JP2776583B2 - Semiconductor substrate processing solution and processing method - Google Patents
Semiconductor substrate processing solution and processing methodInfo
- Publication number
- JP2776583B2 JP2776583B2 JP1259121A JP25912189A JP2776583B2 JP 2776583 B2 JP2776583 B2 JP 2776583B2 JP 1259121 A JP1259121 A JP 1259121A JP 25912189 A JP25912189 A JP 25912189A JP 2776583 B2 JP2776583 B2 JP 2776583B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- dhf
- treatment
- processing
- hydrogen peroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Weting (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体基板の処理液に関し、特に金属不純物
の取り込みが少なく、且つ金属不純物の除去能力に優れ
ている上に、微粒子の付着が極めて少ない処理液に関す
る。Description: TECHNICAL FIELD The present invention relates to a processing solution for a semiconductor substrate, and particularly relates to a processing solution for a semiconductor substrate, which has a small incorporation of metal impurities, has an excellent ability to remove metal impurities, and has extremely low adhesion of fine particles. For small processing solutions.
従来、この種の処理液として、金属不純物の除去に対
しては、硫酸−過酸化水素混合液(以後SPMと記す),
塩酸−過酸化水素混合液(以後HPMと記す)等が利用さ
れ、微粒子の除去にはアンモニア−過酸化水素混合液
(以後APMと記す)が使用されている。また、酸化膜の
除去に対しては、希弗酸(DHF)が使用されている。Conventionally, as a treatment liquid of this kind, a sulfuric acid-hydrogen peroxide mixture (hereinafter referred to as SPM),
A mixed solution of hydrochloric acid and hydrogen peroxide (hereinafter referred to as HPM) is used, and a mixed solution of ammonia and hydrogen peroxide (hereinafter referred to as APM) is used for removing fine particles. Dilute hydrofluoric acid (DHF) is used for removing the oxide film.
上述した従来の処理液において、APMは半導体基板に
対するアンモニアのエッチング作用を利用して半導体基
板上の微粒子を除去するために使用される。しかしなが
ら、APMはCu等のようにアンモニアと錯体を作りやすい
金属に対しては比較的除去効果が高いが、全体的に見れ
ば、SPM,HPMのような酸を主成分とした処理液と比較し
て、金属に対する除去能力は劣っている。さらに、APM
では半導体基板に対する過剰なエッチングを防止するた
めに、酸化剤として過酸化水素が添加されているが、こ
の過酸化水素の強力な酸化性によって、薬液中にAl,Fe
等のような極めて酸化されやすい金属不純物が含まれて
いると、それら金属不純物は処理中に形成される自然酸
化膜中に取り込まれる。取り込まれた金属不純物はその
後の熱処理プロセスを経て半導体基板中に拡散し、接合
リークの増大やキャリアライフタイムの低下をもたらし
たりDRAMにおけるHold特性の劣化を引き起こしたりす
る。またゲート工程においてはゲート耐圧の劣化やVfb
の変動等の原因になったりする。それ故、金属不純物の
除去を目的とした洗浄工程においては、APM単独で使用
されることは少なく、APM処理の後に、SPM,HPM等の酸処
理を追加したり、APM処理時に形成される自然酸化膜を
除去するためにDHFによる処理が追加される。In the conventional processing solution described above, APM is used to remove fine particles on the semiconductor substrate by utilizing the etching action of ammonia on the semiconductor substrate. However, APM has a relatively high removal effect on metals such as Cu, which are likely to form a complex with ammonia, but overall, compared to treatment solutions containing acids as the main component, such as SPM and HPM. Thus, the ability to remove metals is inferior. In addition, APM
In order to prevent excessive etching of the semiconductor substrate, hydrogen peroxide is added as an oxidizing agent, but due to the strong oxidizing property of the hydrogen peroxide, Al, Fe
When extremely oxidizable metal impurities such as are contained, the metal impurities are taken into a native oxide film formed during the processing. The taken-in metal impurity diffuses into the semiconductor substrate through a subsequent heat treatment process, resulting in an increase in junction leak, a reduction in carrier lifetime, and a deterioration in the hold characteristics of the DRAM. In the gate process, deterioration of gate breakdown voltage and V fb
Or cause fluctuations in Therefore, in the cleaning process for removing metal impurities, APM is rarely used alone, and after the APM treatment, an acid treatment such as SPM or HPM is added, or a natural process formed during the APM treatment is performed. DHF treatment is added to remove the oxide film.
SPM,HPMは酸の働きによって金属不純物を溶解除去す
ることができるため、金属不純物に対する除去効果はか
なり高い。しかしながら、SPM,HPMといえども、薬液中
の過酸化水素の働きにより基板表面に自然酸化膜が形成
され、薬液中の金属不純物濃度が高い場合には自然酸化
膜中に取り込まれる。Since SPM and HPM can dissolve and remove metal impurities by the action of an acid, the effect of removing metal impurities is considerably high. However, even with SPM and HPM, a natural oxide film is formed on the substrate surface by the action of hydrogen peroxide in the chemical solution, and is taken into the natural oxide film when the concentration of metal impurities in the chemical solution is high.
また、近年デバイスの高集積化に伴ない、ゲート酸化
膜や容量絶縁膜の薄膜化が進んでいる。上述したAPM,SP
M,HPMでは、処理時に10〜20Åの自然酸化膜が形成され
る。この自然酸化膜は、100Å程度の薄い酸化膜を形成
する上で、膜質の低下や膜厚の不均一さをもたらす原因
であり、自然酸化膜の制御がますます重要な問題となり
つつある。Further, in recent years, gate oxide films and capacitance insulating films have been reduced in thickness with higher integration of devices. APM, SP mentioned above
In M and HPM, a natural oxide film of 10 to 20 ° is formed during the treatment. This natural oxide film causes deterioration of film quality and unevenness of film thickness in forming a thin oxide film of about 100 mm, and control of the natural oxide film is becoming an increasingly important problem.
一方、DHFは、自然酸化膜の除去が行なえることか
ら、Al,Fe等の金属不純物の取り込みは起こりにくくな
る。しかしながら、DHFで処理を行なうと、シリコン結
晶面が露出するため、薬液中にシリコンよりもイオン化
傾向の小さな金属(例えばCu,Au等)が含まれている
と、それらの金属が基板表面に析出するという問題があ
る。On the other hand, since DHF can remove a natural oxide film, it is less likely to take in metal impurities such as Al and Fe. However, when treated with DHF, the silicon crystal surface is exposed, so if the chemical solution contains metals with a lower ionization tendency than silicon (for example, Cu, Au, etc.), those metals will precipitate on the substrate surface. There is a problem of doing.
さらに、DHFにおいては半導体基板上への微粒子の付
着も問題となる。一般にデバイス特性に悪影響を与える
微粒子の大きさは設計ルールの約1/10と言われており、
4MDRAMでは0.1μm以下の微粒子が問題となる。この半
導体基板上の微粒子は、例えばリソグラフィ工程におい
てはパターン欠陥を引き起こしたり、酸化・拡散工程に
おいては、酸化膜厚異常の原因となってゲート酸化膜耐
圧の劣化を引き起こしたり、異常拡散の原因となったり
する。Further, in DHF, adhesion of fine particles on a semiconductor substrate also poses a problem. It is generally said that the size of fine particles that adversely affect device characteristics is about 1/10 of the design rule.
In 4MDRAM, fine particles of 0.1 μm or less pose a problem. The fine particles on the semiconductor substrate cause pattern defects in, for example, a lithography process, cause an oxide film thickness abnormality in an oxidation / diffusion process, cause deterioration of a gate oxide film breakdown voltage, and cause abnormal diffusion. Or become.
以上述べたように、従来の処理液では、いずれの金属
に対しても優れた除去能力を持ち、かつ微粒子の付着も
少なくできるような洗浄液の実現は困難であった。As described above, it has been difficult to realize a cleaning solution that has an excellent removal ability for any metal and can reduce the adhesion of fine particles with the conventional processing solution.
本発明の半導体基板の処理液は、シリコン基板処理を
行うために、過酸化水素を含む処理液において、薬液と
して弗酸及び過酸化水素を含み燐酸を含まない薬液を純
水に加え、前記過酸化水素の濃度を0.5乃至15重量%、
且つ前記弗酸濃度を0.1乃至10重量%とすることを特徴
としている。The processing liquid for a semiconductor substrate of the present invention is a processing liquid containing hydrogen peroxide, in which a chemical liquid containing hydrofluoric acid and hydrogen peroxide and containing no phosphoric acid is added to pure water to perform a silicon substrate processing. The concentration of hydrogen oxide is 0.5 to 15% by weight,
Further, the hydrofluoric acid concentration is 0.1 to 10% by weight.
上述した従来の半導体基板の処理液に対して、本発明
の処理液は0.1乃至10重量%の弗酸を含むDHF中に0.5乃
至15重量%の過酸化水素を添加するという相違点を有す
る。Compared with the above-mentioned conventional semiconductor substrate processing solution, the processing solution of the present invention has a difference in that 0.5 to 15% by weight of hydrogen peroxide is added to DHF containing 0.1 to 10% by weight of hydrofluoric acid.
DHF中に過酸化水素を添加することによって、半導体
基板表面を極く薄く酸化しながら、その自然酸化膜の除
去を行なうことができる。そのため、従来DHFで問題と
なっていた、Cu等の析出を防止することができる上に、
微粒子の付着も少なくできる。また、最終的に形成され
る自然酸化膜の厚さも従来のSPM,HPM,APMよりもかなり
薄くなるために、Al,Feのような酸化されやすい金属の
取り込みも少なくなる。By adding hydrogen peroxide to DHF, the natural oxide film can be removed while oxidizing the semiconductor substrate surface extremely thinly. Therefore, in addition to being able to prevent the precipitation of Cu and the like, which has conventionally been a problem with DHF,
The adhesion of fine particles can be reduced. In addition, since the thickness of the finally formed natural oxide film is much thinner than conventional SPM, HPM, and APM, the incorporation of easily oxidizable metals such as Al and Fe is reduced.
次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.
第1図は本発明および従来の処理液中からの金属不純
物の取り込み量を評価した結果である。第1図(a),
(b)はそれぞれ、原子吸光分析および少数キャリアの
再結合ライフタイムの測定結果である。FIG. 1 shows the results of evaluating the amount of metal impurities taken up from the processing liquid of the present invention and the conventional processing liquid. FIG. 1 (a),
(B) shows the results of atomic absorption analysis and the measurement of the recombination lifetime of minority carriers, respectively.
Al,Fe,Cr,Ni,Cuを各1ppm添加した処理液中であらかじ
め、DHF処理によって清浄な露出させた半導体基板を10
分間処理した。処理後の半導体基板は純水によって10分
間リンスを行なった後遠心乾燥法により乾燥した。乾燥
後半導体基板上に残留している金属不純物を原子吸水分
析および少数キャリア再結合ライフタイム測定によって
評価した。少数キャリア再結合ライフタイムは、処理後
の半導体基板に950℃の酸化性雰囲気中で熱処理を施し
た後、μ波反射式非接触ライフタイム測定器にて測定し
た。従来の処理液としては、APM(NH4OH/H2O2/H2O:1/1/
5),HPM(HCl/H2O2/H2O:1/1/5),SPM(H2SO4/H2O2:4/
1),DHF(HF:0.5%)を用い、本発明の処理液としてはD
HF/H2O2(HF:0.5%,H2O2:1%)を用いた。Al, Fe, Cr, Ni, Cu In a processing solution to which 1 ppm each was added, a semiconductor substrate that had been cleaned and exposed by
Minutes. The semiconductor substrate after the treatment was rinsed with pure water for 10 minutes, and then dried by a centrifugal drying method. Metal impurities remaining on the semiconductor substrate after drying were evaluated by atomic absorption analysis and minority carrier recombination lifetime measurement. The minority carrier recombination lifetime was measured by a microwave reflection non-contact lifetime measuring device after subjecting the treated semiconductor substrate to a heat treatment in an oxidizing atmosphere at 950 ° C. APM (NH 4 OH / H 2 O 2 / H 2 O: 1/1 /
5), HPM (HCl / H 2 O 2 / H 2 O: 1/1/5), SPM (H 2 SO 4 / H 2 O 2 : 4 /
1) Using DHF (HF: 0.5%), the processing solution of the present invention is D
HF / H 2 O 2 (HF : 0.5%, H 2 O 2: 1%) was used.
従来法において、APMでは各金属とも多量に取り込ん
でおり特にAl,Feの取り込みが多い。HPM,SPMでも微量で
はあるが、Al,Fe等の金属が取り込まれている。また、D
HFでは、Cuが多量に取り込まれている。このような従来
の処理液を使用した場合、何らかの金属不純物の取り込
みがあった。In the conventional method, APM incorporates a large amount of each metal, particularly Al and Fe. Even in HPM and SPM, a small amount of metal such as Al and Fe is incorporated. Also, D
In HF, Cu is incorporated in a large amount. When such a conventional processing solution was used, some metal impurities were taken in.
これに付して、本発明のDHF/H2O2では、Al,Fe,Cr,Ni
はむろんであるが、従来DHFで問題であったCuの取り込
みもなく、いずれの金属不純物に対しても取り込み量は
検出限界以下であった。In addition, in the DHF / H 2 O 2 of the present invention, Al, Fe, Cr, Ni
Although unavoidable, there was no incorporation of Cu, which was a problem in the conventional DHF, and the incorporation amount was below the detection limit for any metal impurities.
第1図(b)のライフタイムの結果は、この原子吸光
の結果とよく対応しており、Al,Feを多量に取り込んで
いるAPMではライフタイムが極めて短い。また、Cuを多
量に取り込んでいるDHFでは特にN型サブでのライフタ
イムの劣化が著しい。HPM,SPMでも微量に取り込んでい
るAl,Fe等のため、ライフタイムは清浄な基板のライフ
タイムよりも低下している。これに対して、DHF/H2O2で
のライフタイムは清浄な基板のものと同程度であり、DH
F/H2O2処理の半導体基板表面が極めて清浄であることを
示している。The results of the lifetime shown in FIG. 1 (b) correspond well to the results of the atomic absorption, and the APM incorporating a large amount of Al and Fe has a very short lifetime. In addition, in the case of DHF incorporating a large amount of Cu, the life time of the N-type sub is significantly deteriorated. The life time is shorter than the life time of a clean substrate because of a small amount of Al, Fe, etc. even in HPM and SPM. In contrast, the lifetime in DHF / H 2 O 2 is comparable to that of a clean substrate, and DH
This indicates that the surface of the semiconductor substrate subjected to the F / H 2 O 2 treatment is extremely clean.
第2図は本発明および従来の処理液による金属不純物
による除去効果を比較したものである。第2図(a),
(b)はそれぞれ原子吸光分析および少数キャリアの再
結合ライフタイムの測定結果である。FIG. 2 is a comparison of the effects of the present invention and the conventional treatment solution for removing metal impurities. FIG. 2 (a),
(B) shows the results of atomic absorption analysis and the measurement of the recombination lifetime of minority carriers, respectively.
清浄な半導体基板をAl,Fe,Cr,Ni,Cuによって定量汚染
させ、定量汚染後各処理液によって処理を行なった。処
理時間は10分,純水によるリンス時間は10分であった。
汚染量は、Al,Fe,Cr,Niに対しては表面濃度が1013原子/
cm2,Cuに対しては1012原子/cm2である。A clean semiconductor substrate was quantitatively contaminated with Al, Fe, Cr, Ni, and Cu, and after the quantitative contamination, treatment was performed with each processing solution. The treatment time was 10 minutes, and the rinsing time with pure water was 10 minutes.
The contamination amount is 10 13 atoms / Al, Fe, Cr, Ni.
It is 10 12 atoms / cm 2 for cm 2 and Cu.
APMでは、Al,Feに対する除去効果が低く、ほとんど除
去されていない。HPM,SPMはいずれの金属に対しても除
去効果が高いが、Al,Feは完全には除去されていない。D
HFはCuに対する除去効果が低い。これに対して本発明の
DHF/H2O2では、いずれの金属も検出限界以下であり、極
めて除去効果が高い事が分る。APM has a low removal effect on Al and Fe, and is hardly removed. HPM and SPM have a high removal effect on all metals, but Al and Fe are not completely removed. D
HF has a low removal effect on Cu. In contrast, the present invention
With DHF / H 2 O 2 , all metals are below the detection limit, indicating that the removal effect is extremely high.
第3図は、本発明のDHF/H2O2におけるHF濃度とH2O2濃
度を変化させた場合の処理液からの金属不純物の取り込
みを評価した結果である。Fe,Cuを各1ppm添加した処理
液中で半導体基板を10分間処理した後純水によって10分
間リンスを行なった。リンス後、遠心乾燥法により乾燥
した。評価は少数キャリアの再結合ライフタイム測定に
より行なった。FIG. 3 shows the results of evaluating the uptake of metal impurities from the processing solution when the HF concentration and the H 2 O 2 concentration in DHF / H 2 O 2 of the present invention were changed. The semiconductor substrate was treated for 10 minutes in a treatment solution containing 1 ppm of Fe and Cu, and then rinsed with pure water for 10 minutes. After rinsing, it was dried by a centrifugal drying method. The evaluation was performed by measuring the recombination lifetime of minority carriers.
HF濃度が0.1乃至10重量%およびH2O2濃度が0.5乃至15
重量%の範囲内で不純物の取り込みはなく、ライフタイ
ムは清浄なウェハーの場合と同じであった。HF濃度,H2O
2濃度がこれ以下の場合には、液調合時における制御性
が悪くなる。一方濃度がこれ以上高くなければ経済性に
劣る。従って、HF濃度,H2O2濃度としてはこの範囲が適
当である。HF concentration of 0.1 to 10% by weight and H 2 O 2 concentration of 0.5 to 15
There was no incorporation of impurities within the weight percent range, and the lifetime was the same as for a clean wafer. HF concentration, H 2 O
2 If the concentration is lower than this, controllability at the time of liquid preparation becomes poor. On the other hand, if the concentration is not higher than this, the economy is inferior. Therefore, this range is appropriate as the HF concentration and the H 2 O 2 concentration.
第4図は本発明の他の実施例の半導体基板表面上に付
着する微粒子の測定結果を示す。FIG. 4 shows the measurement results of fine particles adhering on the surface of a semiconductor substrate according to another embodiment of the present invention.
半導体基板を各処理液中で10分間処理した後、純水に
て10分間リンスを行なった。リンス後、遠心乾燥法によ
って乾燥し、乾燥後、半導体基板表面上に付着した微粒
子数をレーザー散乱式微粒子カウンターにて計数した。
図中の値は各処理液での処理前後の差を微粒子付着数と
して示している。After treating the semiconductor substrate in each processing solution for 10 minutes, it was rinsed with pure water for 10 minutes. After rinsing, drying was performed by a centrifugal drying method. After drying, the number of fine particles adhering on the surface of the semiconductor substrate was counted by a laser scattering fine particle counter.
The values in the figure indicate the difference before and after the treatment with each treatment liquid as the number of adhered fine particles.
従来の処理液としては、APM(NH4OH/H2O2/H2O=1/1/
5),HPM(HCl/H2O2/H2O=1/1/5)およびDHFを用いた。
またリファレンスとしては純水リンスのみの水準を用い
た。APM (NH 4 OH / H 2 O 2 / H 2 O = 1/1 /
5), HPM (HCl / H 2 O 2 / H 2 O = 1/1/5) and DHF were used.
As a reference, a pure water rinse level alone was used.
従来法において、APM処理した水準では微粒子の付着
が最も少なくリファレンスの水準並みであるが、HPMで
は数十個,DHFでは100個程度の微粒子が付着している。
さらにDHFの場合、バラツキが大きい。これに対して、
本発明のDHF/H2O2では、DHFと比較して微粒子の付着が
極めて少なくなっており、リファレンスとほぼ同程度で
ある。また液の組成を変えてもバラツキが少なく、微粒
子の付着数は非常に安定している。In the conventional method, the adhesion of the fine particles is the least at the level of the APM treatment, which is similar to that of the reference. However, several tens of particles are attached to the HPM and about 100 particles are attached to the DHF.
Furthermore, in the case of DHF, the variation is large. On the contrary,
In the DHF / H 2 O 2 of the present invention, the adhesion of fine particles is extremely small as compared with the DHF, which is almost the same as that of the reference. Further, even if the composition of the liquid is changed, the dispersion is small, and the number of adhered fine particles is very stable.
このように、DHF/H2O2においては、従来DHFで問題と
なっていた微粒子の付着も抑えることができる。As described above, in DHF / H 2 O 2 , the adhesion of fine particles, which has conventionally been a problem in DHF, can be suppressed.
以上説明したように本発明の処理液は、弗酸濃度を0.
1乃至10重量%,過酸化水素濃度を0.5乃至15重量%とす
ることにより、処理液中からの金属不純物の取り込みが
少なく、且つ金属不純物の除去能力に優れている上に、
微粒子の付着が極めて少ない処理液を提供することがで
きる。As described above, the treatment liquid of the present invention has a hydrofluoric acid concentration of 0.
By setting the hydrogen peroxide concentration to 1 to 10% by weight and the hydrogen peroxide concentration to 0.5 to 15% by weight, the incorporation of metal impurities from the processing solution is small, and the metal impurity is excellent in removing ability.
It is possible to provide a treatment liquid with very little adhesion of fine particles.
従って、本発明の処理液を用いて処理することによっ
て、高品質,高歩留りの半導体装置を製造することがで
きる効果がある。Therefore, there is an effect that a high-quality and high-yield semiconductor device can be manufactured by processing using the processing solution of the present invention.
第1図(a),(b)はそれぞれ、本発明および従来の
処理液中からの金属不純物の取り込みを示す、原子吸光
分析および少数キャリアの再結合ライフタイム測定の結
果を示す図、第2図(a),(b)は本発明および従来
の処理液による金属不純物に対する除去効果を示す、原
子吸光分析および少数キャリアの再結合ライフタイム測
定の結果を示す図、第3図は、本発明のDHF/H2O2におけ
る、処理液中からの金属不純物取り込みの組成比依存性
を示す、少数キャリアの再結合ライフタイムの測定結果
を示す図、第4図は半導体基板表面上に付着する微粒子
の測定結果を示す図である。FIGS. 1 (a) and 1 (b) show the results of atomic absorption spectrometry and the measurement of the recombination lifetime of minority carriers, respectively, showing the incorporation of metal impurities from the processing solution of the present invention and the conventional solution, and FIG. Figures (a) and (b) show the results of atomic absorption analysis and the measurement of the recombination lifetime of minority carriers, showing the effects of the present invention and the conventional treatment solution on the removal of metal impurities, and Figure 3 shows the present invention. FIG. 4 shows the measurement results of the recombination lifetime of minority carriers, showing the composition ratio dependence of the incorporation of metal impurities from the processing solution in DHF / H 2 O 2 of FIG. It is a figure showing a measurement result of a fine particle.
Claims (2)
素を含む処理液において、薬液として弗酸及び過酸化水
素を含み燐酸を含まない薬液を純水に加え、前記過酸化
水素の濃度を0.5乃至15重量%、且つ前記弗酸濃度を0.1
乃至10重量%とすることを特徴とするシリコン基板の処
理液。In order to perform a silicon substrate treatment, in a treatment solution containing hydrogen peroxide, a chemical solution containing hydrofluoric acid and hydrogen peroxide and containing no phosphoric acid is added to pure water, and the concentration of the hydrogen peroxide is reduced. 0.5 to 15% by weight, and the hydrofluoric acid concentration is 0.1
A processing liquid for a silicon substrate, wherein the processing liquid is contained in an amount of 10 to 10% by weight.
板を処理する工程を有することを特徴とする半導体基板
の処理方法。2. A method of processing a semiconductor substrate, comprising the step of processing a silicon substrate using the processing liquid according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1259121A JP2776583B2 (en) | 1989-10-03 | 1989-10-03 | Semiconductor substrate processing solution and processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1259121A JP2776583B2 (en) | 1989-10-03 | 1989-10-03 | Semiconductor substrate processing solution and processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03120719A JPH03120719A (en) | 1991-05-22 |
JP2776583B2 true JP2776583B2 (en) | 1998-07-16 |
Family
ID=17329608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1259121A Expired - Fee Related JP2776583B2 (en) | 1989-10-03 | 1989-10-03 | Semiconductor substrate processing solution and processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2776583B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03208900A (en) * | 1990-01-12 | 1991-09-12 | Nippon Steel Corp | Washing method for silicon wafer |
JP2581268B2 (en) * | 1990-05-22 | 1997-02-12 | 日本電気株式会社 | Semiconductor substrate processing method |
JP3751324B2 (en) * | 1993-12-10 | 2006-03-01 | 忠弘 大見 | Substrate surface cleaning method and surface cleaning agent |
JPH09115869A (en) * | 1995-08-10 | 1997-05-02 | Seiko Epson Corp | Semiconductor device and manufacturing method thereof |
JP4996025B2 (en) * | 2001-09-27 | 2012-08-08 | 三菱電機株式会社 | Manufacturing method of solar cell |
US8052797B2 (en) | 2006-10-24 | 2011-11-08 | Asahi Glass Company, Limited | Method for removing foreign matter from substrate surface |
JP2009290013A (en) * | 2008-05-29 | 2009-12-10 | Mitsubishi Electric Corp | Method of manufacturing solar cell, and solar cell |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS509269A (en) * | 1973-05-30 | 1975-01-30 | ||
JPS5550112A (en) * | 1978-10-05 | 1980-04-11 | Jones & Healy Marine Ltd | Assisting device for voyage |
JPS5830135A (en) * | 1981-08-17 | 1983-02-22 | Toshiba Corp | Method of cleaning semiconductor wafer |
JPS62252140A (en) * | 1986-04-25 | 1987-11-02 | Nippon Mining Co Ltd | Cleaning method for inp wafer |
JPH01146330A (en) * | 1987-12-02 | 1989-06-08 | Res Dev Corp Of Japan | Surface cleaning method for silicon solid |
-
1989
- 1989-10-03 JP JP1259121A patent/JP2776583B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03120719A (en) | 1991-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2581268B2 (en) | Semiconductor substrate processing method | |
JP3789083B2 (en) | Method for removing contaminants from integrated circuit board using cleaning solution | |
JP3046208B2 (en) | Cleaning liquid for silicon wafer and silicon oxide | |
US6348157B1 (en) | Cleaning method | |
JP2599021B2 (en) | Silicon wafer etching method and cleaning method | |
JP2841627B2 (en) | Semiconductor wafer cleaning method | |
JP2776583B2 (en) | Semiconductor substrate processing solution and processing method | |
JP3957264B2 (en) | Semiconductor substrate cleaning method | |
JPH03256665A (en) | Polishing method for silicone wafer | |
JP4817887B2 (en) | Semiconductor substrate cleaning method | |
JPH10256211A (en) | Cleaning method for semiconductor substrate | |
JP3957268B2 (en) | Semiconductor substrate cleaning method | |
JP3325739B2 (en) | Silicon wafer cleaning method | |
JP3239998B2 (en) | Semiconductor substrate cleaning method | |
JP2002329691A (en) | Method of cleaning silicon wafer | |
JP3109083B2 (en) | Etching solution for silicon oxide film and method for etching silicon oxide film | |
JPH10183185A (en) | Cleansing liquid, its formulation and production, cleansing, and production of semiconductor substrate | |
JP3040067B2 (en) | Method for cleaning substrate having semiconductor layer | |
JPH0786220A (en) | Method of cleaning semiconductor wafer | |
JPH03208899A (en) | Washing method for silicon wafer | |
JP2002100599A (en) | Washing method for silicon wafer | |
JP2001326209A (en) | Method for treating surface of silicon substrate | |
JPH0831781A (en) | Washing chemicals | |
JP2001244228A (en) | Liquid and method for washing semiconductor substrate | |
JPH07240394A (en) | Surface cleaning method of semiconductor wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090501 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |