JPH11162474A - Alkaline battery - Google Patents
Alkaline batteryInfo
- Publication number
- JPH11162474A JPH11162474A JP9328636A JP32863697A JPH11162474A JP H11162474 A JPH11162474 A JP H11162474A JP 9328636 A JP9328636 A JP 9328636A JP 32863697 A JP32863697 A JP 32863697A JP H11162474 A JPH11162474 A JP H11162474A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- hydrogen gas
- alkaline battery
- negative electrode
- silver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は正極活物質に二酸化
マンガン、負極活物質に亜鉛をそれぞれ主成分として含
むアルカリ電池に関し、更に詳しくは水素ガスの発生に
よる内圧上昇を抑制し、耐漏液性に優れたアルカリ電池
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline battery containing manganese dioxide as a positive electrode active material and zinc as a main component in a negative electrode active material. It relates to an excellent alkaline battery.
【0002】[0002]
【従来の技術】小型携帯用電子機器等の普及に伴い、ア
ルカリ電池がその電源として多く用いられるようにな
り、更に近年では、このアルカリ電池の高性能化のため
に研究開発が鋭意行われているところである。2. Description of the Related Art With the spread of small portable electronic devices and the like, alkaline batteries have been widely used as power sources thereof. In recent years, research and development have been earnestly carried out to improve the performance of alkaline batteries. Where you are.
【0003】従来のアルカリ電池は図3に示すように、
下端部(正極端子6側)が閉塞され、上端部(負極端子
9側)に開口部を有する円筒形の正極缶1内に、二酸化
マンガン、黒鉛および水酸化カリウム水溶液からなる中
空円筒状の正極合剤2が複数個積層されている。また、
正極合剤2の中空内部に内側に不織布、セロハン等から
なるセパレータ3を介して粒状亜鉛と水酸化カリウム水
溶液、増粘剤等からなるゲル状の負極合剤4が内蔵され
た構成となっている。A conventional alkaline battery is shown in FIG.
A hollow cylindrical positive electrode made of manganese dioxide, graphite and an aqueous solution of potassium hydroxide is placed in a cylindrical positive electrode can 1 having a closed lower end (positive electrode terminal 6 side) and an opening at the upper end (negative electrode terminal 9 side). A plurality of mixture 2 are laminated. Also,
A structure in which a gelled negative electrode mixture 4 composed of granular zinc, an aqueous solution of potassium hydroxide, a thickener, and the like is built in a hollow interior of the positive electrode mixture 2 through a separator 3 composed of a nonwoven fabric, cellophane, or the like. I have.
【0004】また、正極缶1の円筒外周面は外装ラベル
5によって覆われ、また正極缶1の下部に正極端子6が
設けられている。正極缶1の開口部にはこの開口部を封
口するためにプラスチック材からなる封口部材7が嵌合
されている。この封口部材7を覆うようにスプリング8
と負極端子9が取り付けられていて、さらに封口部材7
の中心から負極合剤4の内部に黄銅製の集電ピン10が
圧入されている。The outer peripheral surface of the cylinder of the positive electrode can 1 is covered with an outer label 5, and a positive electrode terminal 6 is provided at a lower portion of the positive electrode can 1. A sealing member 7 made of a plastic material is fitted into the opening of the positive electrode can 1 to seal the opening. A spring 8 covers the sealing member 7.
And a negative electrode terminal 9 are attached.
A current collector pin 10 made of brass is press-fitted into the negative electrode mixture 4 from the center.
【0005】ところで上述した構成のアルカリ電池は、
電池の保存中、或いは充放電の繰り返しによって亜鉛の
自己消耗や腐食による水素ガスが発生する。これにより
電池内の圧力上昇に伴う電池の漏液や電池の破裂を引き
起こす虞れがあり、このため亜鉛の耐蝕性を向上させる
手段として、水素過電圧の高い元素を用いた亜鉛の合金
化や、負極活物質への有機系、無機系インヒビターの添
加等、水素ガス発生の抑制に関する対策が数多く提案さ
れている。By the way, the alkaline battery having the above structure is
During storage of the battery or by repeated charge and discharge, hydrogen gas is generated due to self-depletion and corrosion of zinc. This may cause battery leakage or battery rupture due to increased pressure inside the battery, and as a means of improving the corrosion resistance of zinc, zinc alloying using an element with a high hydrogen overvoltage, Many measures have been proposed for suppressing the generation of hydrogen gas, such as addition of an organic or inorganic inhibitor to a negative electrode active material.
【0006】このような水素ガス発生に対して優れた抑
制効果を有する物質として、水銀、鉛、カドミウム等を
あげることができる。しかしながら、環境上の問題から
これらの使用を避ける方向にあり、替わって正極活物質
の合金添加剤としてインジウム、ビスマス等が用いられ
るようになってきている。しかしながら、これらは水銀
などに比べてガス抑制効果が弱く、また、負極活物質の
添加剤に関しても、水素ガス抑制に対して十分な効果を
得られていないのが現状である。[0006] Mercury, lead, cadmium and the like can be cited as substances having an excellent suppressing effect on such hydrogen gas generation. However, these are being avoided due to environmental problems, and instead, indium, bismuth, and the like have been used as alloy additives for the positive electrode active material. However, these have a weak gas suppressing effect as compared with mercury and the like, and at the present time, no sufficient effect has been obtained for the additive of the negative electrode active material with respect to hydrogen gas suppression.
【0007】[0007]
【発明が解決しようとする課題】従って本発明の課題
は、水素ガス発生による電池内圧力の上昇を抑制して破
裂を防止し、また、耐漏液特性に優れたアルカリ電池の
提供を目的とする。SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an alkaline battery which suppresses a rise in pressure inside the battery due to generation of hydrogen gas to prevent rupture and has excellent leakage resistance. .
【0008】[0008]
【課題を解決するための手段】本発明は上記課題に鑑み
成されたものであり、正極活物質に二酸化マンガンを、
負極活物質に亜鉛をそれぞれ主成分として含むアルカリ
電池において、水素ガスを吸収する水素ガス吸収剤を電
池内部に設けた構成にする。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above problems, and comprises manganese dioxide as a positive electrode active material,
In an alkaline battery containing zinc as a main component in a negative electrode active material, a configuration in which a hydrogen gas absorbent for absorbing hydrogen gas is provided inside the battery.
【0009】前記水素ガス吸収剤は銀−ニッケル系複合
酸化物(AgNiO2 )とする。The hydrogen gas absorbent is a silver-nickel composite oxide (AgNiO 2 ).
【0010】前記銀−ニッケル系複合酸化物(AgNi
O2 )を中空円筒状に成形し、負極端子側、または正極
端子側に配設する。The silver-nickel composite oxide (AgNi
O 2 ) is formed into a hollow cylindrical shape and disposed on the negative electrode terminal side or the positive electrode terminal side.
【0011】前記銀−ニッケル系複合酸化物(AgNi
O2 )の、正極総重量に対する配合比を1%以上10%
以下として、上記課題を解決する。The silver-nickel composite oxide (AgNi
The mixing ratio of O 2 ) to the total weight of the positive electrode is 1% or more and 10% or more.
The following is a solution to the above problem.
【0012】本発明の構成によると、水素ガス吸収剤で
ある銀−ニッケル系複合酸化物が電池内で発生した水素
ガスを吸収するため、電池内の圧力は過度に増大するこ
とがなく、電池からの漏液や破裂を防止する。According to the structure of the present invention, since the silver-nickel composite oxide as a hydrogen gas absorbent absorbs the hydrogen gas generated in the battery, the pressure in the battery does not increase excessively. Prevents liquid leakage and rupture from
【0013】[0013]
【発明の実施の形態】本発明は正極活物質に二酸化マン
ガン、負極活物質に亜鉛をそれぞれ主成分として含むア
ルカリ電池において、亜鉛の腐食等で発生する水素ガス
を水素との反応性に優れた銀−ニッケル系複合酸化物に
吸収させることにより、水素ガス発生による電池内圧力
の上昇を抑制し、耐漏液性に優れたアルカリ電池を構成
するものである。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is directed to an alkaline battery containing manganese dioxide as a positive electrode active material and zinc as a negative electrode active material, and has excellent reactivity with hydrogen gas generated by corrosion of zinc and the like. By absorbing the compound into a silver-nickel composite oxide, an increase in pressure inside the battery due to generation of hydrogen gas is suppressed, and an alkaline battery having excellent liquid leakage resistance is formed.
【0014】つぎに、アルカリ乾電池の実施形態例につ
いて図1および図2を参照して説明する。図1は本発明
のアルカリ電池の実施例1〜6の断面側面図であり、図
2は実施例7〜12の断面側面図である。Next, an embodiment of an alkaline dry battery will be described with reference to FIGS. FIG. 1 is a sectional side view of Examples 1 to 6 of the alkaline battery of the present invention, and FIG. 2 is a sectional side view of Examples 7 to 12.
【0015】実施例1〜6 実施例1〜6にかかわるアルカリ電池は図1に示すよう
に、二酸化マンガン7.2g、黒鉛0.4g、および水
酸化カリウム水溶液0.4gからなる中空円筒状の正極
合剤2を成形し、正極缶1内に挿入する。次に、水素ガ
ス吸収剤である銀−ニッケル系複合酸化物を用いて水素
ガス吸収ペレット11を作製し、これを正極合剤2の上
部、即ち、負極端子9側に載置した。その他の構成は従
来例で説明したことと同様にして単3型のアルカリ電池
を作製した。尚、実施例1〜6の正極総重量に対する水
素ガス吸収ペレット11の割合を表1に示す。[0015] alkaline batteries according to Examples 1-6 Examples 1-6 as shown in FIG. 1, manganese dioxide 7.2 g, hollow cylindrical made of graphite 0.4g, and potassium hydroxide solution 0.4g The positive electrode mixture 2 is formed and inserted into the positive electrode can 1. Next, a hydrogen gas absorbing pellet 11 was prepared using a silver-nickel composite oxide as a hydrogen gas absorbent, and this was placed on the upper part of the positive electrode mixture 2, that is, on the negative electrode terminal 9 side. The other configuration was the same as that described in the conventional example, thereby producing an AA alkaline battery. Table 1 shows the ratio of the hydrogen gas absorbing pellets 11 to the total weight of the positive electrodes in Examples 1 to 6.
【0016】実施例7〜12 実施例7〜12にかかわるアルカリ電池は図2に示すよ
うに、水素ガス吸収ペレット11を正極合剤2の下部、
即ち、正極端子6側に載置したこと以外は実施例1〜
6、および従来例で説明したことと同様にして単3型の
アルカリ電池を作製した。尚、実施例7〜12の正極総
重量に対する水素ガス吸収ペレット11の割合を表1に
示す。The alkaline battery according to Examples 7 to 12 Examples 7 to 12, as shown in FIG. 2, the lower the hydrogen gas absorption pellets 11 of the positive electrode mixture 2,
That is, except that it was mounted on the positive electrode terminal 6 side,
6, and AA alkaline batteries were produced in the same manner as described in the conventional example. Table 1 shows the ratio of the hydrogen gas absorbing pellets 11 to the total weight of the positive electrodes in Examples 7 to 12.
【0017】[0017]
【表1】 [Table 1]
【0018】比較例 水素ガス吸収ペレットを用いないこと以外は実施例1〜
6と従来例で説明したことと同様にして単3型のアルカ
リ電池を作製した。 Comparative Examples 1 to 3 except that no hydrogen gas absorbing pellets were used
AA alkaline battery was prepared in the same manner as described in Example 6 and the conventional example.
【0019】つぎに、上述したようにして作製したアル
カリ電池について充放電試験を行った。200mAの電
流で電池電圧が0.9Vになるまで放電させた後、10
0mAの電流で電池電圧が1.7Vまで充電し、これを
1サイクルとして、5サイクル後の電池内の水素ガス量
を測定した。その結果を表2に示す。Next, a charge / discharge test was performed on the alkaline battery prepared as described above. After discharging at a current of 200 mA until the battery voltage becomes 0.9 V, 10
The battery was charged to a voltage of 1.7 V with a current of 0 mA, and this was defined as one cycle, and the amount of hydrogen gas in the battery after five cycles was measured. Table 2 shows the results.
【0020】[0020]
【表2】 [Table 2]
【0021】表2より、水素ガス吸収ペレット11を挿
入したものは水素ガスの電池内の量が減少していること
が分かる。特に水素ガス吸収ペレット11の正極総重量
に対する比率が1%以上で効果が大きい。また、10%
程度のところで水素ガスの残存量が略一定となり、これ
以上の水素ガス吸収ペレット11の配設は不要であるこ
とが分かる。From Table 2, it can be seen that the amount of hydrogen gas in the battery in which the hydrogen gas absorbing pellets 11 were inserted was reduced. In particular, the effect is large when the ratio of the hydrogen gas absorbing pellets 11 to the total weight of the positive electrode is 1% or more. 10%
It can be seen that the remaining amount of the hydrogen gas becomes substantially constant at the degree, and it is unnecessary to arrange the hydrogen gas absorbing pellets 11 any more.
【0022】また、水素ガス吸収ペレット11を負極端
子9側に配置した方が効果が大きい。これは水素ガス吸
収ペレット11が水素ガスと接する部分の面積、即ち、
反応面積がガス吸収に大きく関与していて、正極端子6
側よりも負極端子9側で水素ガスと水素ガス吸収ペレッ
ト11との接触が多く行われるためと考えられる。The effect is greater when the hydrogen gas absorbing pellets 11 are arranged on the negative electrode terminal 9 side. This is the area of the portion where the hydrogen gas absorbing pellet 11 contacts the hydrogen gas, that is,
The reaction area is greatly involved in gas absorption, and the positive electrode terminal 6
It is considered that more contact between the hydrogen gas and the hydrogen gas absorbing pellets 11 is performed on the negative electrode terminal 9 side than on the negative electrode terminal 9 side.
【0023】さらに、上述したようにして作製したアル
カリ電池について、60℃で20日間保存し、200m
Aの電流で電池電圧が0.9Vになるまで放電させて、
放電容量の測定を行った。その結果を表3に示す。Further, the alkaline battery prepared as described above was stored at 60 ° C. for 20 days,
Discharge until the battery voltage reaches 0.9 V with the current of A,
The discharge capacity was measured. Table 3 shows the results.
【0024】[0024]
【表3】 [Table 3]
【0025】表3より水素ガス吸収ペレット11の量の
増大と共に、放電容量が低下していて正極総重量に対す
る配合比が10%を超えると極端に小さくなる傾向があ
る。銀イオンはアルカリ性の電解液に溶解する性質を持
っていて、溶解した銀イオンが負極に達すると亜鉛と反
応して自己放電を起こし、電池の容量低下の原因となっ
ている。従って、水素ガス吸収ペレット11を構成する
銀−ニッケル系複合酸化物の量は過度に多くなることを
避け、測定結果より正極総重量に対する配合比率は1%
以上、10%以下が好ましいことが分かる。As shown in Table 3, as the amount of the hydrogen gas-absorbing pellets 11 increases, the discharge capacity decreases. When the mixing ratio with respect to the total weight of the positive electrode exceeds 10%, the discharge capacity tends to be extremely small. Silver ions have the property of dissolving in an alkaline electrolyte. When the dissolved silver ions reach the negative electrode, they react with zinc to cause self-discharge, which causes a reduction in battery capacity. Therefore, the amount of the silver-nickel-based composite oxide constituting the hydrogen gas absorbing pellets 11 is prevented from being excessively large, and from the measurement results, the blending ratio with respect to the total weight of the positive electrode is 1%.
It is understood that 10% or less is preferable.
【0026】[0026]
【発明の効果】以上説明したように、本発明の構成によ
ると、水素ガス吸収剤である銀−ニッケル系複合酸化物
からなる水素ガス吸収ペレットが電池内で発生した水素
ガスを吸収するので、電池内の圧力は過度に増大するこ
とがなく、電池からの漏液や破裂を防止し、さらに放電
容量を確保したアルカリ電池を提供することが可能とな
る。As described above, according to the structure of the present invention, the hydrogen gas absorbing pellets made of the silver-nickel composite oxide, which is the hydrogen gas absorbent, absorb the hydrogen gas generated in the battery. The pressure in the battery does not increase excessively, and it is possible to provide an alkaline battery that prevents liquid leakage and rupture from the battery and further secures a discharge capacity.
【図1】 本発明のアルカリ電池の実施例1〜6の断面
側面図である。FIG. 1 is a sectional side view of Examples 1 to 6 of an alkaline battery of the present invention.
【図2】 本発明のアルカリ電池の実施例7〜12の断
面側面図である。FIG. 2 is a sectional side view of Examples 7 to 12 of the alkaline battery of the present invention.
【図3】 従来のアルカリ電池の断面側面図である。FIG. 3 is a cross-sectional side view of a conventional alkaline battery.
1…正極缶、2…正極合剤、3…セパレータ、4…負極
合剤、5…外装ラベル、6…正極端子、7…封口部材、
8…スプリング、9…負極端子、10…集電ピン、11
…水素ガス吸収ペレットDESCRIPTION OF SYMBOLS 1 ... Positive electrode can, 2 ... Positive electrode mixture, 3 ... Separator, 4 ... Negative electrode mixture, 5 ... Exterior label, 6 ... Positive electrode terminal, 7 ... Sealing member,
8 spring, 9 negative electrode terminal, 10 current collecting pin, 11
… Hydrogen gas absorbing pellets
Claims (5)
物質に亜鉛をそれぞれ主成分として含むアルカリ電池に
おいて、 水素ガスを吸収する水素ガス吸収剤を電池内部に設けた
ことを特徴とするアルカリ電池。1. An alkaline battery containing manganese dioxide as a positive electrode active material and zinc as a negative electrode active material as main components, wherein a hydrogen gas absorbent for absorbing hydrogen gas is provided inside the battery. .
合酸化物(AgNiO2 )であることを特徴とする、請
求項1に記載のアルカリ電池。2. The alkaline battery according to claim 1, wherein the hydrogen gas absorbent is a silver-nickel composite oxide (AgNiO 2 ).
iO2 )を中空円筒状に成形し、負極端子側に配設した
ことを特徴とする、請求項2に記載のアルカリ電池。3. The silver-nickel composite oxide (AgN
3. The alkaline battery according to claim 2, wherein iO 2 ) is formed into a hollow cylindrical shape and is disposed on the negative electrode terminal side. 4.
iO2 )を中空円筒状に成形し、正極端子側に配設した
ことを特徴とする、請求項2に記載のアルカリ電池。4. The silver-nickel composite oxide (AgN
3. The alkaline battery according to claim 2, wherein iO 2 ) is formed into a hollow cylindrical shape, and is disposed on the side of the positive electrode terminal. 4.
iO2 )の、正極総重量に対する配合比が1%以上10
%以下であることを特徴とする、請求項2に記載のアル
カリ電池。5. The silver-nickel composite oxide (AgN
The mixing ratio of iO 2 ) to the total weight of the positive electrode is 1% or more and 10% or more.
% Of the alkaline battery according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9328636A JPH11162474A (en) | 1997-11-28 | 1997-11-28 | Alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9328636A JPH11162474A (en) | 1997-11-28 | 1997-11-28 | Alkaline battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11162474A true JPH11162474A (en) | 1999-06-18 |
Family
ID=18212483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9328636A Pending JPH11162474A (en) | 1997-11-28 | 1997-11-28 | Alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11162474A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002025760A2 (en) * | 2000-09-18 | 2002-03-28 | The Gillette Company | Battery |
KR100416099B1 (en) * | 2001-12-22 | 2004-01-24 | 삼성에스디아이 주식회사 | Case for secondary battery and method for manufacturing secondary battery package using this |
KR100594662B1 (en) * | 2003-03-03 | 2006-06-30 | 엔이씨 라밀리언 에너지 가부시키가이샤 | Film covered battery and stacked battery assembly |
WO2007062125A1 (en) * | 2005-11-22 | 2007-05-31 | Maxwell Technologies, Inc. | Ultracapacitor pressure control system |
-
1997
- 1997-11-28 JP JP9328636A patent/JPH11162474A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002025760A2 (en) * | 2000-09-18 | 2002-03-28 | The Gillette Company | Battery |
WO2002025760A3 (en) * | 2000-09-18 | 2003-09-12 | Gillette Co | Battery |
JP2004509445A (en) * | 2000-09-18 | 2004-03-25 | ザ ジレット カンパニー | battery |
KR100416099B1 (en) * | 2001-12-22 | 2004-01-24 | 삼성에스디아이 주식회사 | Case for secondary battery and method for manufacturing secondary battery package using this |
KR100594662B1 (en) * | 2003-03-03 | 2006-06-30 | 엔이씨 라밀리언 에너지 가부시키가이샤 | Film covered battery and stacked battery assembly |
WO2007062125A1 (en) * | 2005-11-22 | 2007-05-31 | Maxwell Technologies, Inc. | Ultracapacitor pressure control system |
KR100997941B1 (en) * | 2005-11-22 | 2010-12-02 | 맥스웰 테크놀러지스 인코포레이티드 | Ultracapacitor pressure control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0723305B1 (en) | Nickel positive electrode for use in alkaline storage battery. | |
JP2730121B2 (en) | Alkaline secondary battery and manufacturing method thereof | |
JP3358478B2 (en) | Organic electrolyte secondary battery | |
KR100281729B1 (en) | Nickel positive electrode and alkaline storage battery using the same | |
JP2001015106A (en) | Alkaline battery | |
EP0477461B2 (en) | Nickel/hydrogen storage battery and method of manufacturing the same | |
RU95119852A (en) | Rechargeable Electrochemical Cell | |
JP3042043B2 (en) | Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same | |
KR20080074199A (en) | Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life | |
JP5172181B2 (en) | Zinc alkaline battery | |
JP4736345B2 (en) | Alkaline battery | |
JPH07122276A (en) | Cylindrical alkaline battery | |
JPH11162474A (en) | Alkaline battery | |
JP2000294294A (en) | Nonaqueous electrolyte secondary battery | |
JP2008047497A (en) | Alkaline battery | |
JP2008041490A (en) | Alkaline battery | |
CN113439355B (en) | Alkaline dry cell | |
JP3866902B2 (en) | Alkaline battery | |
US4238556A (en) | Lead-acid cell | |
WO2010140295A1 (en) | Alkaline dry battery | |
JPH0737609A (en) | Alkaline storage battery | |
JP2004139909A (en) | Sealed nickel-zinc primary battery | |
JP2002117859A (en) | Alkaline battery | |
JP2000067908A (en) | Battery | |
JP3315530B2 (en) | Alkaline battery |