JP3450884B2 - Cylindrical alkaline battery - Google Patents
Cylindrical alkaline batteryInfo
- Publication number
- JP3450884B2 JP3450884B2 JP26339393A JP26339393A JP3450884B2 JP 3450884 B2 JP3450884 B2 JP 3450884B2 JP 26339393 A JP26339393 A JP 26339393A JP 26339393 A JP26339393 A JP 26339393A JP 3450884 B2 JP3450884 B2 JP 3450884B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- negative electrode
- positive electrode
- discharge
- electric capacity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y02E60/12—
Landscapes
- Primary Cells (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は円筒形のアルカリ電池に
関し、特に電池内の正極に対する負極の電気容量比およ
び総電解液量を規制し、電池の耐漏液性と放電特性を両
立させた円筒形アルカリ電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical alkaline battery, and more particularly , it regulates the electric capacity ratio of the negative electrode to the positive electrode in the battery and the total amount of the electrolytic solution to improve both the leakage resistance and the discharge characteristic of the battery.
The present invention relates to a standing cylindrical alkaline battery .
【0002】[0002]
【従来の技術】近年、電池を電源とする小型電子機器の
普及発展がめざましい。これら機器の普及発展に伴いそ
の電源である電池も、より高密度エネルギーを有し長期
安定性を有する電池が望まれ、正極に酸化銀、過酸化
銀、二酸化マンガン等を、負極に亜鉛を、電解液に苛性
ソーダ、苛性カリ等を用いたいわゆるアルカリ電池が多
用されている。2. Description of the Related Art In recent years, the spread and development of small electronic devices powered by batteries have been remarkable. With the spread and development of these devices, a battery as a power source is also desired to have a higher density energy and long-term stability. Silver oxide, silver peroxide, manganese dioxide, etc. are used for the positive electrode, and zinc for the negative electrode. So-called alkaline batteries, which use caustic soda, caustic potash, etc. as the electrolyte, are often used.
【0003】これらアルカリ電池の負極活物質にはその
電気容量の大きいことから亜鉛が用いられており、これ
を使用したアルカリ電池は優れた特性を有し信頼性の高
い電池として各種の小型電子機器に用いられているが、
長期使用した際、電池寿命が尽きたことに気が付かず機
器内に放置した場合、電池にとってはいわゆる過放電の
状態となり電池の漏液、ふくらみ、はなはだしい場合は
破裂を生じ機器を破損するという欠点を有していた。電
池を放電する際、通常はその負極、正極に用いられる活
物質が反応に寄与し所定の電圧を維持し、活物質が消耗
されると電圧は低下するのである。Zinc is used as the negative electrode active material of these alkaline batteries because of its large electric capacity, and alkaline batteries using this have excellent characteristics and are highly reliable batteries for various small electronic devices. Is used for
If the battery is left in the device for a long time without being aware that it has run out of battery life, the battery may be in a so-called over-discharged state, resulting in battery leakage, swelling, or, if it is exposed, rupture and damage the device. Had. When a battery is discharged, the active materials normally used for its negative electrode and positive electrode contribute to the reaction and maintain a predetermined voltage, and when the active material is consumed, the voltage drops.
【0004】そこで上記で述べた欠点を解消するために
例えば負極活物質として用いる亜鉛の電気容量を、正極
活物質の電気容量より小さくすることにより、過放電時
においても未反応負極活物質が残存しないため反応が停
止し、ガス発生量が減少することにより電池の漏液、ふ
くらみおよび破裂等を防止する方法が提案されている。
(例えば特開昭60−180058号公報)またアルカ
リマンガン電池では、二酸化マンガン(MnO2)が放
電によりMn2O3やMn3O4等の低価のマンガン酸化物
に変化するため、さらに反応が継続するということか
ら、電池の漏液、ふくらみや破裂等が生じない範囲まで
負極活物質の電気容量を正極活物質の電気容量より大き
くすることより、特にローレート放電(低率放電)を向
上させる方法が提案されている。(例えば特開昭61−
54157号公報)Therefore, in order to solve the above-mentioned drawbacks, for example, by making the electric capacity of zinc used as the negative electrode active material smaller than the electric capacity of the positive electrode active material, the unreacted negative electrode active material remains even during overdischarge. Therefore, a method has been proposed which prevents the battery from leaking, bulging, bursting, etc. by stopping the reaction and reducing the gas generation amount.
The (for example, JP 60-180058 JP) The alkaline manganese batteries, since the manganese dioxide (MnO2) is changed to a low valence manganese oxides such as Mn 2 O 3 or Mn 3 O 4 by the discharge, is further reacted Since it continues, the low-rate discharge (low-rate discharge) is improved by making the electric capacity of the negative electrode active material larger than that of the positive electrode active material to the extent that battery leakage, swelling, rupture, etc. do not occur. A method has been proposed. (For example, JP-A-61-1
54157)
【0005】[0005]
【発明が解決しようとする課題】しかしながら上記の前
者の構成では、ローレート放電において負極活物質量が
性能を左右するので、容量比が小さくなるほど放電の持
続時間が短くなるという欠点を有している。また後者の
構成では、電池の新旧混用等による過放電条件下におい
て大量のガス発生による漏液、正極ケースのふくらみや
破断を防ぐことが出来ず機器を破損するという欠点を有
していた。However, in the former configuration described above, the amount of the negative electrode active material influences the performance in low rate discharge, so that there is a drawback that the discharge duration becomes shorter as the capacity ratio becomes smaller. . Further, the latter configuration has a drawback in that it is impossible to prevent liquid leakage due to generation of a large amount of gas, bulging or breakage of the positive electrode case, and damage to the equipment under over-discharge conditions due to mixed use of old and new batteries.
【0006】本発明は、前記のような従来の問題点を解
決するもので、放電深度の深い過放電にいたる上記のよ
うな使用時においてもガス発生量を減少させ、電池内の
内圧の上昇を抑制し、漏液及び正極ケースのふくらみや
破断を防ぐことが出来るアルカリ電池を提供することを
目的とする。The present invention solves the above-mentioned conventional problems, and reduces the gas generation amount even during the above-mentioned use leading to deep discharge deep overdischarge, thereby increasing the internal pressure in the battery. It is an object of the present invention to provide an alkaline battery that suppresses leakage and prevents leakage and bulging or breakage of the positive electrode case.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
本発明に係るアルカリ電池は、正極に対する負極の電気
容量比(負極/正極)を1.0〜1.2(但し、負極/
正極=1.0となる電気容量比を除く)とし、かつ負極
亜鉛に対する電池内の総電解液量を0.90〜1.10
[g/g]の範囲に規制する構成を採用したことに特徴
を有する。この構成によれば、過放電時のガス発生を抑
制させることができ、特に深い放電深度となる電池の新
旧混用時であっても漏液、正極ケースの破損を回避し、
高い耐漏液性、及び安全性を奏し、電池の信頼性が高ま
るものである。同時にローレート放電時の放電特性を悪
化させることがないものである。さらに好ましくは電解
液の水酸化カリウムの濃度を35〜45重量%とするこ
とで、前記の耐漏液性、安全性と放電特性が特に優れた
電池を提供できる効果を奏するものである。In order to achieve the above object, the alkaline battery according to the present invention has an electric capacity ratio of the negative electrode to the positive electrode (negative electrode / positive electrode) of 1.0 to 1.2 (provided that negative electrode /
(Excluding the electric capacity ratio at which the positive electrode is 1.0) , and the total amount of electrolytic solution in the battery with respect to the negative electrode zinc is 0.90 to 1.10.
It is characterized by adopting a configuration that regulates the range to [g / g]. According to this configuration, it is possible to suppress gas generation at the time of over-discharging, and even when mixing old and new batteries having a deep discharge depth, avoiding liquid leakage and damage to the positive electrode case,
It has high liquid leakage resistance and safety, and enhances battery reliability. At the same time, the discharge characteristics during low rate discharge are not deteriorated. More preferably, by setting the concentration of potassium hydroxide in the electrolytic solution to 35 to 45% by weight, it is possible to provide a battery having particularly excellent leakage resistance, safety and discharge characteristics.
【0008】[0008]
【作用】この構成によれば、電池内の正極に対する負極
の電気容量比および総電解液量を規制し、さらに好まし
くは前記の電気容量比、総電解液量と併せて電解液の水
酸化カリウムの濃度を規制することによって、深い放電
深度の過放電時に電池内に残存する負極の反応を停止さ
せ、その時に起こるガス発生量が減少する事により、電
池内部で発生するガスによる内圧の上昇を抑制し、漏
液、正極ケースのふくらみや破断を防ぐことが可能とな
る。According to this structure, the ratio of the electric capacity of the negative electrode to the positive electrode in the battery and the total amount of electrolytic solution are regulated, which is more preferable.
In other words, by controlling the concentration of potassium hydroxide in the electrolytic solution together with the above-mentioned electric capacity ratio and the total amount of electrolytic solution, the reaction of the negative electrode remaining in the battery at the time of over-discharging at a deep depth of discharge is stopped, and at that time By reducing the amount of generated gas, it is possible to suppress an increase in internal pressure due to the gas generated inside the battery, and to prevent liquid leakage and bulging or breakage of the positive electrode case.
【0009】[0009]
【実施例】以下、実施例によって、本発明の詳細ならび
に効果を説明する。本実施例では、円筒形アルカリ電池
としてLR6型のアルカリマンガン乾電池(以下、「L
R6型電池」とする。)を作製し、ガス発生量および耐
漏液性の比較評価を行うと共に放電特性の評価を行っ
た。以下、前記LR6型電池の構造、並びに本実施例に
おける評価方法を説明する。The details and effects of the present invention will be described below with reference to examples. In this example, a cylindrical alkaline battery
LR6 type alkaline manganese dry battery (hereinafter referred to as "L
R6 type battery ". ) Is produced, and the gas generation amount and resistance
Performs comparative evaluation of liquid leakage and discharge characteristics
It was Hereinafter, the structure of the LR6 type battery and this embodiment will be described.
I will explain the evaluation method .
【0010】図1は本発明の実施例におけるLR6型電
池の構造断面図である。図1において、1は正極端子を
兼ねる正極ケースである。この正極ケース1内には二酸
化マンガンと黒鉛からなる円筒状の正極合剤2が圧入さ
れている。3は有底円筒状のセパレータであり、内部に
は負極ゲル状物質4が充填されている。負極ゲル状物質
4は、アルカリ電解液にポリアクリル酸ソーダ、CMC
等のゲル化剤を加えた ゲル状電解液を得た後、この電解
液に亜鉛合金粉末を分散混合させて作製した。本実施例
では、アルカリ電解液として35重量%の水酸化カリウ
ム水溶液を使用した。6は負極集電体、5は正極ケース
1の開口部を閉塞する樹脂封口体で、この樹脂封口体に
は負極端子を兼ねる底板7が前記負極集電体6の頭部に
溶接されて、金属製ワッシャー9とともに配置されてい
る。そして前記正極ケース1の開口部を内側にかしめる
ことにより封口されている。FIG. 1 shows an LR6 type battery in an embodiment of the present invention.
It is a structure sectional view of a pond . In FIG. 1, reference numeral 1 denotes a positive electrode case which also serves as a positive electrode terminal. A cylindrical positive electrode mixture 2 made of manganese dioxide and graphite is press-fitted into the positive electrode case 1. 3 is a cylindrical separator with a bottom ,
Is filled with the negative electrode gel material 4. Negative gel material
4 is alkaline electrolyte with sodium polyacrylate, CMC
After obtaining a gel electrolyte containing a gelling agent such as
It was prepared by dispersing and mixing zinc alloy powder in the liquid. Example
Then, as the alkaline electrolyte, 35% by weight potassium hydroxide is used.
Aqueous aqueous solution was used. Reference numeral 6 denotes a negative electrode current collector, 5 denotes a resin sealing body that closes the opening of the positive electrode case 1, and a bottom plate 7 also serving as a negative electrode terminal is welded to the head portion of the negative electrode current collector 6 on the resin sealing body. It is arranged with a metal washer 9. The positive electrode case 1 is sealed by caulking the opening inside.
【0011】また本実施例では、上記構成を有するLR
6型電池について、電気容量比(負極/正極)および負
極亜鉛に対する総電解液量の一方を固定し、他方を変化
させた電池を作製し、後述する耐漏液性と放電特性の評
価を実施した。さらに、電解液として上記の35重量%
の水酸化カリウム水溶液に代えて、濃度を変化させた水
酸化カリウム水溶液を電解液に用いた電池を作製し、同
様に評価を実施した。耐漏液性の評価は、予め過放電状
態まで放電させたLR6型電池と未放電のLR6型電池
とを直列接続し、所定時間放電を行った後に、前記過放
電状態のLR6型電池についての漏液状況を確認した。
この電池は、10Ωの定抵抗で終止電圧0.9Vまでの
放電時間を100%とした場合に200%の放電深度ま
で放電することで過放電状態としている。そして、過放
電状態のLR6型電池を一つ含み、未放電状態のLR6
型電池と組み合わせ、計4個のLR6型電池を直列接続
した回路に125Ωの抵抗を接続し、24時間放電し
た。その後、過放電状態のLR6型電池について発生し
たガス量と漏液数を調べた。一方、放電特性の評価は、
未放電状態のLR6型電池を3.9Ωの定抵抗に接続
し、20℃の温度条件下で放電を行った。LR6型電池
の放電電圧が0.75Vまで放電を継続し、この電圧に
達するまでの持続時間により評価した。Further, in the present embodiment, the LR having the above structure
Regarding the 6-type battery , a battery was prepared by fixing one of the electric capacity ratio (negative electrode / positive electrode) and the total amount of electrolytic solution with respect to negative electrode zinc , and changing the other , and the evaluation of leakage resistance and discharge characteristics described later.
Valuation carried out. Further, as an electrolytic solution, the above 35 wt%
Instead of the aqueous solution of potassium hydroxide, water of varying concentration
A battery using an aqueous solution of potassium oxide was prepared,
The evaluation was carried out. Leakage resistance can be evaluated in advance by over discharge condition.
LR6 type battery that has been discharged to the state and undischarged LR6 type battery
Are connected in series, and after discharging for a predetermined time,
The liquid leakage state of the charged LR6 type battery was confirmed.
This battery is in an over-discharged state by discharging to a discharge depth of 200% with a constant resistance of 10Ω and a discharge time of up to a final voltage of 0.9 V of 100% . And overkill
LR6 in undischarged state, including one LR6 type battery in charged state
Combined with a type battery, a total of 4 LR6 type batteries are connected in series
Connect 125Ω resistor to the circuit and discharge for 24 hours
It was Then, the amount of gas generated and the number of leaks were examined for the overdischarged LR6 type battery . On the other hand, the evaluation of discharge characteristics is
The LR6 type battery in an undischarged state was connected to a constant resistance of 3.9Ω and discharged under a temperature condition of 20 ° C. LR6 type battery
Discharge voltage continues to 0.75V ,
It was evaluated by the duration until reaching .
【0012】(実施例1)まず、電気容量比について検討した。実施例1では、
負
極亜鉛に対する総電解液量を1.0[g/g]に固定
し、電気容量比(負極/正極)を0.9〜1.3とした
電池(電池No.1−1〜1−5)を作製した。各電池
は上記の評価方法に基づき評価を実施しており、耐漏液
性は発生したガス量と漏液数にて、放電特 性は放電性能
指数にて(表1)へ結果を掲載している。なお、電池の
放電性能指数は、電気容量比1.0とした電池(電池N
O.1−3)の放電性能を100とし、この電池に対す
る放電性能の比率を示す指数にて示しており、各電池の
絶対的な放電性能を示すものではない。 Example 1 First, the electric capacity ratio was examined. In Example 1, a battery (Battery No. 1-) in which the total amount of electrolytic solution with respect to zinc in the negative electrode was fixed to 1.0 [g / g] and the electric capacity ratio (negative electrode / positive electrode) was 0.9 to 1.3. 1-1-5) was produced. Each battery
Is performing evaluation based on the above evaluation method,
Sex by gas amount and the leakage number generated, the discharge characteristics of the discharge performance
The results are shown in the index (Table 1). The battery
The discharge performance index is a battery with an electric capacity ratio of 1.0 (Battery N
O. The discharge performance of 1-3) is set to 100, and this battery is used.
It is shown by the index showing the ratio of the discharge performance of each battery.
It does not show absolute discharge performance.
【0013】[0013]
【表1】 [Table 1]
【0014】(表1)より、電気容量比(負極/正極)
を1.0〜1.2に規制することによって、ローレート
放電での放電性能を確保すると同時に、過放電に伴うガ
ス発生量を最小限に抑制し、漏液の発生を防止してい
る。一方、ガス発生量が非常に大きい電池No.1−5
は、高い確率にて漏液の発生が認められた。電気容量比
が0.9に、すなわち、負極容量が正極容量を下回る電
気容量比に設定された電池NO.1−1は、ガス発生を
抑制しているが、放電性能の悪化を生じている。尚、本
実施例は、電池No.1−2にて、電気容量比を1.0
としているが、特許請求の範囲は、負極/正極=1.0
となる電気容量比を除外している。よって、負極容量が
正極容量を上回り、且つ電気容量比が1.2以下であれ
ば、本実施例における効果が得られるものである。 From Table 1, the electric capacity ratio (negative electrode / positive electrode)
By regulating 1.0 to 1.2, the discharge performance at low rate discharge is ensured, and at the same time, the amount of gas generated due to overdischarge is suppressed to a minimum and the occurrence of liquid leakage is prevented. On the other hand, battery No. 1 that generates a very large amount of gas 1-5
The occurrence of liquid leakage was confirmed with high probability. Electric capacity ratio
Is 0.9, that is, the negative electrode capacity is less than the positive electrode capacity.
Battery No. set to the capacity ratio 1-1 is gas generation
Although suppressed, the discharge performance is deteriorated. The book
In the example, the battery No. 1-2, the capacitance ratio is 1.0
However, the scope of claims is negative electrode / positive electrode = 1.0.
It excludes the electric capacity ratio. Therefore, the negative electrode capacity
It must exceed the capacity of the positive electrode and have an electric capacity ratio of 1.2 or less.
In this case, the effect of this embodiment can be obtained.
【0015】(実施例2)次に、実施例1の結果からガス発生量と放電性能の両面
で優れた電気容量比(負極/正極)1.1を基準とし、
負極亜鉛に対する総電解液量を検討した。実施例2で
は、電気容量比を1.1と
し、負極亜鉛に対する総電解
液量を0.8〜1.2[g/g]とした電池(電池N
o.2−1〜2−5)を作製した。各電池は、実施例1
と同様に耐漏液性、放電特性を評価しており、評価結果
を(表2)に示す。なお、電池の放電性能指数は、比率
1.0[g/g]の電池を100として放電性能を示
す。(Embodiment 2) Next, from the results of Embodiment 1, both the gas generation amount and the discharge performance are confirmed.
With an excellent electric capacity ratio (negative electrode / positive electrode) of 1.1 as a reference,
The total amount of electrolytic solution with respect to the negative electrode zinc was examined. In Example 2
Is a battery in which the electric capacity ratio is 1.1 and the total amount of electrolytic solution with respect to the negative electrode zinc is 0.8 to 1.2 [g / g] (Battery N
o. 2-1 to 2-5) were produced. Each battery is the same as in Example 1.
Similarly, the leakage resistance and discharge characteristics were evaluated, and the evaluation results are shown in (Table 2). The discharge performance index of the battery shows the discharge performance with the battery having a ratio of 1.0 [g / g] as 100.
【0016】[0016]
【表2】 [Table 2]
【0017】(表2)より、負極亜鉛に対する総電解液
量の重量比を0.9〜1.1[g/g]に規制するのが
好ましいことが分かる。放電特性の面では、前記重量比
が0.8以下となると基準となる重量比1.0とした電
池No.2−3に比較して放電性能指数が「93」とな
り、その悪化が顕著になる。一方、前記重量比が1.2
以上の電池では、基準となる電池に比べて、明確な優位
性は認められない。一方、耐漏液性の面では、後者の電
池は、ガス発生量が増大しており、併せて漏液の発生し
た電池比率も高くなる。一方、上記重量比の範囲では、
過放電に伴うガス発生量が抑えられ、漏液の発生が回避
される。なお、本実施例では、電解液として35重量%
の水酸化カリウム水溶液を用いた。本発明者らは、異な
る濃度の電解液についても、上記の実施例1、2と同様
に検討を行っている。その結果、円筒形アルカリ電池に
適用される周知、慣用の電解液で有れば、本発明に係る
正負極の電気容量比、、亜鉛負極と総電解液量との重量
比を適用することで、同等の効果が得られることを確認
している。 From (Table 2), it is necessary to regulate the weight ratio of the total amount of electrolytic solution to zinc of the negative electrode to 0.9 to 1.1 [g / g].
It turns out to be preferable. In terms of discharge characteristics, the weight ratio
Is 0.8 or less, the standard weight ratio of 1.0
Pond No. Compared with 2-3, the discharge performance index is "93".
And its deterioration becomes remarkable. On the other hand, the weight ratio is 1.2
The above batteries have a clear advantage over the standard batteries
Sex is not recognized. On the other hand, in terms of liquid leakage resistance,
In the pond, the amount of gas generated is increasing, which also causes leakage.
The battery ratio is also high. On the other hand, in the above weight ratio range,
The amount of gas generated due to overdischarge is suppressed, and the occurrence of liquid leakage is avoided.
To be done. In this example, 35% by weight of the electrolytic solution was used.
Was used. We have different
With respect to the electrolytic solution having different concentrations, the same as in Examples 1 and 2 above.
Are under consideration. As a result, a cylindrical alkaline battery
According to the present invention, if it is a well-known and commonly used electrolytic solution,
Electric capacity ratio of positive and negative electrodes, weight of zinc negative electrode and total amount of electrolyte
Confirm that the same effect can be obtained by applying the ratio
is doing.
【0018】(実施例3)さらに上記の電気容量比、重量比を採用した電池に関
し、最適な電解液濃度を検討した。実施例1及び2の結
果から、放電特性及び耐漏液性の面で最も優れた容量比
と重量比の組合わせを選択し、電解液濃度の影響を検討
した。実施例3では、
電池の電気容量比(負極/正極)
を1.1に、負極亜鉛に対する総電解液量を1.0[g
/g]に固定し、電解液の水酸化カリウムの濃度を30
〜50重量%とした電池(電池No.3−1〜3−5)
を作製した。各電池は、実施例1、2と同様に耐漏液
性、放電特性を評価しており、評価結果を(表3)に示
す。なお、電池の放電性能指数は、電解液の水酸化カリ
ウムの濃度が40重量%の電池を100として放電性能
を示す。(Embodiment 3) Furthermore, the present invention relates to a battery employing the above-mentioned electric capacity ratio and weight ratio.
Then, the optimum electrolyte concentration was examined. Conclusion of Examples 1 and 2
The best capacity ratio in terms of discharge characteristics and liquid leakage resistance.
And combination of weight ratio are selected to examine the effect of electrolyte concentration.
did. In Example 3, the electric capacity ratio of the battery (negative electrode / positive electrode)
To 1.1, and the total amount of electrolyte solution to the negative electrode zinc is 1.0 [g
/ G] and adjust the concentration of potassium hydroxide in the electrolyte to 30
~ 50 wt% battery (Battery No. 3-1 to 3-5)
Was produced. Each battery has the same liquid leakage resistance as in Examples 1 and 2.
And discharge characteristics are evaluated, and the evaluation results are shown in (Table 3). The discharge performance index of the battery shows the discharge performance with the battery having a concentration of potassium hydroxide of 40% by weight as 100.
【0019】[0019]
【表3】 [Table 3]
【0020】(表3)より、電解液の水酸化カリウムの
濃度を35〜45重量%に規制することによって、放電
特性に優れた電池が得られる。また、前記濃度が30重
量%の場合には、ガス発生量、漏液数の比率では優れた
結果を示しており、耐漏液性の面で前記範囲を採用した
電池に比して劣るものではない。同様に、放電特性の面
でも前記範囲の電池に比べて著しく劣るものでなく、他
の濃度に設定された電池との相対比較に基づく評価であ
る。一方、電解液濃度が50重量%に達する場合には、
過放電に伴うガス発生が顕著になり、耐漏液性に与える
悪影響が確認できる。よって、本発明に係る容量比、重
量比を採用した電池は、その好適な電解液の濃度を35
〜45重量%とするものである。 From (Table 3), by controlling the concentration of potassium hydroxide in the electrolytic solution to 35 to 45% by weight, discharge
A battery with excellent characteristics can be obtained. In addition, the concentration is 30 times
When the amount is%, the ratio of the amount of gas generated and the number of leaks is excellent.
The results are shown, and the above range was adopted in terms of liquid leakage resistance.
It is not inferior to batteries. Similarly, in terms of discharge characteristics
However, it is not inferior to batteries in the above range,
It is an evaluation based on a relative comparison with a battery set to a concentration of
It On the other hand, when the electrolyte concentration reaches 50% by weight,
Gas generation due to over-discharging becomes noticeable, giving resistance to liquid leakage.
You can confirm the adverse effects. Therefore, the capacity ratio and the weight according to the present invention are
Batteries that use the volume ratio have a suitable electrolyte concentration of 35%.
It is to be 45% by weight.
【0021】なお、本発明に係る電池は、深い放電深度
の過放電時に、残存する負極の反応を停止させることに
よりガス発生を減少させるため、万が一電池の防爆機構
が働かない場合でも正極ケースの破断の伴う破裂等も防
止出来る。Since the battery according to the present invention reduces the gas generation by stopping the reaction of the remaining negative electrode during overdischarge at a deep discharge depth, even if the explosion-proof mechanism of the battery does not work, It is also possible to prevent rupture that accompanies breakage.
【0022】[0022]
【発明の効果】以上詳述したように、本発明は電池の電
気容量比(負極/正極)を1.0〜1.2(但し、負極
/正極=1.0となる電気容量比を除く)、総電解液量
を負極亜鉛の0.9〜1.1[g/g]に規制すること
により、さらに好ましくは前記規制に加えて、電解液の
水酸化カリウムの濃度を35〜45重量%に規制するこ
とにより、過放電に伴うガス発生量を抑制し、複数個の
アルカリ電池を混用した際に発生する漏液および正極ケ
ースのふくらみや破断の伴う破裂を防止し、耐漏液性、
安全性に優れたアルカリ乾電池を提供するものである。As described in detail above, according to the present invention, the electric capacity ratio (negative electrode / positive electrode) of the battery is 1.0 to 1.2 (provided that the negative electrode is
/ Excluding the electric capacity ratio of positive electrode = 1.0) , and more preferably in addition to the above regulation, by regulating the total amount of electrolytic solution to 0.9 to 1.1 [g / g] of the negative electrode zinc. By controlling the concentration of potassium hydroxide in the electrolytic solution to 35 to 45% by weight, the amount of gas generated due to overdischarge is suppressed, and the leakage and bulging of the positive electrode case that occur when a plurality of alkaline batteries are mixed. And prevent rupture with breakage, liquid leakage resistance,
It is intended to provide an alkaline dry battery excellent in safety.
【図1】本発明の実施例におけるアルカリマンガン乾電
池の断面図FIG. 1 is a cross-sectional view of an alkaline manganese dry battery according to an embodiment of the present invention.
1 正極ケース 2 正極合剤 3 セパレータ 4 負極ゲル状物質 5 樹脂封口体 6 負極集電体 7 負極端子底板 8 外装ラベル 9 金属製ワッシャー 1 Positive case 2 Positive electrode mixture 3 separator 4 Negative gel material 5 Resin sealing body 6 Negative electrode current collector 7 Negative electrode terminal bottom plate 8 exterior label 9 Metal washers
───────────────────────────────────────────────────── フロントページの続き (72)発明者 北川 幸平 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 金子 登子和 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭54−29025(JP,A) 特開 昭61−54157(JP,A) 特開 昭62−136770(JP,A) 特開 平5−89888(JP,A) 特開 平5−135776(JP,A) 特公 昭45−16653(JP,B1) 特表 平8−509095(JP,A) 「第4版 電気化学便覧」財団法人電 気化学協会編,(S60.1.25)丸善, P412 (58)調査した分野(Int.Cl.7,DB名) H01M 6/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kohei Kitagawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Toshikazu Kaneko 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Incorporated (56) Reference JP 54-29025 (JP, A) JP 61-54157 (JP, A) JP 62-136770 (JP, A) JP 5-89888 (JP, A) Japanese Patent Laid-Open No. 5-135776 (JP, A) JP-B-45-16653 (JP, B1) JP-A-8-509095 (JP, A) "4th edition Electrochemical Handbook" edited by The Electrochemical Society of Japan , (S60.1.25) Maruzen, P412 (58) Fields investigated (Int.Cl. 7 , DB name) H01M 6/06
Claims (2)
質に亜鉛を用いたアルカリ電池であって、正極に対する
負極の電気容量比(負極/正極)を1.0〜1.2(但
し、負極/正極=1.0となる電気容量比を除く)と
し、かつ負極亜鉛に対する電池内の総電解液量を0.9
0〜1.10[g/g]の範囲とした円筒形アルカリ電
池。1. An alkaline battery using manganese dioxide as a positive electrode active material and zinc as a negative electrode active material, wherein an electric capacity ratio of the negative electrode to the positive electrode (negative electrode / positive electrode) is 1.0 to 1.2 (provided.
(Excluding the electric capacity ratio of negative electrode / positive electrode = 1.0) , and the total amount of electrolytic solution in the battery with respect to negative electrode zinc is 0.9.
A cylindrical alkaline battery in the range of 0 to 1.10 [g / g].
溶液であって、水酸化カリウムの濃度が35〜45重量
%である請求項1記載の円筒形アルカリ電池。2. The cylindrical alkaline battery according to claim 1, wherein the electrolytic solution is an aqueous solution containing potassium hydroxide as a main component, and the concentration of potassium hydroxide is 35 to 45% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26339393A JP3450884B2 (en) | 1993-10-21 | 1993-10-21 | Cylindrical alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26339393A JP3450884B2 (en) | 1993-10-21 | 1993-10-21 | Cylindrical alkaline battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07122276A JPH07122276A (en) | 1995-05-12 |
JP3450884B2 true JP3450884B2 (en) | 2003-09-29 |
Family
ID=17388875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26339393A Expired - Lifetime JP3450884B2 (en) | 1993-10-21 | 1993-10-21 | Cylindrical alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3450884B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005104277A1 (en) * | 2004-04-23 | 2005-11-03 | Matsushita Electric Industrial Co., Ltd. | Alkaline battery |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU1913199A (en) * | 1997-12-31 | 1999-07-19 | Duracell Inc. | Porous alkaline zinc/manganese oxide battery |
ATE385347T1 (en) * | 1997-12-31 | 2008-02-15 | Duracell Inc | ALKALINE ELECTROCHEMICAL CELL WITH BALANCED ACTIVE CONTENT |
CA2274285C (en) | 1998-06-12 | 2003-09-16 | Mitsunori Tokuda | Sealed, alkaline-zinc storage battery |
JP2006172908A (en) * | 2004-12-16 | 2006-06-29 | Sony Corp | Alkaline battery |
WO2010058504A1 (en) * | 2008-11-21 | 2010-05-27 | パナソニック株式会社 | Alkaline dry cell |
WO2010058505A1 (en) * | 2008-11-21 | 2010-05-27 | パナソニック株式会社 | Alkaline dry cell |
WO2010058506A1 (en) * | 2008-11-21 | 2010-05-27 | パナソニック株式会社 | Alkaline dry battery |
US8808884B2 (en) | 2009-09-16 | 2014-08-19 | Samsung Sdi Co., Ltd. | Electrode assembly and secondary battery including the same |
US20120208051A1 (en) * | 2010-09-30 | 2012-08-16 | Machiko Tsukiji | Alkaline secondary battery |
-
1993
- 1993-10-21 JP JP26339393A patent/JP3450884B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
「第4版 電気化学便覧」財団法人電気化学協会編,(S60.1.25)丸善,P412 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005104277A1 (en) * | 2004-04-23 | 2005-11-03 | Matsushita Electric Industrial Co., Ltd. | Alkaline battery |
JP2005310616A (en) * | 2004-04-23 | 2005-11-04 | Matsushita Electric Ind Co Ltd | Alkaline battery |
CN100431211C (en) * | 2004-04-23 | 2008-11-05 | 松下电器产业株式会社 | Alkaline battery |
JP4736345B2 (en) * | 2004-04-23 | 2011-07-27 | パナソニック株式会社 | Alkaline battery |
Also Published As
Publication number | Publication date |
---|---|
JPH07122276A (en) | 1995-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5424145A (en) | High capacity rechargeable cell having manganese dioxide electrode | |
JP3462877B2 (en) | Electrochemical battery using zinc anode | |
EP0747980B1 (en) | Alkaline cell having a cathode including an additive | |
US5340666A (en) | Rechargeable alkaline manganese cell having improved capacity and improved energy density | |
US5569553A (en) | Battery design for achieving end-of-life indication during electrical discharge | |
EP1958278B1 (en) | Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life | |
JP2001015106A (en) | Alkaline battery | |
JP3450884B2 (en) | Cylindrical alkaline battery | |
JPH07302597A (en) | Lithium battery | |
KR930000426B1 (en) | Secondary battery of lithium | |
CA2281371A1 (en) | Rechargeable nickel-zinc cell | |
JPH0562712A (en) | Non-aqueous electrolyte secondary cell | |
KR19990044021A (en) | Additives for alkaline electrochemical cells with manganese dioxide anode | |
JPH0425676B2 (en) | ||
US4292383A (en) | Bilevel rechargeable cell | |
JP2962326B1 (en) | Nickel-hydrogen storage battery for backup power supply | |
JP2730641B2 (en) | Lithium secondary battery | |
US6190801B1 (en) | Sealed alkaline-zinc storage battery | |
JP2775754B2 (en) | Non-aqueous electrolyte secondary battery | |
US3457111A (en) | Alkaline storage battery with be(oh)2 in the electrolyte | |
KR870001471B1 (en) | Solid battery | |
JP4251488B2 (en) | Alkaline electrolyte, negative electrode for alkaline primary battery, and alkaline primary battery | |
JPH11162474A (en) | Alkaline battery | |
KR100201373B1 (en) | Lithium ion battery having electrolyte composed of trifloresulfate | |
CA2037744A1 (en) | Rechargeable alkaline manganese cell having improved capacity and improved energy density |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20070711 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20080711 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20090711 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20090711 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100711 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20120711 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140711 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |