度でかつ酸化雰囲気中で第1熱処理を行って第
2酸化膜を形成する半導体基板表面の酸化膜の形成処理
方法において、第1の熱処理後に、酸化触媒機能を有す
る金属薄膜を除去したのち、1〜1000nmの厚さの
アルミニウム膜を形成し、酸化雰囲気でない雰囲気中に
おいて、600℃以下の温度で第2の熱処理を行うこと
を特徴としている。According to a second aspect of the invention, the surface of the semiconductor substrate
When forming an oxide film on the semiconductor substrate, the thickness of
Forming a first oxide film in the range of 1 to 1.5 nm, and then
A metal thin film having an oxidation catalyst function is formed on the first oxide film.
Formed in the range of 1 to 30 nm, and then 600 ° C.
Perform the first heat treatment in the oxidizing atmosphere at the following temperature
A method for forming an oxide film on the surface of a semiconductor substrate for forming a 2-oxide film, which has an oxidation catalyst function after the first heat treatment.
After removing the metal thin film with a thickness of 1-1000 nm
Form an aluminum film in an atmosphere that is not an oxidizing atmosphere
It is characterized in that the second heat treatment is performed at a temperature of 600 ° C. or lower .
【0025】請求項3記載の発明では、請求項1または
請求項2に記載の半導体基板表面の酸化膜の形成処理方
法において、前記第2の熱処理は、水素を含む雰囲気で
行うことを特徴としている。According to a third aspect of the invention, in the method for forming an oxide film on the surface of a semiconductor substrate according to the first or second aspect, the second heat treatment is performed in an atmosphere containing hydrogen.
It is characterized by performing.
【0026】[0026]
【0027】[0027]
【0028】[0028]
【0029】[0029]
【発明の実施の形態】本発明の半導体基板表面の酸化膜
の処理方法においては、次のようなプロセスを採用して
いる。BEST MODE FOR CARRYING OUT THE INVENTION In the method for treating an oxide film on the surface of a semiconductor substrate of the present invention, the following process is adopted.
【0030】(1) 半導体基板表面に酸化膜を形成する
のに際し、半導体基板上に厚さ0.1〜1.5nmの範囲の
第1酸化膜を形成し、次いで、前記第1酸化膜上に酸化
触媒機能を有する金属簿膜を厚さ1〜30nmの範囲で形
成し、しかる後に、600℃以下の温度でかつ酸化雰囲
気中で第1熱処理を行って第2酸化膜を形成し、引き続
いて、この第1熱処理後に、酸化雰囲気でない雰囲気中
において、600℃以下の温度で第2の熱処理を行う。
これにより、界面準位密度の低い、1〜20nm程度の薄
い酸化膜を実現することができる。(1) When forming an oxide film on the surface of a semiconductor substrate, a first oxide film having a thickness of 0.1 to 1.5 nm is formed on the semiconductor substrate, and then on the first oxide film. And forming a metal oxide film having an oxidation catalyst function in a thickness range of 1 to 30 nm, and then performing a first heat treatment in an oxidizing atmosphere at a temperature of 600 ° C. or less to form a second oxide film. Then, after this first heat treatment, a second heat treatment is performed at a temperature of 600 ° C. or lower in an atmosphere that is not an oxidizing atmosphere.
As a result, a thin oxide film having a low interface state density of about 1 to 20 nm can be realized.
【0031】(2) 特に、(1)の方法において、前記酸
化触媒機能を有する金属薄膜の形成時に、抵抗加熱蒸着
法を用いるのが好ましい。(2) In particular, in the method (1), it is preferable to use the resistance heating vapor deposition method when forming the metal thin film having the oxidation catalyst function.
【0032】(3) 上記(1),(2)の方法において、特
に第2の熱処理を、水素を含む雰囲気で行う。(3) In the above methods (1) and (2), the second heat treatment is performed particularly in an atmosphere containing hydrogen.
【0033】(4) 上記(1),(2),(3)のいずれかの
方法において、第2の熱処理前に、酸化触媒機能を有す
る金属薄膜上に、1〜10000nmの厚さのアルミニウ
ム膜を形成する。(4) In the method of any one of (1), (2), and (3) above, aluminum having a thickness of 1 to 10000 nm is formed on the metal thin film having an oxidation catalyst function before the second heat treatment. Form a film.
【0034】(5) 上記(4)の方法において、アルミニ
ウム膜を形成する前に、酸化触媒機能を有する金属薄膜
を除去する。(5) In the above method (4), the metal thin film having an oxidation catalyst function is removed before the aluminum film is formed.
【0035】(6) さらに、第2の熱処理をしなくて
も、酸化触媒機能を有する金属薄膜の形成時に、抵抗加
熱蒸着法を用いることでも界面特性をある程度向上させ
ることが可能である。(6) Furthermore, even if the second heat treatment is not performed, the interface characteristics can be improved to some extent by using the resistance heating vapor deposition method when forming the metal thin film having the oxidation catalyst function.
【0036】[0036]
【実施例】以下、本発明を実施例に基づいてさらに具体
的に説明する。EXAMPLES The present invention will be described more specifically below based on examples.
【0037】実施例1
この実施例1では、半導体基板としてシリコン基板を例
にとって、MOS容量を形成する工程を、図1を参照し
て説明する。 Example 1 In Example 1, a silicon substrate is used as an example of a semiconductor substrate, and a process of forming a MOS capacitor will be described with reference to FIG.
【0038】まず、シリコン基板1上に分離領域2と活
性領域4を形成した。活性領域4の表面には自然酸化膜
8が存在している(図1(a))。First, the isolation region 2 and the active region 4 were formed on the silicon substrate 1. A natural oxide film 8 exists on the surface of the active region 4 (FIG. 1 (a)).
【0039】シリコン基板としてp型(100)、10〜
150Ωcmの基板を用い、ボロンのチャネルストッパー
を注入後、分離領域2としてLOCOS(1ocal oxidati
on of silicon)酸化膜を500nmの厚さで形成した。As a silicon substrate, p-type (100), 10
After using a substrate of 150 Ωcm and implanting a boron channel stopper, LOCOS (1 ocal oxidati
An oxide film was formed to a thickness of 500 nm.
【0040】次に、活性領域4の表面を洗浄するため、
公知のRCA洗浄方法により、ウエーハを洗浄した後、
希HF溶液(0.5vol.%HF水溶液)に5分間浸潰し、
シリコン表面の自然酸化膜8を除去した(図1(b))。こ
の自然酸化膜8の除去は、この後に清浄でかつ均質な特
性を有する第l酸化膜5を形成する上で、重要な役割を
もっている。Next, in order to clean the surface of the active region 4,
After cleaning the wafer by a known RCA cleaning method,
Immerse in dilute HF solution (0.5 vol.% HF aqueous solution) for 5 minutes,
The native oxide film 8 on the silicon surface was removed (FIG. 1 (b)). The removal of the natural oxide film 8 has an important role in forming the first oxide film 5 having clean and uniform characteristics thereafter.
【0041】シリコン表面に高品質な極薄酸化膜を形成
するためには、清浄なシリコン表面3が必要であり、シ
リコン表面の自然酸化膜8の完全除去およびシリコン表
面の不純物除去が重要である。In order to form a high quality ultra-thin oxide film on the silicon surface, a clean silicon surface 3 is necessary, and it is important to completely remove the natural oxide film 8 on the silicon surface and remove impurities on the silicon surface. .
【0042】次に、超純水でウエーハを5分間リンス
(洗浄)した後、ウエーハを115℃の熱硝酸に10分間
浸漬し、シリコン基板に第1酸化膜5として表面厚さ
1.1nmの化学的酸化膜を形成した(図1(c))。このよう
に、熱濃硝酸を用いることにより、重金属などを含まな
い清浄かつ高品質な化学酸化膜(第1酸化膜)5を形成す
ることができる。Next, the wafer is rinsed with ultrapure water for 5 minutes.
After (washing), the wafer was immersed in hot nitric acid at 115 ° C. for 10 minutes to form a chemical oxide film having a surface thickness of 1.1 nm as the first oxide film 5 on the silicon substrate (FIG. 1 (c)). Thus, by using hot concentrated nitric acid, a clean and high-quality chemical oxide film (first oxide film) 5 containing no heavy metals can be formed.
【0043】なお、半導体表面に化学的酸化膜5を形成
する処理方法としては、この実施例1のような熱濃硝酸
に浸漬する方法のほか、硫酸と過酸化水素水の混合溶液
に浸漬する方法、塩酸と過酸化水素水の混合溶液に浸漬
する方法、アンモニア水と過酸化水素水の混合溶液に浸
漬する方法、オゾンを10数ppm溶解させたオゾン水に
浸漬する方法などが挙げられる。その他、オゾンガス雰
囲気中にウエーハを暴露しながら、400℃から室温で
熱処理する方法や、紫外線を照射しながらオゾンガス雰
囲気中にウエーハを暴露する方法なども可能である。As a treatment method for forming the chemical oxide film 5 on the semiconductor surface, in addition to the method of immersing in the hot concentrated nitric acid as in Example 1, the method of immersing in the mixed solution of sulfuric acid and hydrogen peroxide solution is used. Examples include a method, a method of immersing in a mixed solution of hydrochloric acid and hydrogen peroxide solution, a method of immersing in a mixed solution of ammonia water and hydrogen peroxide solution, a method of immersing in ozone water in which ozone is dissolved at 10 ppm. In addition, a method of performing heat treatment at 400 ° C. to room temperature while exposing the wafer to the ozone gas atmosphere, a method of exposing the wafer to the ozone gas atmosphere while irradiating the ultraviolet ray, and the like are also possible.
【0044】次に、シリコン基板上の第1酸化薄膜5上
に、酸化触媒機能をもつ金属薄膜として、電子ビーム蒸
着法により、約3nmの厚さの白金6を蒸着した(図1
(d))。Next, on the first oxide thin film 5 on the silicon substrate, platinum 6 having a thickness of about 3 nm was vapor-deposited as a metal thin film having an oxidation catalyst function by an electron beam vapor deposition method (FIG. 1).
(d)).
【0045】その際、白金には99.99%の純度のも
のを用いた。蒸着速度は0.3nm/分、蒸着中のシリコ
ン基板の温度は50℃とし、圧力は1×10-4Paとし
た。なお、酸化触媒機能をもつ金属膜としては白金のほ
かにパラジウムを用いることもできる。At this time, platinum having a purity of 99.99% was used. The vapor deposition rate was 0.3 nm / min, the temperature of the silicon substrate during vapor deposition was 50 ° C., and the pressure was 1 × 10 −4 Pa. In addition to platinum, palladium can be used as the metal film having an oxidation catalyst function.
【0046】その後、電気炉で加湿酸素中で、300℃
でl時間処理した(第1熱処理)。この第l熱処理によ
り、シリコン酸化膜7が厚さ4.5nmに成長した(図1
(e))。Then, in an electric furnace in humidified oxygen at 300 ° C.
For 1 hour (first heat treatment). By this first heat treatment, the silicon oxide film 7 was grown to a thickness of 4.5 nm (see FIG. 1).
(e)).
【0047】このとき、シリコン基板1上には、厚さ
4.5nmの酸化膜7と、厚さ3nmの白金6が形成されて
いる。At this time, an oxide film 7 having a thickness of 4.5 nm and platinum 6 having a thickness of 3 nm are formed on the silicon substrate 1.
【0048】さらに、この実施例1においては、電気炉
内に流す雰囲気ガスとして、純度99.9999%の窒
素ガスを使用し、これを1分間で10リットルの割合で
流しながら置換して、400℃で1時間処理した(第2
熱処理)。Further, in Example 1, nitrogen gas having a purity of 99.9999% was used as an atmosphere gas to be flown in the electric furnace, and this gas was replaced while flowing at a rate of 10 liters per minute to obtain 400 Treated at ℃ for 1 hour (2nd
Heat treatment).
【0049】このときの雰囲気ガスとしては、酸化雰囲
気を形成しないものであれば特に窒素ガスに限定される
ものではなく、たとえば、ヘリウムやアルゴンなどの不
活性ガスを用いてもよい。The atmosphere gas at this time is not particularly limited to nitrogen gas as long as it does not form an oxidizing atmosphere, and for example, an inert gas such as helium or argon may be used.
【0050】さらに、こうして形成された第2酸化膜7
の界面特性を正確に測定するため、白金薄膜6上にフォ
トレジスト10を形成し(図1(f))、分離領域2上の白
金薄膜6を王水にて除去後(図1(g))、フォトレジスト
10をリムーバーにて除去した(図1(h))。Further, the second oxide film 7 thus formed
In order to accurately measure the interfacial characteristics of Pt, the photoresist 10 is formed on the platinum thin film 6 (Fig. 1 (f)), and the platinum thin film 6 on the separation region 2 is removed with aqua regia (Fig. 1 (g)). ), And the photoresist 10 was removed by a remover (FIG. 1 (h)).
【0051】この実施例1では、界面特性を測定するた
めに、フォトレジスト10を形成しているが、MOS容
量として利用するような場合は、フォトレジスト10を
形成する必要がなく、白金薄膜6上にゲート電極や回路
構成用の金属薄膜を直接形成してもよい。In the first embodiment, the photoresist 10 is formed in order to measure the interface characteristics. However, when the photoresist 10 is used as a MOS capacitor, it is not necessary to form the photoresist 10 and the platinum thin film 6 is used. You may directly form a metal thin film for a gate electrode or a circuit structure on it.
【0052】白金薄膜6をゲート電極として、第1熱処
理直後と、第2熱処理直後のそれぞれの最小界面準位密
度を測定した結果を比較して表1に示す。Table 1 compares the results of measuring the minimum interface state densities immediately after the first heat treatment and immediately after the second heat treatment using the platinum thin film 6 as the gate electrode.
【0053】[0053]
【表1】 [Table 1]
【0054】なお、界面準位密度は、米国Solid Stat
e Measurement社製SSM−490i CV SYSTE
Mを用いて電荷・電圧測定(Q−V)を行い、同システム
の変換プログラムを用いて求めた。The interface state density is based on Solid State in the United States.
eMeasurement SSM-490i CV SYSTE
Charge / voltage measurement (Q-V) was performed using M, and it was determined using the conversion program of the same system.
【0055】表1から明らかなように、この実施例1の
ように、窒素雰囲気において第2熱処理を施すことによ
って、最小界面準位密度の値が低下し、界面特性が改善
されたことが分かる。As is apparent from Table 1, it can be seen that, as in Example 1, the second interface heat treatment was performed in the nitrogen atmosphere, whereby the value of the minimum interface state density was lowered and the interface characteristics were improved. .
【0056】その理由は、次のように考えられる。The reason is considered as follows.
【0057】上述のように、酸化膜(第1酸化膜)5が半
導体のシリコン基板1上に形成された場合、その界面に
おいて、酸化膜5は半導体の未結合手を終端すると思わ
れる。そして、このような酸化膜5上に、電子ビーム蒸
着法やスパッタリング法によって白金薄膜6を形成する
場合、紫外線やX線が放出されるほか、イオンなどの荷
電粒子が発生するため、これらによって界面の未結合手
が切り離される。その後の第1熱処理は、酸化雰囲気中
で行われるために、薄膜6形成によって切り離された未
結合手の終端を回復する効果は十分でないが、本発明の
ように、酸化雰囲気でない雰囲気中での第2熱処理を行
う場合には、その回復効果が顕著となり、第2酸化膜7
の界面特性が改善されたと推測される。As described above, when the oxide film (first oxide film) 5 is formed on the semiconductor silicon substrate 1, it is considered that the oxide film 5 terminates the dangling bonds of the semiconductor at the interface. When the platinum thin film 6 is formed on the oxide film 5 by the electron beam evaporation method or the sputtering method, ultraviolet rays and X-rays are emitted, and charged particles such as ions are generated. The unbonded hands of are separated. Since the subsequent first heat treatment is performed in an oxidizing atmosphere, the effect of recovering the ends of the dangling bonds separated by the formation of the thin film 6 is not sufficient, but as in the present invention, in the atmosphere not in an oxidizing atmosphere. When the second heat treatment is performed, the recovery effect becomes remarkable, and the second oxide film 7
It is speculated that the interfacial properties of the are improved.
【0058】実施例2
この実施例2では、第2熱処理において、実施例1のよ
うに窒素ガス単体で用いる代わりに、それぞれの純度が
99.9999%の窒素ガスと水素ガスを97:3の割
合で混合した混合ガスを用いた。なお、この実施例2に
おいては、第2熱処理における水素の含有率を3%とし
たが、水素ガスの含有率が100%のものを用いてもよ
い。 Example 2 In Example 2, instead of using nitrogen gas alone as in Example 1 in the second heat treatment, nitrogen gas and hydrogen gas each having a purity of 99.9999% were mixed at 97: 3. A mixed gas mixed in proportion was used. Although the hydrogen content in the second heat treatment is 3% in the second embodiment, a hydrogen gas content of 100% may be used.
【0059】それ以外の方法は、実施例1と同様に行な
い、最小界面準位密度を測定した。その結果を前記の表
1に示す。Other methods were performed in the same manner as in Example 1 to measure the minimum interface state density. The results are shown in Table 1 above.
【0060】上記の実施例1の窒素雰囲気における第2
熱処理に比べて、この実施例2のように、水素雰囲気を
含む熱処理を行った場合には、さらに最小界面準位密度
の値が低下し、界面特性が一層改善されたことが分か
る。Second Example in Nitrogen Atmosphere of Example 1 above
As compared with the heat treatment, it can be seen that when the heat treatment including the hydrogen atmosphere is performed as in Example 2, the value of the minimum interface state density is further reduced and the interface characteristics are further improved.
【0061】その理由は、第2熱処理において、水素ガ
スを含む雰囲気にすれば、水素が界面まで侵入し、この
侵入した水素によって未結合手の終端が助長され、当
初、第2酸化膜7によって終端されていなかった未結合
手も水素によって終端すると推測される。The reason is that, in the second heat treatment, if an atmosphere containing hydrogen gas is used, hydrogen penetrates to the interface, and this penetrating hydrogen promotes the termination of dangling bonds, and initially the second oxide film 7 is used. It is speculated that unbonded bonds that were not terminated will also be terminated by hydrogen.
【0062】実施例3
この実施例3では、上記の実施例2による第2酸化膜7
の形成後(図1(e),図2(a))、続いて、白金薄膜6上に
アルミニウム膜9を500nmの厚さで、電子ビーム蒸着
によって形成した(図2(b))。なお、このときのアルミ
ニウム膜9の形成方法としては、この実施例3の電子ビ
ーム蒸着法の外に、抵抗加熱蒸着法や、スパッタリング
法、イオンプレーティング法などを用いてもよい。 Example 3 In this Example 3, the second oxide film 7 according to the above Example 2 was used.
After forming (FIG. 1 (e) and FIG. 2 (a)), subsequently, an aluminum film 9 having a thickness of 500 nm was formed on the platinum thin film 6 by electron beam evaporation (FIG. 2 (b)). As a method of forming the aluminum film 9 at this time, a resistance heating vapor deposition method, a sputtering method, an ion plating method or the like may be used in addition to the electron beam vapor deposition method of the third embodiment.
【0063】さらに、第2熱処理を実施例2で用いた混
合ガス中で行い、同様にフォトレジスト10を形成し
(図2(c))、5%リン酸を80℃で湯煎してアルミニウ
ム膜を除去し、次に、王水で白金を除去した後(図2
(d))、フォトレジストをリムーバーで除去した(図2
(e))。Further, the second heat treatment is performed in the mixed gas used in Example 2 to form the photoresist 10 in the same manner.
(Fig. 2 (c)) After boiling 5% phosphoric acid at 80 ° C to remove the aluminum film, and then removing platinum with aqua regia (Fig. 2).
(d)), the photoresist was removed by a remover (Fig. 2
(e)).
【0064】実施例lと同様にして測定した最小界面準
位密度の結果を、同様に表1に示す。The results of the minimum interface state density measured in the same manner as in Example 1 are also shown in Table 1.
【0065】実施例2の値に比べ、この実施例3のアル
ミニウム膜9を形成後の熱処理は、最少界面準位密度の
値がさらに低下しており、界面特性が改善されたことが
分かる。Compared to the values of Example 2, the heat treatment after forming the aluminum film 9 of Example 3 further reduced the value of the minimum interface state density, indicating that the interface characteristics were improved.
【0066】このように、第2酸化膜7の形成後に、白
金薄膜6上にアルミニウム膜9を形成した場合には、水
素の吸収効率がさらに高まると推測され、界面特性が一
層改善される。As described above, when the aluminum film 9 is formed on the platinum thin film 6 after the second oxide film 7 is formed, it is presumed that the hydrogen absorption efficiency is further increased, and the interface characteristics are further improved.
【0067】実施例4
実施例2において、第2酸化膜7形成後(図1(e),図3
(a))、白金薄膜6を王水で除去し(図3(b))、第2酸化
膜7上にアルミニウム膜9を500nm、電子ビーム蒸着
によって形成した(図3(c))。 Example 4 In Example 2, after the second oxide film 7 was formed (FIG. 1 (e), FIG.
(a)), the platinum thin film 6 was removed with aqua regia (FIG. 3 (b)), and an aluminum film 9 of 500 nm was formed on the second oxide film 7 by electron beam evaporation (FIG. 3 (c)).
【0068】さらに、第2熱処理を実施例2で用いた混
合ガス中で行い、同様にフォトレジスト10を形成し
(図3(d))、5%リン酸を80℃で湯煎してアルミニウ
ム膜9を除去した後(図3(e))、フォトレジストをリム
ーバーで除去した(図3(f))。Further, the second heat treatment is performed in the mixed gas used in Example 2 to form the photoresist 10 in the same manner.
(FIG. 3 (d)) After boiling 5% phosphoric acid at 80 ° C. to remove the aluminum film 9 (FIG. 3 (e)), the photoresist was removed with a remover (FIG. 3 (f)).
【0069】この方法で作製した酸化膜の最少界面準位
密度を、同様に表lに示す。The minimum interface state density of the oxide film produced by this method is also shown in Table 1.
【0070】この実施例4のように、第2酸化膜7の上
に直接アルミニウム膜9を形成した後に第2熱処理を行
う場合には、実施例3の値に比べて、最少界面準位密度
の値が1×1011eVcm-2以下まで低下し、トランジス
タのゲート酸化膜として良好な特性が得られる品質まで
界面特性を向上させることができた。When the second heat treatment is performed after the aluminum film 9 is directly formed on the second oxide film 7 as in the fourth embodiment, the minimum interface state density is lower than that in the third embodiment. Was decreased to 1 × 10 11 eVcm −2 or less, and the interface characteristics could be improved to such a quality that good characteristics were obtained as the gate oxide film of the transistor.
【0071】このように、アルミニウム膜9の形成前に
予め白金薄膜6を除去することによって、より効率的に
水素を第2酸化膜7の基板1との界面に送り込むことが
できると推測され、界面特性がさらに一層改善される。Thus, it is presumed that by removing the platinum thin film 6 in advance before forming the aluminum film 9, hydrogen can be more efficiently sent to the interface of the second oxide film 7 with the substrate 1, The interface characteristics are further improved.
【0072】実施例5
この実施例5の酸化膜の形成処理方法は、基本的には、
実施例1の工程と同様であるが、酸化触媒機能を有する
白金薄膜6を形成する際の方法に特徴がある。[0072] forming processing method of an oxide film of Example 5 This example 5 is basically
It is similar to the process of Example 1, but is characterized by the method for forming the platinum thin film 6 having an oxidation catalyst function.
【0073】すなわち、この実施例5では、実施例1の
場合と同様に、シリコン基板1上に第1酸化膜5を形成
した後、この第1酸化膜5上に、タングステンボートを
用いた抵抗加熱蒸着法により、約3nmの厚さの白金薄膜
6を蒸着した(図1(d))。その際、白金には99.99%
の純度のものを用いた。蒸着速度は、0.1nm/分、蒸
着中のシリコン基板1の温度は60℃とし、圧力は1×
10-4Paとした。That is, in the fifth embodiment, similarly to the first embodiment, after the first oxide film 5 is formed on the silicon substrate 1, the resistance using the tungsten boat is formed on the first oxide film 5. A platinum thin film 6 having a thickness of about 3 nm was deposited by the heating deposition method (FIG. 1 (d)). At that time, 99.99% for platinum
The one with the purity of was used. The vapor deposition rate is 0.1 nm / min, the temperature of the silicon substrate 1 during vapor deposition is 60 ° C., and the pressure is 1 ×.
It was set to 10 −4 Pa.
【0074】その後は、実施例1の場合と同様に、電気
炉で加湿酸素中で300℃でl時間処理した(第1熱処
理)。この第1熱処理により、シリコン酸化膜7が厚さ
4.5nmに成長した(図1(e))。続いて、雰囲気ガスとし
て、純度99.9999%の窒素ガスを使用し、電気炉
内にこれを1分間で10リットルの割合で流しながら置
換して400℃で1時間処理した(第2熱処理)。Thereafter, as in the case of Example 1, a treatment was performed in an electric furnace in humidified oxygen at 300 ° C. for 1 hour (first heat treatment). By this first heat treatment, the silicon oxide film 7 was grown to a thickness of 4.5 nm (FIG. 1 (e)). Subsequently, a nitrogen gas having a purity of 99.9999% was used as an atmosphere gas, which was replaced in the electric furnace while flowing at a rate of 10 liters for 1 minute and treated at 400 ° C. for 1 hour (second heat treatment). .
【0075】さらに、白金薄膜6上にフォトレジスト1
0を形成し(図1(f))、分離領域2上の白金薄膜6を王
水にて除去した後(図1(g))、フォトレジスト10をリ
ムーバーにて除去した(図1(h))。Further, the photoresist 1 is formed on the platinum thin film 6.
0 (FIG. 1 (f)), the platinum thin film 6 on the separation region 2 was removed with aqua regia (FIG. 1 (g)), and the photoresist 10 was removed with a remover (FIG. 1 (h). )).
【0076】この白金薄膜6をゲート電極とした最少界
面準位密度を同じく表1に示す。The minimum interface state density using the platinum thin film 6 as a gate electrode is also shown in Table 1.
【0077】白金薄膜の形成方法を、この実施例5のよ
うに、抵抗加熱蒸着に限定することによって、従来の電
子ビーム蒸着などの方法を用いた場合に比べ、最少界面
準位密度の値が減少し、界面特性が改善されたことが分
かる。By limiting the method of forming the platinum thin film to the resistance heating vapor deposition as in the fifth embodiment, the value of the minimum interface state density can be reduced as compared with the case of using the conventional electron beam vapor deposition or the like. It can be seen that the interfacial properties are reduced and the interface properties are improved.
【0078】この実施例5のように、白金薄膜6を抵抗
加熱蒸着法によって形成すると、白金薄膜6の形成時に
紫外線やX線による界面への悪影響が低減されると推測
される。When the platinum thin film 6 is formed by the resistance heating vapor deposition method as in the fifth embodiment, it is presumed that the adverse effect of ultraviolet rays or X-rays on the interface during the formation of the platinum thin film 6 is reduced.
【0079】なお、上記の実施例2〜4の方法を採用す
る場合においても、白金薄膜6を抵抗加熱蒸着法によっ
て形成することが有効である。さらに、この実施例5の
ように、第2の熱処理を実施しなくても、酸化触媒機能
を有する金属薄膜の形成時に、抵抗加熱蒸着法を用いて
も、界面特性をある程度向上させることが可能である。Even when the methods of Examples 2 to 4 are adopted, it is effective to form the platinum thin film 6 by the resistance heating vapor deposition method. Further, as in Example 5, even if the second heat treatment is not performed, the interface characteristics can be improved to some extent even when the resistance heating vapor deposition method is used when the metal thin film having the oxidation catalyst function is formed. Is.
【0080】[0080]
【発明の効果】本発明の半導体基板表面の酸化膜の処理
方法によれば、次の効果を奏する。The method of treating an oxide film on the surface of a semiconductor substrate of the present invention has the following effects.
【0081】(1) 請求項1記載のように、第1熱処
理後に、酸化触媒機能を有する金属薄膜上に、1〜10
00nmの厚さのアルミニウム膜を形成し、酸化雰囲気
でない雰囲気中において、第2の熱処理を行うことによ
って、高温加熱を用いずに制御性よく形成された半導体
基板表面の酸化膜の界面特性を、さらに改善することが
できる。(1) As described in claim 1, after the first heat treatment , 1 to 10 are formed on the metal thin film having an oxidation catalyst function.
By forming an aluminum film having a thickness of 00 nm and performing a second heat treatment in an atmosphere that is not an oxidizing atmosphere, the interface characteristics of the oxide film on the surface of the semiconductor substrate formed with good controllability without using high-temperature heating, It can be improved further.
【0082】(2) 請求項2記載の発明のように、第
2熱処理を行う前に酸化触媒機能を有する金属薄膜を除
去した後の第2酸化膜上に、アルミニウム膜を形成する
ことにより、また、請求項3記載の発明のように、第2
熱処理の雰囲気を水素を含むものとすることにより、高
温加熱を用いずに制御性よく形成された半導体基板表面
の酸化膜によって、ゲート酸化膜として利用しうる品質
の界面特性を持った酸化膜を実現することができる。(2) As in the invention described in claim 2, the metal thin film having an oxidation catalyst function is removed before the second heat treatment.
An aluminum film is formed on the second oxide film after the removal.
As a result, as in the invention according to claim 3 , the second
By including hydrogen in the heat treatment atmosphere, an oxide film having a quality that can be used as a gate oxide film can be realized by the oxide film on the surface of the semiconductor substrate that is formed with good controllability without using high temperature heating. be able to.
【0083】[0083]
【図1】本発明の半導体基板の酸化膜の形成処理方法の
一実施例のプロセスを示す図FIG. 1 is a diagram showing a process of an embodiment of a method for forming an oxide film on a semiconductor substrate according to the present invention.
【図2】本発明の半導体基板の酸化膜の形成処理方法の
他の一実施例のプロセスを示す図FIG. 2 is a diagram showing a process of another embodiment of the method for forming an oxide film on a semiconductor substrate of the present invention.
【図3】本発明の半導体基板の酸化膜の形成処理方法の
さらに他の一実施例のプロセスを示す図FIG. 3 is a diagram showing a process of still another embodiment of the method for forming an oxide film on a semiconductor substrate of the present invention.
【図4】半導体基板の酸化膜の形成処理方法の従来例の
プロセスを示す図FIG. 4 is a diagram showing a process of a conventional example of a method for forming an oxide film on a semiconductor substrate.
1 半導体基板 2 分離酸化膜 3 清浄な半導体基板表面 4 半導体表面の活性領域 5 第l酸化膜 6 酸化触媒機能を有する金属薄膜(白金薄膜) 7 第2酸化膜 8 自然酸化膜 9 アルミニウム薄膜 10 フォトレジスト 1 Semiconductor substrate 2 separation oxide film 3 Clean semiconductor substrate surface 4 Active area of semiconductor surface 5 lth oxide film 6 Metal thin film (platinum thin film) with oxidation catalyst function 7 Second oxide film 8 Natural oxide film 9 Aluminum thin film 10 photoresist
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/312 H01L 21/314 H01L 21/316 H01L 21/318 Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/312 H01L 21/314 H01L 21/316 H01L 21/318
Claims (3)
し、半導体基板上に厚さ0.1〜1.5nmの範囲の第1
酸化膜を形成し、次いで、前記第1酸化膜上に酸化触媒
機能を有する金属薄膜を厚さ1〜30nmの範囲で形成
し、しかる後に、600℃以下の温度でかつ酸化雰囲気
中で第1熱処理を行って第2酸化膜を形成する半導体基
板表面の酸化膜の形成処理方法において、 第1の熱処理後に、酸化触媒機能を有する金属薄膜上
に、1〜1000nmの厚さのアルミニウム膜を形成
し、酸化雰囲気でない雰囲気中において、600℃以下
の温度で第2の熱処理を行うことを特徴とする半導体基
板表面の酸化膜の形成処理方法。1. When forming an oxide film on the surface of a semiconductor substrate, a first film having a thickness of 0.1 to 1.5 nm is formed on the semiconductor substrate.
An oxide film is formed, then a metal thin film having an oxidation catalyst function is formed on the first oxide film in a thickness range of 1 to 30 nm, and then the first thin film is formed at a temperature of 600 ° C. or less and in an oxidizing atmosphere. A method of forming an oxide film on a surface of a semiconductor substrate, which comprises performing a heat treatment to form a second oxide film, wherein an aluminum film having a thickness of 1 to 1000 nm is formed on a metal thin film having an oxidation catalyst function after the first heat treatment. Then, the second heat treatment is performed at a temperature of 600 ° C. or lower in an atmosphere that is not an oxidizing atmosphere, and a method for forming an oxide film on the surface of the semiconductor substrate.
し、半導体基板上に厚さ0.1〜1.5nmの範囲の第1
酸化膜を形成し、次いで、前記第1酸化膜上に酸化触媒
機能を有する金属薄膜を厚さ1〜30nmの範囲で形成
し、しかる後に、600℃以下の温度でかつ酸化雰囲気
中で第1熱処理を行って第2酸化膜を形成する半導体基
板表面の酸化膜の形成処理方法において、第1の熱処理後に、酸化触媒機能を有する金属薄膜を除
去したのち、1〜1000nmの厚さのアルミニウム膜
を形成し、酸化雰囲気でない雰囲気中において、600
℃以下の温度で第2の熱処理を 行うことを特徴とする半
導体基板表面の酸化膜の形成処理方法。2. When forming an oxide film on the surface of a semiconductor substrate
On the semiconductor substrate with a thickness in the range of 0.1 to 1.5 nm.
An oxide film is formed, and then an oxidation catalyst is formed on the first oxide film.
Forming a metal thin film having a function within a thickness range of 1 to 30 nm
Then, at a temperature below 600 ° C and in an oxidizing atmosphere
In the method for forming an oxide film on the surface of a semiconductor substrate, in which a first heat treatment is performed to form a second oxide film , a metal thin film having an oxidation catalyst function is removed after the first heat treatment.
After removal, aluminum film with a thickness of 1-1000 nm
In a non-oxidizing atmosphere.
A method for forming an oxide film on a surface of a semiconductor substrate, which comprises performing the second heat treatment at a temperature of not more than ° C.
板表面の酸化膜の形成処理方法において、前記第2の熱処理は、水素を含む雰囲気で行う ことを特
徴とする半導体基板表面の酸化膜の形成処理方法。3. The method of forming an oxide film on a surface of a semiconductor substrate according to claim 1, wherein the second heat treatment is performed in an atmosphere containing hydrogen. Method for forming film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22818597A JP3416716B2 (en) | 1997-08-25 | 1997-08-25 | Method for forming oxide film on semiconductor substrate surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22818597A JP3416716B2 (en) | 1997-08-25 | 1997-08-25 | Method for forming oxide film on semiconductor substrate surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1167756A JPH1167756A (en) | 1999-03-09 |
JP3416716B2 true JP3416716B2 (en) | 2003-06-16 |
Family
ID=16872550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22818597A Expired - Fee Related JP3416716B2 (en) | 1997-08-25 | 1997-08-25 | Method for forming oxide film on semiconductor substrate surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3416716B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3786569B2 (en) * | 2000-08-14 | 2006-06-14 | 松下電器産業株式会社 | Manufacturing method of semiconductor device |
JP3604018B2 (en) * | 2002-05-24 | 2004-12-22 | 独立行政法人科学技術振興機構 | Method for forming silicon dioxide film on silicon substrate surface, method for forming oxide film on semiconductor substrate surface, and method for manufacturing semiconductor device |
-
1997
- 1997-08-25 JP JP22818597A patent/JP3416716B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1167756A (en) | 1999-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2581268B2 (en) | Semiconductor substrate processing method | |
JP2937817B2 (en) | Method of forming oxide film on semiconductor substrate surface and method of manufacturing MOS semiconductor device | |
US5712198A (en) | Pre-thermal treatment cleaning process | |
JP2007184571A (en) | Silicon cardide semiconductor device, method of manufacturing same, junction between transition metal silicide and metal film therein, and method of manufacturing junction between transition metal silicide and metal film therein | |
WO2003100844A1 (en) | Method for forming silicon dioxide film on silicon substrate, method for forming oxide film on semiconductor substrate, and method for producing semiconductor device | |
JPH04113620A (en) | Cleaning method for semiconductor substrate | |
JP3122125B2 (en) | Method of forming oxide film | |
JP3190075B2 (en) | Method for manufacturing semiconductor device | |
JPH0380338B2 (en) | ||
JP3416716B2 (en) | Method for forming oxide film on semiconductor substrate surface | |
JP2002510437A (en) | Method of nitriding gate oxide layer of semiconductor device and resulting device | |
JP3350215B2 (en) | Method for manufacturing semiconductor device | |
JP3786569B2 (en) | Manufacturing method of semiconductor device | |
JP2776583B2 (en) | Semiconductor substrate processing solution and processing method | |
JP2713787B2 (en) | Semiconductor wet cleaning method | |
JP2002064093A (en) | Method for forming oxide film on semiconductor substrate surface, and manufacturing method of semiconductor device | |
JPH071766B2 (en) | Method for manufacturing semiconductor device | |
JP2884948B2 (en) | Semiconductor substrate processing method | |
JPH06177102A (en) | Method and equipment for cleaning surface of compound semiconductor | |
JP3296268B2 (en) | Method for manufacturing semiconductor device | |
JPH1050701A (en) | Semiconductor and forming oxide film on surface of semiconductor substrate | |
JP3091210B2 (en) | Method of forming oxide film | |
WO1990013912A1 (en) | Silicon oxide film and semiconductor device having the same | |
JP3917282B2 (en) | Method for forming insulating film on semiconductor substrate surface | |
JP3087189B2 (en) | Method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |