[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3412333B2 - Wind speed detector - Google Patents

Wind speed detector

Info

Publication number
JP3412333B2
JP3412333B2 JP10552895A JP10552895A JP3412333B2 JP 3412333 B2 JP3412333 B2 JP 3412333B2 JP 10552895 A JP10552895 A JP 10552895A JP 10552895 A JP10552895 A JP 10552895A JP 3412333 B2 JP3412333 B2 JP 3412333B2
Authority
JP
Japan
Prior art keywords
wind speed
speed sensor
temperature
sensor
constant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10552895A
Other languages
Japanese (ja)
Other versions
JPH08304438A (en
Inventor
英夫 富田
啓次郎 国本
幸郎 古米
志郎 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP10552895A priority Critical patent/JP3412333B2/en
Publication of JPH08304438A publication Critical patent/JPH08304438A/en
Application granted granted Critical
Publication of JP3412333B2 publication Critical patent/JP3412333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、風速を検知する風速検
知装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wind speed detecting device for detecting wind speed.

【0002】[0002]

【従来の技術】従来の風速検知装置を図3に基づいて説
明する(特開平4−36508号公報参照)。図3に示
すように、バーナ1にはファン2から供給される空気の
風速を検知する風速検知装置が搭載されていた。この風
速検知装置は風速センサ3と、空気の温度を検知する温
度補正センサ4と、風速センサ3に電流を印加するセン
サ電源制御手段5とから構成されていた。また、ファン
2には風速センサ3の風速値に応じてファン2を制御す
る空気比制御装置6が設けられていた。一般に、風速セ
ンサ3は放熱が風速によって変わることを利用した熱線
風速計、サーミスタ風速計などが用いられている。風速
センサ3が検知する風速は放熱(加熱用入力)と風速の
関係を示す半経験的なKingの法則(式1)から求め
られる。
2. Description of the Related Art A conventional wind speed detector will be described with reference to FIG. 3 (see Japanese Patent Laid-Open No. 4-36508). As shown in FIG. 3, the burner 1 was equipped with a wind speed detection device that detects the wind speed of the air supplied from the fan 2. This wind speed detection device was composed of a wind speed sensor 3, a temperature correction sensor 4 for detecting the temperature of air, and a sensor power supply control means 5 for applying a current to the wind speed sensor 3. Further, the fan 2 is provided with an air ratio control device 6 that controls the fan 2 according to the wind speed value of the wind speed sensor 3. Generally, as the wind speed sensor 3, a hot-wire anemometer, a thermistor anemometer, or the like, which utilizes that heat radiation changes depending on the wind speed, is used. The wind speed detected by the wind speed sensor 3 is obtained from the semi-empirical King's law (Equation 1) showing the relationship between the heat radiation (heating input) and the wind speed.

【0003】 Q/△T=A+BU1/2 ‥‥‥‥‥‥‥‥‥‥‥‥(式1) ただし、Q:放熱量(入力) △T:風速センサと温度補正センサとの温度差 A、B:定数 U:風速 なお、風速センサ3が定温になるようにセンサ電源制御
手段5が風速センサ3に電流を印加する、すなわち、空
気に奪われる放熱量Qはセンサ電源制御手段5の入力に
等しくなる。したがって、放熱量Qにはセンサ電源制御
手段5の入力が代入される。
Q / △ T = A + BU 1/2 ‥‥‥‥‥‥‥‥‥‥‥‥ (Equation 1) However, Q: Heat dissipation (input) △ T: Temperature difference between wind speed sensor and temperature correction sensor A, B: Constant U: Wind speed Incidentally, the sensor power supply control means 5 applies a current to the wind speed sensor 3 so that the wind speed sensor 3 has a constant temperature, that is, the heat radiation amount Q taken to the air is determined by the sensor power supply control means 5. Is equal to the input. Therefore, the input of the sensor power supply control means 5 is substituted for the heat radiation amount Q.

【0004】空気比制御装置6は予め設定した目標風速
と風速センサ3の風速とを比較し、この風速偏差を減少
させる方向にファン2の送風量を制御する。
The air ratio control device 6 compares a preset target wind speed with the wind speed of the wind speed sensor 3, and controls the amount of air blown by the fan 2 in a direction to reduce the wind speed deviation.

【0005】このように、バーナ1は空気の過不足の検
知、調整により最適燃焼状態となるように制御される。
In this way, the burner 1 is controlled so as to be in the optimum combustion state by detecting and adjusting the excess / deficiency of air.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の風速検知装置の構成では、例えば風速センサ3の起
動中にバーナ1が着火を開始した場合、図4に示すよう
に、風速センサ3にはセンサ電源制御手段6から最大許
容電流が印加され、風速センサ3が温度上昇して定温に
近づくまで最大許容電流が風速センサ3に印加され続け
る。そして、風速センサ3は空気に熱を奪われながら温
度上昇するので、当然温度差△Tも徐々に大きくなる。
一方、最大許容電流を印加しているので、センサ電源制
御手段5の入力が代入される放熱量Qは最大になる。し
たがって、(式1)から演算される風速センサ3の風速
は実際の風速に比べて非常に大きい数値を示すという課
題があり、この結果、バーナ1を最適燃焼状態に制御で
きない。
However, in the configuration of the conventional wind speed detecting device, when the burner 1 starts ignition while the wind speed sensor 3 is activated, as shown in FIG. The maximum allowable current is applied from the sensor power supply control means 6, and the maximum allowable current continues to be applied to the wind speed sensor 3 until the temperature of the wind speed sensor 3 rises and approaches a constant temperature. Since the temperature of the wind speed sensor 3 rises while heat is taken by the air, the temperature difference ΔT also naturally increases.
On the other hand, since the maximum allowable current is applied, the heat radiation amount Q into which the input of the sensor power supply control means 5 is substituted becomes maximum. Therefore, there is a problem that the wind speed of the wind speed sensor 3 calculated from (Equation 1) shows a very large numerical value compared to the actual wind speed, and as a result, the burner 1 cannot be controlled to the optimum combustion state.

【0007】なお、風速センサ3の起動時に風速センサ
3を使わないと、耐風やごみ詰まりによる空気不足に対
して燃焼状態を維持できない。
If the wind speed sensor 3 is not used when the wind speed sensor 3 is started, the combustion state cannot be maintained due to air resistance due to wind resistance and air shortage.

【0008】次に、風速センサ3に油やごみの付着量が
多くなると、風速センサ3から空気への熱伝達率が変化
する。そのために、放熱と風速の関係を示す(式1)か
ら演算した風速は実際の風速と異なるという課題があ
り、この結果、バーナ1を最適燃焼状態に制御できな
い。
Next, when the amount of oil or dust attached to the wind speed sensor 3 increases, the heat transfer coefficient from the wind speed sensor 3 to the air changes. Therefore, there is a problem that the wind speed calculated from (Equation 1) showing the relationship between the heat radiation and the wind speed is different from the actual wind speed, and as a result, the burner 1 cannot be controlled to the optimum combustion state.

【0009】そして、風速センサ3が常に風速を測定で
きるように、風速センサ3を定温に維持しなければなら
ない。そのために、センサ電源制御手段5から電流が風
速センサ3に印加され続けているので、電気代がかかる
という課題があった。
The wind speed sensor 3 must be kept at a constant temperature so that the wind speed sensor 3 can always measure the wind speed. Therefore, since the current is continuously applied to the wind speed sensor 3 from the sensor power supply control means 5, there is a problem that an electric charge is required.

【0010】また、風速センサ3の経時変化により風速
センサ3自身の特性が変化するので、風速センサ3の風
速は誤差が大きくなるという課題があり、この結果、バ
ーナ1を最適燃焼状態に制御できない。
Further, since the characteristics of the wind speed sensor 3 itself change due to the change over time of the wind speed sensor 3, there is a problem that the wind speed of the wind speed sensor 3 has a large error. As a result, the burner 1 cannot be controlled to the optimum combustion state. .

【0011】本発明は上記課題を解決するもので、風速
センサの起動時でも最適燃焼状態に維持することを目的
としている。
The present invention is intended to solve the above problems, and an object thereof is to maintain an optimum combustion state even when the wind speed sensor is started.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に本発明の風速検知装置は電流の印加により自己発熱す
る風速センサと、風速センサの温度を検知するセンサ温
度検知部と、風速センサを定温に維持するように風速セ
ンサに電流を印加するセンサ電源制御手段と、センサ電
源制御手段が風速センサに印加した電流から風速を演算
する定温時演算部と、風速センサの温度から風速センサ
の時間的温度変化を演算する時間的温度変化演算部と、
風速センサの時間的温度変化から風速を演算する定電流
時演算部と、風速センサの温度から定温時演算部または
定電流時演算部を選択する風速演算選択部とを備えたも
のである。
In order to achieve the above object, the wind speed detecting device of the present invention comprises a wind speed sensor which self-heats by applying an electric current, a sensor temperature detecting section which detects the temperature of the wind speed sensor, and a wind speed sensor. A sensor power supply control unit that applies a current to the wind speed sensor to maintain a constant temperature, a constant temperature calculation unit that calculates the wind speed from the current applied to the wind speed sensor by the sensor power supply control unit, and a time of the wind speed sensor from the temperature of the wind speed sensor. A temporal temperature change calculation unit for calculating a dynamic temperature change,
A constant current calculation unit that calculates the wind speed from the temporal temperature change of the wind speed sensor, and a wind speed calculation selection unit that selects the constant temperature calculation unit or the constant current calculation unit from the temperature of the wind speed sensor are provided.

【0013】[0013]

【作用】本発明は課題解決手段によって、風速センサの
起動時にはセンサ電源制御手段から最大許容電流が風速
センサに印加され、風速センサが温度上昇して定温に近
づくまで最大許容電流が風速センサに印加され続ける。
その際に、バーナが着火動作を開始し、風速演算選択部
はセンサ温度検知部が検知した風速センサの温度から定
電流時演算部を選択した場合、定電流時演算部は時間的
温度変化演算部が演算した風速センサの時間的温度変化
から風速を予測する。その後、風速センサが定温になる
と、風速演算選択部が定温時演算部を選択する。そし
て、定温時演算部はセンサ電源制御手段が風速センサに
印加した電流から実際の風速を演算する。
According to the present invention, according to the problem solving means, the maximum permissible current is applied to the wind speed sensor from the sensor power supply control means when the wind speed sensor is activated, and the maximum permissible current is applied to the wind speed sensor until the temperature of the wind speed sensor rises and approaches the constant temperature. Continue to be done.
At that time, if the burner starts the ignition operation and the wind speed calculation selection unit selects the constant current time calculation unit from the temperature of the wind speed sensor detected by the sensor temperature detection unit, the constant current time calculation unit calculates the temporal temperature change. The wind speed is predicted from the temporal temperature change of the wind speed sensor calculated by the unit. After that, when the wind speed sensor reaches a constant temperature, the wind speed calculation selection unit selects the constant temperature calculation unit. Then, the constant temperature calculation unit calculates the actual wind speed from the current applied to the wind speed sensor by the sensor power supply control means.

【0014】[0014]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1において、7はバーナで、バーナ7の
上流側には燃料と空気をそれぞれ供給する比例弁8およ
びファン9が設けられ、バーナ7の下流側には燃焼室1
0と熱交換器11とを設けている。ファン9の出口側に
は、電流の印加により自己発熱する風速センサ12と空
気の温度を検知する温度補正センサ13が設けられてい
る。14は空気比制御装置で、風速センサ12の温度を
検知するセンサ温度検知部15と、センサ温度検知部1
5の出力から時間的温度変化を演算する時間的温度変化
演算部16と、風速センサ12の温度とその定温との温
度偏差により風速センサ12の風速演算方法を選択する
風速演算選択部17と、風速センサ12を定温に維持す
るように風速センサ12に電流を印加するセンサ電源制
御手段18と、風速演算選択部17が温度偏差を設定偏
差値内と判定した場合にセンサ電源制御手段18の出力
から風速を演算する定温時演算部19と、風速演算選択
部17が温度偏差を設定偏差値外と判定した場合に時間
的温度変化演算部16の出力から風速を演算する定電流
時演算部20と、目標風速を設定する風速設定手段21
と、定温時演算部19または定電流時演算部20が演算
した風速と目標風速とを比較し、両者の風速偏差に応じ
た制御信号を出力する空気比制御手段22と、空気比制
御手段22の信号に応じてファン9を駆動制御するファ
ン駆動回路23と、燃焼量設定手段24の設定信号に応
じて比例弁8を駆動する比例弁駆動回路25とより構成
される。
In FIG. 1, a burner 7 is provided with a proportional valve 8 and a fan 9 for supplying fuel and air, respectively, on the upstream side of the burner 7, and the combustion chamber 1 on the downstream side of the burner 7.
0 and a heat exchanger 11 are provided. On the outlet side of the fan 9, there are provided a wind speed sensor 12 that self-heats when an electric current is applied and a temperature correction sensor 13 that detects the temperature of the air. Reference numeral 14 denotes an air ratio control device, which includes a sensor temperature detection unit 15 that detects the temperature of the wind speed sensor 12, and a sensor temperature detection unit 1.
5, a temporal temperature change calculation unit 16 that calculates a temporal temperature change from the output of 5, and a wind speed calculation selection unit 17 that selects the wind speed calculation method of the wind speed sensor 12 based on the temperature deviation between the temperature of the wind speed sensor 12 and its constant temperature. Output of the sensor power supply control means 18 for applying a current to the wind speed sensor 12 so as to maintain the wind speed sensor 12 at a constant temperature, and the sensor power supply control means 18 when the wind speed calculation selection part 17 determines that the temperature deviation is within the set deviation value. Constant temperature calculation unit 19 that calculates the wind speed from the constant current calculation unit 20 that calculates the wind speed from the output of the temporal temperature change calculation unit 16 when the wind speed calculation selection unit 17 determines that the temperature deviation is outside the set deviation value. And a wind speed setting means 21 for setting a target wind speed
And an air ratio control means 22 that compares the wind speed calculated by the constant temperature time calculation section 19 or the constant current time calculation section 20 with the target wind speed and outputs a control signal according to the wind speed deviation between the two. The fan drive circuit 23 drives and controls the fan 9 in response to the signal, and the proportional valve drive circuit 25 drives the proportional valve 8 in response to the setting signal of the combustion amount setting means 24.

【0016】次に、上記構成における風速センサ12の
起動について説明する。図2の点線に示すように、セン
サ電源制御手段18は風速センサ12の温度θと定温θ
Sとの温度偏差(θS−θ)に応じて風速センサ12に電
流を印加する。特に、風速センサ12の起動初期では、
温度偏差(θS−θ)が正で、かつ、定温偏差値よりも
大きいので、センサ電源制御手段18が風速センサ12
に最大許容電流、すなわち、定電流を印加し、風速セン
サ12を急激に温度上昇させる。その後、温度偏差(θ
S−θ)が定温偏差値内になると、センサ電源制御手段
18は温度偏差(θS−θ)に応じて風速センサ12へ
の印加電流を減少させて風速センサ12を定温に維持し
たスタンバイに移行する。一般に、定温θSが150℃
の場合、風速センサ12の起動時間は約20〜30秒で
ある。
Next, the start-up of the wind speed sensor 12 having the above structure will be described. As shown by the dotted line in FIG. 2, the sensor power supply control means 18 controls the temperature θ and the constant temperature θ of the wind speed sensor 12.
A current is applied to the wind speed sensor 12 in accordance with the temperature deviation (θ S −θ) from S. Especially, in the initial stage of starting the wind speed sensor 12,
Since the temperature deviation (θ S −θ) is positive and is larger than the constant temperature deviation value, the sensor power supply control means 18 causes the wind speed sensor 12 to operate.
The maximum permissible current, that is, a constant current is applied to the wind speed sensor 12 to rapidly raise the temperature. After that, the temperature deviation (θ
When S− θ) is within the constant temperature deviation value, the sensor power supply control means 18 reduces the current applied to the wind speed sensor 12 in accordance with the temperature deviation (θ S −θ) and puts the wind speed sensor 12 into a standby state where the temperature is kept constant. Transition. Generally, constant temperature θ S is 150 ℃
In the case of, the starting time of the wind speed sensor 12 is about 20 to 30 seconds.

【0017】なお、風速センサ12を定温に維持してい
るが、風速センサ12と温度補正センサ13との温度差
△Tを一定に維持してもよい。
Although the wind speed sensor 12 is kept at a constant temperature, the temperature difference ΔT between the wind speed sensor 12 and the temperature correction sensor 13 may be kept constant.

【0018】次に、図2を用いて、風速センサ12の起
動中におけるバーナ7の着火動作を説明する。最初に、
空気比制御手段22は予め設定しておいた着火回転数を
ファン駆動回路26に出力してファン9が送風を開始す
る。同時に風速演算選択部17は現在の風速を演算方法
を選択するが、例えば温度偏差(θS−θ)を定温偏差
値外と判定した場合(センサ電源制御手段18が風速セ
ンサ12に最大許容電流を印加)、定電流時演算部20
を選択する。次に、定電流時演算部20は時間的温度変
化演算部16がセンサ温度検知部15の出力から演算し
た風速センサ12の時間的温度変化から(式2)を用い
て時定数Tを演算し、事前に得ていた時定数Tと風速と
の関係から実際の風速を予測できる。
Next, the ignition operation of the burner 7 while the wind speed sensor 12 is being activated will be described with reference to FIG. At first,
The air ratio control means 22 outputs a preset ignition rotation speed to the fan drive circuit 26, and the fan 9 starts blowing air. At the same time, the wind speed calculation selection unit 17 selects the calculation method of the current wind speed. For example, when it is determined that the temperature deviation (θ S −θ) is outside the constant temperature deviation value (the sensor power supply control means 18 causes the wind speed sensor 12 to have the maximum allowable current). Is applied), and the constant current operation unit 20
Select. Next, the constant current time calculation unit 20 calculates the time constant T using (Equation 2) from the time temperature change of the wind speed sensor 12 calculated by the time temperature change calculation unit 16 from the output of the sensor temperature detection unit 15. The actual wind speed can be predicted from the relationship between the wind speed and the time constant T obtained in advance.

【0019】 T=(t0−t)/ln(θ0/θ) ‥‥‥‥‥‥(式2) T:時定数 t0:初期時間 t:現在時間 θ0:風速センサの初期温度 θ:風速センサの現在温度 そして、空気比制御手段22は風速設定手段22が設定
した目標風速と定電流時演算部20が予測した風速とを
比較し、この風速偏差を減少させる方向にファン駆動回
路23を制御してファン9の送風量を制御する。また、
燃焼量設定手段24は設定燃焼量に応じて比例弁駆動回
路25を制御して燃焼を開始する。このように送風量を
適正化されるので、バーナ7は燃焼状態を維持できる。
T = (t 0 −t) / ln (θ 0 / θ) (Equation 2) T: time constant t 0 : initial time t: current time θ 0 : initial temperature of wind speed sensor θ: current temperature of the wind speed sensor, and the air ratio control means 22 compares the target wind speed set by the wind speed setting means 22 with the wind speed predicted by the constant current calculation unit 20, and drives the fan in a direction to reduce this wind speed deviation. The circuit 23 is controlled to control the amount of air blown by the fan 9. Also,
The combustion amount setting means 24 controls the proportional valve drive circuit 25 according to the set combustion amount to start combustion. Since the blow rate is optimized in this way, the burner 7 can maintain the combustion state.

【0020】続いて、風速センサ12が温度上昇した結
果、風速演算選択部17が温度偏差(θS−θ)を定温
偏差値内と判定した場合、定温時演算部19を選択す
る。そして、従来例と同様に、定温時演算部19はセン
サ電源制御手段18の電流値と温度補正センサ13の空
気温度とから(式1)を用いて実際の風速を演算する。
そして、空気比制御手段22は風速設定手段22が出力
した目標風速と定温時演算部19が演算した風速とを比
較し、この風速偏差を減少させる方向にファン駆動回路
23を制御してファン9の送風量を適正化しているの
で、バーナ7は最適燃焼状態を維持できる。
Subsequently, when the wind speed calculation selecting unit 17 determines that the temperature deviation (θ S −θ) is within the constant temperature deviation value as a result of the temperature increase of the wind speed sensor 12, the constant temperature calculating unit 19 is selected. Then, as in the conventional example, the constant temperature operation unit 19 calculates the actual wind speed using (Equation 1) from the current value of the sensor power supply control means 18 and the air temperature of the temperature correction sensor 13.
Then, the air ratio control means 22 compares the target wind speed output by the wind speed setting means 22 with the wind speed calculated by the constant temperature calculation unit 19, and controls the fan drive circuit 23 to reduce the wind speed deviation to control the fan 9. The burner 7 can maintain the optimum combustion state because the amount of air blown is optimized.

【0021】なお、定温時演算部19で演算した風速の
方が、定電流時演算部20で演算し時定数Tを用いて予
測した風速よりも精度がよい。
The wind speed calculated by the constant temperature calculation unit 19 is more accurate than the wind speed calculated by the constant current calculation unit 20 and predicted using the time constant T.

【0022】次に、風速センサ12のスタンバイ中(起
動完了後)におけるバーナ7の着火動作について説明す
る。風速センサ12がスタンバイ中、すなわち、温度偏
差(θS−θ)が定温偏差値内なので、風速演算選択部
17が選択した定温時演算部19は(式1)から実際の
風速を演算する。そして、空気比制御手段22は風速設
定手段22が出力した目標風速と定温時演算部19が演
算した風速とを比較し、この風速偏差を減少させる方向
にファン駆動回路23を制御してファン9の送風量を制
御する。このように送風量を適正値に制御しているの
で、バーナ7は最適燃焼状態を維持できる。
Next, the ignition operation of the burner 7 during standby of the wind speed sensor 12 (after completion of startup) will be described. Since the wind speed sensor 12 is in standby, that is, the temperature deviation (θ S −θ) is within the constant temperature deviation value, the constant temperature calculation unit 19 selected by the wind speed calculation selection unit 17 calculates the actual wind speed from (Equation 1). Then, the air ratio control means 22 compares the target wind speed output by the wind speed setting means 22 with the wind speed calculated by the constant temperature calculation unit 19, and controls the fan drive circuit 23 to reduce the wind speed deviation to control the fan 9. Control the air flow rate of. Since the blow rate is controlled to an appropriate value in this way, the burner 7 can maintain the optimum combustion state.

【0023】また、スタンバイ時間がある期間過ぎる
と、風速センサ12の定温を下げて第2定温θS2とする
第2スタンバイに移行する。その際に、センサ電源制御
手段18は風速センサ12の温度θと第2の定温θS2
の温度偏差(θS2−θ)に応じて風速センサ12に電流
を減少して印加する。この結果、電気代の大幅な削減が
図れる。
When the standby time has passed for a certain period of time, the constant temperature of the wind speed sensor 12 is decreased to the second constant temperature θ S2 . At that time, the sensor power supply control means 18 reduces the current and applies it to the wind speed sensor 12 according to the temperature deviation (θ S2 −θ) between the temperature θ of the wind speed sensor 12 and the second constant temperature θ S2 . As a result, the electricity bill can be significantly reduced.

【0024】続いて、風速センサ12の第2スタンバイ
中におけるバーナ7の着火動作について説明する。まず
最初に、風速センサ12の定温は元に戻してθSとす
る。温度偏差(θS−θ)が正で、かつ、定温偏差値よ
り大きいので、センサ電源制御手段18が風速センサ1
2に最大許容電流を印加し、風速センサ12が急激に温
度上昇する。そして、フリパージが完了する頃には温度
偏差(θS−θ)が定温偏差値の近傍まで小さくなるの
で、着火初期こそ風速演算選択部17は定電流時演算部
20を選択するが、短時間で風速演算選択部17は定温
時演算部19を選択するようになる。すなわち、風速セ
ンサ12のスタンバイ中の定温を下げても、風速の精度
は短時間で回復する。
Next, the ignition operation of the burner 7 during the second standby of the wind speed sensor 12 will be described. First, the constant temperature of the wind speed sensor 12 is returned to the original value and set to θ S. Since the temperature deviation (θ S −θ) is positive and is larger than the constant temperature deviation value, the sensor power supply control means 18 causes the wind speed sensor 1 to operate.
The maximum allowable current is applied to 2 and the temperature of the wind speed sensor 12 rapidly rises. Then, when the flip purge is completed, the temperature deviation (θ S −θ) becomes small near the constant temperature deviation value, so the wind speed calculation selecting section 17 selects the constant current time calculating section 20 at the initial stage of ignition, but for a short time. Then, the wind speed calculation selection unit 17 selects the constant temperature calculation unit 19. That is, even if the constant temperature of the wind speed sensor 12 during standby is lowered, the accuracy of the wind speed is restored in a short time.

【0025】次に、風速センサ12への油やごみ付着に
よる風速センサ12の精度低下の防止方法について説明
する。油やごみの付着した分、風速センサ12の熱容量
が増加するので、起動中の風速センサ12は温度上昇が
遅くなる。すなわち、事前に得た油やごみの付着量と風
速センサ12の温度上昇との関係を用いて、風速センサ
12の起動直後で、かつ、ファン駆動回路23の停止時
における風速センサ12の時間的温度変化から定温時演
算部19は(式1)の定数A、Bを変更する。この変更
の結果、油やごみの影響を抑制できる。
Next, a method of preventing the accuracy of the wind speed sensor 12 from deteriorating due to the adhesion of oil or dust to the wind speed sensor 12 will be described. Since the heat capacity of the wind speed sensor 12 increases by the amount of the oil or dust attached, the temperature increase of the wind speed sensor 12 during startup becomes slow. That is, by using the relationship between the amount of oil or dust that has been obtained in advance and the temperature rise of the wind speed sensor 12, the time of the wind speed sensor 12 immediately after the start of the wind speed sensor 12 and when the fan drive circuit 23 is stopped. The constant temperature calculation unit 19 changes the constants A and B in (Equation 1) based on the temperature change. As a result of this change, the influence of oil and dust can be suppressed.

【0026】さらに、風速センサ12の経時変化による
風速センサ12の精度低下の防止方法について説明す
る。風速センサ12のスタンバイまたは第2スタンバイ
中に、かつ、定温時演算部19の風速が一定期間無風の
場合、定温時演算部19は風速センサ12と温度補正セ
ンサ13との温度差△Tとセンサ電源制御手段18から
の入力(放熱量Q)から(式1)の定数Aを変更する。
この変更の結果、風速センサ12の経時変化の影響を抑
制できる。
Further, a method of preventing the accuracy of the wind speed sensor 12 from deteriorating due to a change with time of the wind speed sensor 12 will be described. When the wind speed sensor 12 is in the standby mode or the second standby mode and the wind speed of the constant temperature time calculation unit 19 is no wind for a certain period, the constant temperature time calculation unit 19 detects the temperature difference ΔT between the wind speed sensor 12 and the temperature correction sensor 13 and the sensor. The constant A of (Equation 1) is changed from the input (heat radiation amount Q) from the power supply control means 18.
As a result of this change, the influence of the change over time of the wind speed sensor 12 can be suppressed.

【0027】[0027]

【発明の効果】以上のように本発明の風速検知装置によ
れば次の効果が得られる。
As described above, according to the wind speed detecting device of the present invention, the following effects can be obtained.

【0028】(1)風速センサの時間的温度変化から風
速を予測できる定電流時演算部を設けているので、風速
センサの起動時でも風速を予測できる。
(1) Since the constant-current-time arithmetic unit capable of predicting the wind speed from the temporal temperature change of the wind speed sensor is provided, the wind speed can be predicted even when the wind speed sensor is activated.

【0029】(2)風速演算選択部が風速センサの温度
を定温であると判断した場合に定温時演算部が風速を演
算し、また、風速演算選択部が風速センサの温度を非定
温であると判断した場合に定電流時演算部が風速を演算
するので、バーナは常に最適燃焼状態に維持できる。
(2) When the wind speed calculation selection unit determines that the temperature of the wind speed sensor is a constant temperature, the constant temperature calculation unit calculates the wind speed, and the wind speed calculation selection unit sets the temperature of the wind speed sensor to a non-constant temperature. If it is determined that the constant current calculation unit calculates the wind speed, the burner can always be maintained in the optimum combustion state.

【0030】(3)風速センサの起動時に風速センサの
時間的温度変化に応じて定温時演算部を補正するので、
油やごみによる風速センサの誤差を抑制できる。
(3) When the wind speed sensor is activated, the constant temperature operation section is corrected according to the temporal temperature change of the wind speed sensor.
The error of the wind sensor due to oil and dust can be suppressed.

【0031】(4)定温時演算部の風速が一定期間無風
の場合、風速センサの定温度レベルを下げて風速センサ
を他の定温度に維持しているので、電気代の削減が図れ
る。
(4) When the wind speed of the constant temperature operation part is no wind for a certain period, the constant temperature level of the wind speed sensor is lowered to maintain the wind speed sensor at another constant temperature, so that the electricity bill can be reduced.

【0032】(5)定温時演算部の風速が一定期間無風
の場合、定温時演算部を補正するので、風速センサの経
時変化の誤差を抑制できる。
(5) When the wind speed of the constant temperature calculation unit is no wind for a certain period of time, the constant temperature calculation unit is corrected, so that the error of the change over time of the wind speed sensor can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の風速検知装置の構成図FIG. 1 is a configuration diagram of a wind speed detection device according to an embodiment of the present invention.

【図2】同装置の風速センサの特性図FIG. 2 is a characteristic diagram of the wind speed sensor of the same device.

【図3】従来の風速検知装置の構成図FIG. 3 is a block diagram of a conventional wind speed detection device.

【図4】同装置の風速センサの特性図FIG. 4 is a characteristic diagram of a wind speed sensor of the device.

【符号の説明】[Explanation of symbols]

12 風速センサ 15 センサ温度検知部 16 時間的温度変化演算部 17 風速演算選択部 18 センサ電源制御手段 19 定温時演算部 20 定電流時演算部 12 Wind speed sensor 15 Sensor temperature detector 16-hour temperature change calculator 17 Wind speed calculation selection section 18 Sensor power supply control means 19 Constant temperature calculation unit 20 Constant current calculation unit

フロントページの続き (72)発明者 竹下 志郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−22217(JP,A) 特開 平4−36508(JP,A) 特開 平8−312947(JP,A) 特開 平8−303766(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01P 5/10 F23N 5/18 101 Front page continuation (72) Inventor Shiro Takeshita 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-61-22217 (JP, A) JP-A-4-36508 (JP) , A) JP-A-8-312947 (JP, A) JP-A-8-303766 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01P 5/10 F23N 5/18 101

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電流の印加により自己発熱する風速センサ
と、前記風速センサの温度を検知するセンサ温度検知部
と、前記風速センサを定温に維持するように前記風速セ
ンサに電流を印加するセンサ電源制御手段と、前記セン
サ電源制御手段が前記風速センサに印加した電流から風
速を演算する定温時演算部と、前記風速センサの温度か
ら前記風速センサの時間的温度変化を演算する時間的温
度変化演算部と、前記風速センサの時間的温度変化から
風速を演算する定電流時演算部と、前記風速センサの温
度から前記定温時演算部または前記定電流時演算部を選
択する風速演算選択部とを備えた風速検知装置。
1. A wind speed sensor that self-heats when an electric current is applied, a sensor temperature detection unit that detects the temperature of the wind speed sensor, and a sensor power supply that applies a current to the wind speed sensor so as to maintain the wind speed sensor at a constant temperature. A control unit, a constant temperature time calculation unit that calculates the wind speed from the current applied to the wind speed sensor by the sensor power supply control unit, and a temporal temperature change calculation that calculates the temporal temperature change of the wind speed sensor from the temperature of the wind speed sensor. A constant current calculation unit that calculates a wind speed from a temporal temperature change of the wind speed sensor, and a wind speed calculation selection unit that selects the constant temperature calculation unit or the constant current calculation unit from the temperature of the wind speed sensor. An equipped wind speed detector.
【請求項2】風速演算選択部が風速センサの温度を定温
であると判断した場合には定温時演算部が風速を演算
し、また前記風速演算選択部が前記風速センサの温度を
非定温であると判断した場合には定電流時演算部が風速
を演算する請求項1記載の風速検知装置。
2. When the wind speed calculation selection unit determines that the temperature of the wind speed sensor is a constant temperature, the constant temperature calculation unit calculates the wind speed, and the wind speed calculation selection unit sets the temperature of the wind speed sensor to a non-constant temperature. The wind speed detecting device according to claim 1, wherein the constant current calculation unit calculates the wind speed when it is determined that there is.
【請求項3】風速センサの起動時に前記風速センサの時
間的温度変化に応じて定温時演算部を補正する請求項1
記載の風速検知装置。
3. The constant temperature calculation unit is corrected according to a temporal temperature change of the wind speed sensor when the wind speed sensor is activated.
The wind speed detection device described.
【請求項4】定温時演算部の風速が一定期間無風の場合
には、風速センサの定温度レベルを下げて前記風速セン
サを他の定温度に維持する請求項1記載の風速検知装
置。
4. The wind speed detecting device according to claim 1, wherein, when the wind speed of the constant temperature time calculation unit is no wind for a certain period, the constant temperature level of the wind speed sensor is lowered to maintain the wind speed sensor at another constant temperature.
【請求項5】定温時演算部の風速が一定期間無風の場
合、前記定温時演算部を補正する請求項1記載の風速検
知装置。
5. The wind speed detecting device according to claim 1, wherein when the wind speed of the constant temperature calculation unit is no wind for a certain period, the constant temperature calculation unit is corrected.
JP10552895A 1995-04-28 1995-04-28 Wind speed detector Expired - Fee Related JP3412333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10552895A JP3412333B2 (en) 1995-04-28 1995-04-28 Wind speed detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10552895A JP3412333B2 (en) 1995-04-28 1995-04-28 Wind speed detector

Publications (2)

Publication Number Publication Date
JPH08304438A JPH08304438A (en) 1996-11-22
JP3412333B2 true JP3412333B2 (en) 2003-06-03

Family

ID=14410098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10552895A Expired - Fee Related JP3412333B2 (en) 1995-04-28 1995-04-28 Wind speed detector

Country Status (1)

Country Link
JP (1) JP3412333B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460875C (en) * 2007-05-11 2009-02-11 东南大学 Cross structure two-D wind speed wind direction sensor and its preparation method
CN107607735A (en) * 2017-08-18 2018-01-19 江苏省无线电科学研究所有限公司 Air velocity transducer starting wind velocity measuring system
CN109239389A (en) * 2018-09-29 2019-01-18 珠海格力电器股份有限公司 Air conditioner air speed detection device and method and computer readable storage medium

Also Published As

Publication number Publication date
JPH08304438A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
JP3412333B2 (en) Wind speed detector
JPS6064122A (en) Burning control device
JP2958113B2 (en) How to determine fluid flow
JP3185504B2 (en) Combustion control device
JP3642083B2 (en) Water heater
JP3345964B2 (en) Combustion equipment
JPH0719454A (en) Combustion device
JP3072200B2 (en) Combustion control device
JP3018811B2 (en) Combustion control device
JP3371612B2 (en) Wind speed detector
JPH09264260A (en) Controller for blower and controller for hot air type heater
JP3282169B2 (en) Combustion device fan motor control system
JP2946279B2 (en) Control method of gas combustion device and gas combustion device
JP3273892B2 (en) Flow velocity detector
JP3411329B2 (en) Flow control device
JP3098143B2 (en) Combustor
JP3589687B2 (en) Combustion control method at the time of re-watering of water heater
JP3566758B2 (en) Combustor air amount control device and method
JP3360540B2 (en) Control device for hot air heater
JP3271830B2 (en) Water heater and method for setting initial water flow of water control valve
JP3529151B2 (en) Combustion control method at the time of re-watering of water heater
JP3315209B2 (en) Control method of rising water amount at the time of re-water supply in water heater
KR100302759B1 (en) Method for compensating engine idle speed of vehicle
JP3307561B2 (en) Combustion equipment
JPH11248513A (en) Method for controlling input and output of microcomputer and method for detecting remaining water of hot water supplier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees