[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3399044B2 - Hall element and method of manufacturing the same - Google Patents

Hall element and method of manufacturing the same

Info

Publication number
JP3399044B2
JP3399044B2 JP23841593A JP23841593A JP3399044B2 JP 3399044 B2 JP3399044 B2 JP 3399044B2 JP 23841593 A JP23841593 A JP 23841593A JP 23841593 A JP23841593 A JP 23841593A JP 3399044 B2 JP3399044 B2 JP 3399044B2
Authority
JP
Japan
Prior art keywords
growth
layer
inp
hall element
hills
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23841593A
Other languages
Japanese (ja)
Other versions
JPH0794804A (en
Inventor
賢二郎 小沼
隆 宇田川
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP23841593A priority Critical patent/JP3399044B2/en
Publication of JPH0794804A publication Critical patent/JPH0794804A/en
Application granted granted Critical
Publication of JP3399044B2 publication Critical patent/JP3399044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はホール素子に係わり、特
に、不平衡率が低く特性の均一性に優れたGaInAs
ホール素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Hall element, and in particular, GaInAs having a low unbalance rate and excellent uniformity of characteristics.
Regarding Hall element.

【0002】[0002]

【従来の技術】磁界を検知し、その強度、即ち磁界強度
に応じて電気信号を発生する、いわゆる磁電変換素子の
一つとしてホール(Hall)素子が知られている。こ
のホール素子は磁場を印加した際に、ホール効果として
知られている半導体内の電子の運動によって発生するホ
ール電圧を検知量とする一種の磁気センサーであり、磁
気を検出対象とする回転検出、位置検出センサー、或は
電流センサー等としての他、磁界強度測定用の測定子
(プローブ)などとして、広範囲に亘り利用されてい
る。
2. Description of the Related Art A Hall element is known as one of so-called magnetoelectric conversion elements which detects a magnetic field and generates an electric signal according to the strength thereof, that is, the magnetic field strength. This Hall element is a kind of magnetic sensor that detects the Hall voltage generated by the movement of electrons in the semiconductor known as the Hall effect when a magnetic field is applied, as a detection amount. In addition to being used as a position detection sensor or a current sensor, it is widely used as a probe (probe) for measuring magnetic field strength.

【0003】ホール素子用の半導体材料としてはシリコ
ン(Si)、ゲルマニウム(Ge)などの元素半導体の
他、アンチモン化インジウム(InSb)、ヒ化インジ
ウム(InAs)やヒ化ガリウム(GaAs)等の元素
周期律表の第 III族に属する元素と同じく第V族に属す
る二つの元素を化合させてなる III−V族2元化合物半
導体も使用されている。しかし、従来の化合物半導体か
らなるホール素子を見れば、用いる半導体の物性に依っ
てホール素子の特性上に一長一短が存在する。例えば、
GaAsから成るホール素子はGaAs半導体のバンド
ギャップが比較的大きい事により素子特性の温度変化は
少ないものの、逆に電子移動度が多少低いため積感度は
InSbから成るホール素子に比較し低いという欠点が
ある。一方、InSbホール素子はInSb半導体のバ
ンドギャップが低いため、特性の温度変化は大きいが、
高い積感度が得られる利点を有している。
Semiconductor materials for Hall elements include elemental semiconductors such as silicon (Si) and germanium (Ge), as well as elements such as indium antimonide (InSb), indium arsenide (InAs) and gallium arsenide (GaAs). A III-V binary compound semiconductor formed by combining two elements belonging to Group V with an element belonging to Group III of the periodic table is also used. However, looking at a conventional Hall element made of a compound semiconductor, there are advantages and disadvantages in the characteristics of the Hall element depending on the physical properties of the semiconductor used. For example,
The Hall element made of GaAs has little change in temperature due to the relatively large band gap of the GaAs semiconductor, but on the contrary, its electron mobility is somewhat low, so that its product sensitivity is lower than that of the InSb Hall element. is there. On the other hand, the InSb Hall element has a large bandgap of the InSb semiconductor, so that the temperature change of the characteristics is large.
It has an advantage that high product sensitivity can be obtained.

【0004】最近では、自動車エンジンの精密な回転制
御等、高温環境下に於ける精密センシング技術の必要性
が高まり、高いホール電圧を出力する能力を有し、且つ
温度による素子特性の変化を低く抑制した高性能ホール
素子が要望されるに至っている。ここで、ホール電圧は
半導体材料のホール係数に依存し、ホール係数が大きい
程、ホール電圧の出力能力は高い。また、このホール係
数は半導体材料の電子移動度に比例して増加する。従っ
て、高いホール出力電圧を得るには、即ち高感度なホー
ル素子を得るには高い電子移動度を発現する半導体材料
を使用する必要がある。
Recently, the need for precision sensing technology in high temperature environments, such as precise rotation control of automobile engines, has increased, it has the ability to output a high Hall voltage, and the change in element characteristics due to temperature is low. There has been a demand for suppressed high-performance Hall elements. Here, the Hall voltage depends on the Hall coefficient of the semiconductor material, and the higher the Hall coefficient, the higher the Hall voltage output capability. Moreover, this Hall coefficient increases in proportion to the electron mobility of the semiconductor material. Therefore, in order to obtain a high Hall output voltage, that is, to obtain a highly sensitive Hall element, it is necessary to use a semiconductor material exhibiting a high electron mobility.

【0005】このため、産業界からの高性能ホール素子
の要望と相まって半導体材料の物性面からの検討も進
み、最近ではGaAsやInP等の2元系化合物半導体
と同様の III−V族化合物半導体でも、三種類の元素を
混合させてなるヒ化ガリウム・インジウムなどの III−
V族化合物三元混晶とInPとのヘテロ接合を利用した
高感度ホール素子が新たに実現されるに至っている(例
えば、奥山 忍他、1992年秋季第53回応用物理学
会学術講演会予稿集No.3(1992年応用物理学会
発行)、講演番号16a−SZC−16、1078
頁)。この新たなGaInAsホール素子は特性の温度
変化も比較的小さく、且つまた室温移動度が極めて高い
ために従来にない優れた積感度をもたらすと報告されて
いる。
Therefore, along with the demand for high-performance Hall elements from the industrial world, investigations from the viewpoint of the physical properties of semiconductor materials have progressed, and recently, III-V group compound semiconductors similar to binary compound semiconductors such as GaAs and InP have been recently developed. However, III- such as gallium arsenide and indium made by mixing three types of elements
New high-sensitivity Hall devices using heterojunctions of group V compound ternary mixed crystals and InP have been realized (for example, Shinobu Okuyama et al., 1993 Autumn Proceedings of 53rd Annual Meeting of the Applied Physics Society of Japan). No. 3 (published by Japan Society of Applied Physics 1992), Lecture No. 16a-SZC-16, 1078
page). It has been reported that this new GaInAs Hall element brings about an unprecedented excellent product sensitivity because the characteristic temperature change is relatively small and the room temperature mobility is extremely high.

【0006】[0006]

【発明が解決しようとする課題】上記の温度特性、積感
度に加え、ホール素子の重要な特性の一つに不平衡電圧
がある。この不平衡電圧は磁界が印加されていない際に
生ずる出力電圧である。ここで、不平衡電圧をV0 とす
る。また、或る磁界強度下でホール素子が発生するホー
ル電圧をVとすると、不平衡率は一般には次式で定義さ
れる。 不平衡率(%)={V0 /(V−V0 )}×100 この不平衡率はいわば出力電圧のS/N比に相当し低い
程良い。また、各出力レベルにおいて均一でなければな
らない。何故ならば、不平衡率が大きいとホール出力電
圧が小さい場合にV0 のVに占める割合が大きくなり、
S/N比が悪化する弊害がある。また、不平衡率が均一
でないと、不平衡電圧成分を除去するために設けるオフ
セット回路の調整を煩雑にするなど実用上の問題点を生
ずるからである。
In addition to the above temperature characteristics and product sensitivity, an unbalanced voltage is one of the important characteristics of Hall elements. This unbalanced voltage is an output voltage generated when no magnetic field is applied. Here, the unbalanced voltage is V 0 . Further, assuming that the Hall voltage generated by the Hall element under a certain magnetic field strength is V, the unbalance rate is generally defined by the following equation. Unbalance rate (%) = {V 0 / (V−V 0 )} × 100 This unbalance rate is equivalent to the S / N ratio of the output voltage, and the lower the better. It must also be uniform at each output level. The reason is that if the unbalance ratio is large, the ratio of V 0 to V becomes large when the Hall output voltage is small,
There is an adverse effect that the S / N ratio deteriorates. Further, if the unbalance ratio is not uniform, practical problems such as complicated adjustment of the offset circuit provided for removing the unbalance voltage component occur.

【0007】上記のGaInAs感磁層とInP緩衝層
とのヘテロ接合に於いては、高い室温移動度が得られる
という確認は既になされてはいる(小沼 賢二郎他、1
992年秋季第53回応用物理学会学術講演会講演予稿
集No.1(1992年応用物理学会発行)、講演番号
18a−ZE−3、283頁)。しかし、こと不平衡率
に関しては、それを低減するためにヘテロ接合の構成材
料が具備すべき品質が未だ明白になっていない。このた
め前述の如くホール出力電圧のS/N比を向上できず、
また不平衡電圧成分の補償が煩雑になるなど、GaIn
Asヘテロ接合ホール素子の使用上に支障があった。本
発明では不平衡率を低く抑制したGaInAsを感磁層
とする高性能ホール素子を得るために、InP緩衝層並
びに感磁部層といったエピタキシャル成長層が具備すべ
き要件を鋭意検討した結果、結晶層の表面上に存在する
成長丘等の粒子の密度が重大な影響を及ぼすことを見出
し、この観点からエピタキシャル成長層の具備すべき要
件を明確にするものである。ここで、成長丘とは、結晶
層のエピタキシャル成長に伴って発生する突起若しくは
窪みのことを言う。これらの成長丘は一般的には或る方
位の結晶面から構成されている。この様な突起物や窪み
が素子の機能を発揮する結晶層部に存在すると動作電流
の均一な流通を阻害する。成長丘は結晶成長条件如何に
依って生じる。InP結晶層上に堆積したGaInAs
結晶層にあっては、InP層表面のPが抜けた部位を核
としてGaInAs結晶表面に成長丘が出現することも
ある。また、特定の結晶面から構成される成長丘ではな
く、不定形の粒子状の突起や窪みも成長丘と同様に不平
衡電圧等の特性の均一化を阻害する。従って、ホール素
子の特性に悪影響を与える因子を除去する観点からすれ
ば成長丘、粒子の合計の密度等を規定するのが好都合で
ある。
It has already been confirmed that a high room temperature mobility can be obtained in the heterojunction between the GaInAs magnetosensitive layer and the InP buffer layer (Kenjiro Konuma et al., 1).
1992 Autumn Proceedings No. 53 1 (published by Japan Society of Applied Physics, 1992), Lecture No. 18a-ZE-3, p. 283). However, regarding the unbalance ratio, the quality that the constituent material of the heterojunction should have in order to reduce the unbalance ratio is not yet clear. Therefore, the S / N ratio of the Hall output voltage cannot be improved as described above,
In addition, the compensation of the unbalanced voltage component becomes complicated, and GaIn
There was a problem in using the As heterojunction Hall element. In the present invention, in order to obtain a high-performance Hall element using GaInAs as a magnetic sensitive layer with a low unbalance ratio, the requirements for the epitaxial growth layers such as the InP buffer layer and the magnetic sensitive layer have been studied carefully. It was found that the density of particles such as growth hills existing on the surface of the p-type has a significant influence, and from this viewpoint, the requirements that the epitaxial growth layer should have are clarified. Here, the growth hill refers to a protrusion or a dent generated along with the epitaxial growth of the crystal layer. These growth hills are generally composed of crystal planes of a certain orientation. If such protrusions or depressions are present in the crystal layer portion that exerts the function of the element, it hinders the uniform distribution of the operating current. Growth hills are generated depending on the crystal growth conditions. GaInAs deposited on the InP crystal layer
In the crystal layer, a growth hill may appear on the GaInAs crystal surface with the portion of the surface of the InP layer where P is removed as the nucleus. Further, not the growth hill composed of a specific crystal plane, but irregular-shaped particle-shaped projections or depressions also hinder the homogenization of characteristics such as unbalance voltage like the growth hill. Therefore, from the viewpoint of eliminating the factors that adversely affect the characteristics of the Hall element, it is convenient to define the growth hill, the total density of particles, and the like.

【0008】[0008]

【課題を解決するための手段】即ち、本発明は感磁部層
としてGaInAs結晶層を採用し、且つ緩衝層として
InPを用いるに際し、先ずInP緩衝層の表面に存在
する直径に換算して50μm以下の成長丘等の密度を5
0個/cm2 以下とする。更にInP緩衝層上に成長さ
せるGaInAs感磁部層の表面に存在する直径に換算
して50μm以下の成長丘等の粒子の密度を170個/
cm2 以下とする。これにより、不平衡率に優れるGa
InAsホール素子を提供するものである。成長丘を抑
制する手段としては、InP緩衝層の成長後GaInA
s感磁層の成長に移行するに当たり、緩衝層の成長に要
した以上のP濃度を有する環境下に曝した後、GaIn
As感磁層の成長を実施することによって、GaInA
s感磁層表面上の成長丘等の粒子の密度を一定水準以下
に収納させることができる。
That is, according to the present invention, when a GaInAs crystal layer is used as a magnetic sensing layer and InP is used as a buffer layer, the diameter existing on the surface of the InP buffer layer is first converted to 50 μm. Set the density of the following growth hills to 5
The number is 0 / cm 2 or less. Furthermore, the density of particles such as growth hills having a diameter of 50 μm or less is 170 particles / converted to the diameter existing on the surface of the GaInAs magnetic sensitive layer grown on the InP buffer layer.
cm 2 or less. As a result, Ga having an excellent unbalance rate
An InAs Hall element is provided. As a means for suppressing the growth hill, GaInA after the growth of the InP buffer layer is performed.
When moving to the growth of the s-sensitive layer, the GaIn layer was exposed to an environment having a P concentration higher than that required for the growth of the buffer layer, and
By performing the growth of the As magnetosensitive layer, GaInA
s It is possible to store the density of particles such as growth hills on the surface of the magneto-sensitive layer within a certain level.

【0009】通常、GaInAsホール素子の形成に当
たっては、面方位が{100}か、もしくは{100}
面から角度にして数度[110]方向に傾斜した面方位
の半絶縁性の鉄(Fe)ドープのInP単結晶基板が使
用される。実用上は比抵抗が104 Ω・cm以上、10
8 Ω・cm未満のInP単結晶基板を用いるのが一般的
であり、これらの結晶は液体封止チョクラルスキー(L
EC)法や、最近ではVB法と称される垂直ブリッジマ
ン法等により容易に製作できる。
Usually, in forming a GaInAs Hall element, the plane orientation is {100} or {100}.
A semi-insulating iron (Fe) -doped InP single crystal substrate having a plane orientation inclined at an angle of several degrees [110] from the plane is used. Practically, the specific resistance is 10 4 Ω · cm or more, 10
InP single crystal substrates of less than 8 Ω · cm are generally used, and these crystals are liquid-sealed Czochralski (L
The EC) method and the vertical Bridgman method called VB method these days can be easily manufactured.

【0010】このInP単結晶基板上に感磁部層となす
n形GaxIn1-xAs層を形成するが、通常は、先ずI
nP単結晶基板上にInPを緩衝層(バッファ層)とし
て堆積するのが一般的である。これは、GaxIn1-x
sに高い電子移動度を保持させるために、InP単結晶
基板からのFe不純物のGaxIn1-xAsエピタキシャ
ル成長層への拡散の抑制を目的としたものである。ま
た、バッファ層を設けることにより結晶欠陥等のGax
In1-xAsエピタキシャル成長層へ伝幡するのを抑制
する効果も生じるため、GaxIn1-xAsの電子移動度
をいたずらに低下させずに、GaInAsホール素子の
高感度特性を保持できるなどの利点を招く。緩衝層とし
てはInP、GaInAsとの格子整合の観点からすれ
ばヒ化アルミニウム・インジウム(AlInAs)も利
用できる。
On this InP single crystal substrate, an n-type Ga x In 1-x As layer serving as a magnetic sensing layer is formed.
InP is generally deposited as a buffer layer on an nP single crystal substrate. This is Ga x In 1-x A
In order to maintain high electron mobility in s, the purpose is to suppress diffusion of Fe impurities from the InP single crystal substrate into the Ga x In 1-x As epitaxial growth layer. In addition, by providing a buffer layer, Ga x
Since it also has an effect of suppressing the propagation to the In 1-x As epitaxial growth layer, the high sensitivity characteristics of the GaInAs Hall element can be maintained without unnecessarily decreasing the electron mobility of Ga x In 1-x As. Invite the benefits of. From the viewpoint of lattice matching with InP and GaInAs, aluminum / indium arsenide (AlInAs) can also be used as the buffer layer.

【0011】InP緩衝層の成長にはVPE法、MOC
VD法などの気相成長法が一般に利用される。気相成長
方式に拘らず、InP層の成長に伴いその表面には円筒
状の成長丘が出現する。成長丘は全んどが円形若しくは
楕円形の天板を持ち、また、天板は基板として用いたI
nP結晶の面方位とほぼ同一の方向に配向しているのが
特徴である。例えば、面方位が(100)のInP結晶
基板上に堆積させたInP成長層に存在する成長丘は
(100)にほぼ平行な天板を有している。(100)
面から<110>方向に2°傾斜させた、いわゆる2°
オフ基板の場合には、同様に成長丘は(100)から同
方向にほぼ2°傾斜した面方位の上部表面を有すること
となる。これらの成長丘の表面密度は、例えば市販のレ
ーザ走査光の散乱を利用するパーティクルカウンターで
の直径の分布とともに簡単に計測できる。この種の計測
器で測定された直径値を見ると、分布は必ずしも画一的
ではない。例えば、或るInP緩衝層表面上の成長丘の
直径は2〜30μmの域内にほぼ均等に分布している
が、他の場合は中心的に5〜70μmの幅内に分布して
いる場合がある。しかし、分布の様態に拘らずInP層
上の成長丘の特徴は、その直径が大きい程InP表面と
の高低差がなくなることである。InP表面との高低差
が大きい、即ち成長丘の直径が小さい故に、突起の段差
が大きいとInP層上に堆積する感磁部層となるGax
In1-xAs中に迄突出する。これを模式的に図1に示
す。図において(111)は直径が50μmを越える成
長丘で、高さ方向よりも平面的に成長している。(11
2)は直径が50μm以下の成長丘で突起状に成長して
いる。この様なInP層の成長に起因する突起が感磁部
層内に多数存在すると、感磁部層の電子移動度の向上を
阻害する。また、感磁部層内に成長丘が存在することに
より、感磁部層の膜厚が部分的に変化することから、結
果としてホール素子の不平衡率の増大を招く。本発明者
が鋭意検討した結果、InP層表面上の直径に換算して
50μm以下の微小な成長丘が、結果として不平衡率に
影響を与える高低段差を有することを見出した。従っ
て、本発明では成長丘の直径換算値を50μm以下に規
定した。
For the growth of the InP buffer layer, VPE method and MOC are used.
A vapor phase growth method such as the VD method is generally used. Regardless of the vapor phase growth method, a cylindrical growth hill appears on the surface of the InP layer as it grows. All of the growth hills have a circular or oval top plate, and the top plate was used as a substrate.
The feature is that the orientation is almost the same as the plane orientation of the nP crystal. For example, a growth hill existing in an InP growth layer deposited on an InP crystal substrate having a plane orientation of (100) has a top plate substantially parallel to (100). (100)
2 ° inclined from the surface in the <110> direction by 2 °
In the case of an off-substrate, the growth hill also has an upper surface with a plane orientation inclined by about 2 ° in the same direction from (100). The surface density of these growth hills can be easily measured, for example, along with the distribution of diameters in a particle counter that utilizes the scattering of laser scanning light that is commercially available. Looking at the diameter values measured with this type of instrument, the distribution is not always uniform. For example, the diameters of growth hills on the surface of a certain InP buffer layer are almost evenly distributed within a region of 2 to 30 μm, but in other cases, the diameters are mainly distributed within a width of 5 to 70 μm. is there. However, the characteristic of the growth hill on the InP layer is that the larger the diameter, the less the height difference from the InP surface, regardless of the distribution. Since the height difference from the InP surface is large, that is, the diameter of the growth hill is small, if the stepped portion of the protrusion is large, it becomes a magnetic sensing layer that is deposited on the InP layer to become Ga x.
In 1-x As protrudes into. This is schematically shown in FIG. In the figure, (111) is a growth hill having a diameter of more than 50 μm, and the growth is planar rather than in the height direction. (11
2) is a growth hill having a diameter of 50 μm or less and grows like a protrusion. If many protrusions due to such growth of the InP layer exist in the magnetic sensing part layer, the improvement of the electron mobility of the magnetic sensitive part layer is hindered. Further, the presence of the growth hill in the magnetic sensing layer partially changes the film thickness of the magnetic sensing layer, resulting in an increase in the unbalance ratio of the Hall element. As a result of diligent study by the present inventors, it was found that a minute growth hill having a diameter of 50 μm or less in terms of the diameter on the surface of the InP layer has high and low steps that affect the unbalance rate. Therefore, in the present invention, the diameter conversion value of the growth hill is specified to be 50 μm or less.

【0012】実用上ホール素子の不平衡率は、通常±1
0%以内が許容されることを基準にInP層上の成長丘
の密度を検討した。後述するが本発明の場合、不平衡率
を±10%とするにはGaxIn1-xAsの表面の成長丘
の密度を170個/cm2以下とする必要があった。I
nP層の成長時に発生した成長丘は自ら核としてGax
In1-xAsの堆積時に於いても成長を続行する。ま
た、GaxIn1-xAsの堆積に伴って新たな成長丘が発
生し、同層の表面上の成長丘の密度はInP下地層のそ
れより増加する。この成長丘の増加率等を勘案して密度
を決定する。また、成長丘の大きさ、密度を規定するの
はInP層とGaxIn1-xAsとのヘテロ接合界面の平
坦性を維持させ、ホール素子の高感度化のために必要な
電子移動度の低下を防止する意味もある。
In practice, the unbalance rate of the Hall element is usually ± 1.
The density of the growth hills on the InP layer was examined on the basis that 0% or less was allowed. As will be described later, in the case of the present invention, the density of the growth hills on the surface of Ga x In 1-x As needs to be 170 pieces / cm 2 or less in order to obtain the imbalance rate of ± 10%. I
The growth hills generated during the growth of the nP layer act as nuclei for Ga x
The growth continues even during the deposition of In 1-x As. Further, new growth hills are generated along with the deposition of Ga x In 1-x As, and the density of the growth hills on the surface of the same layer is higher than that of the InP underlayer. The density is determined in consideration of the rate of increase of the growth hills. Further, the size and density of the growth hills are determined by maintaining the flatness of the heterojunction interface between the InP layer and Ga x In 1-x As, and by increasing the electron mobility required for high sensitivity of the Hall element. There is also a meaning to prevent the decrease of.

【0013】InP結晶層上に於ける成長丘の密度はI
nP層の層厚に強く依存し、成長丘の密度を減少させる
に適する層厚の範囲が存在することが見出されている。
これを図2に示す。即ち、InPの層厚が20nm未満
の場合と60nmを越える双方の場合に於いては成長丘
の密度が50個/cm2 以下となった。従って、InP
を緩衝層として選択する場合にあっては、同層の層厚を
どちらかの範囲内に収納させれば良いこととなるが、I
nP層の層厚が20nm未満であると、時としてInP
単結晶基板の品質差による影響を被る結果を招き、緩衝
層としてのInP結晶層の品質を充分発揮出来ない事態
を生ずる。また、逆に層厚を60nmを越える範囲に設
定するとInP単結晶基板の品質がInP成長層に与え
る影響は軽減され、特性の安定したInP緩衝層が得ら
れ易くなる。しかし、極端に層厚を厚く設定すると、ホ
ール素子の製作工程上必要とされるメサエッチングに不
具合を生じ、不平衡電圧の増大を招く。この様な点に鑑
み、緩衝層としてのInPの膜厚を60nm〜200n
m前後に設定すると好結果が得られる。
The density of growth hills on the InP crystal layer is I
It has been found that there is a range of layer thicknesses that strongly depends on the layer thickness of the nP layer and is suitable for reducing the density of the growth hills.
This is shown in FIG. That is, the density of the growth hills was 50 / cm 2 or less in both cases where the InP layer thickness was less than 20 nm and over 60 nm. Therefore, InP
In the case of selecting as the buffer layer, the layer thickness of the same layer may be accommodated within either range.
When the layer thickness of the nP layer is less than 20 nm, InP is sometimes used.
This results in being affected by the quality difference of the single crystal substrate, resulting in a situation where the quality of the InP crystal layer as the buffer layer cannot be sufficiently exhibited. On the contrary, when the layer thickness is set to a range exceeding 60 nm, the influence of the quality of the InP single crystal substrate on the InP growth layer is reduced, and an InP buffer layer having stable characteristics is easily obtained. However, if the layer thickness is set to be extremely thick, a problem occurs in mesa etching required in the manufacturing process of the Hall element, resulting in an increase in unbalance voltage. In consideration of this point, the film thickness of InP as the buffer layer is 60 nm to 200 n.
Good results are obtained when set around m.

【0014】次に、InP緩衝層の成長時の環境、特に
成長に供するP濃度について説明する。P源としてはV
PE気相成長法にあっては三塩化リン(PCl3 )をM
OCVD法にあってはホスフィン(PH3 )が一般的で
ある。MOCVD法では、InPの一般的な成長温度の
600〜700℃に於ける成長反応系へのPH3 の供給
量は、概ね0.01%から数10%の範囲にある。PH
3 の供給量に大きな幅があるのは、主に減圧か常圧(大
気圧)かの成長方式の違いや、成長用基板の加熱方式等
の差異に因るものである。また、InP層の上にGax
In1-x Asを積層するに際しては、積層を開始する直
前迄InP層の成長に要したとほぼ同じリン濃度の雰囲
気下にInP下地層を保持しておくのが従来からの慣例
である。これは、Gax In1-x Asの成長前にInP
下地層からのリンの蒸発、脱離の防止を目的としたもの
である。
Next, the environment during the growth of the InP buffer layer, particularly the P concentration used for the growth will be described. V as a P source
In the PE vapor phase growth method, phosphorus trichloride (PCl 3 )
Phosphine (PH 3 ) is generally used in the OCVD method. In the MOCVD method, the amount of PH 3 supplied to the growth reaction system at a general InP growth temperature of 600 to 700 ° C. is generally in the range of 0.01% to several tens%. PH
The large range of the supply amount of 3 is mainly due to the difference in the growth method between the reduced pressure and the normal pressure (atmospheric pressure) and the difference in the heating method for the growth substrate. In addition, Ga x is formed on the InP layer.
When stacking In 1-x As, it is a conventional practice to hold the InP underlayer in an atmosphere having a phosphorus concentration substantially the same as that required for growing the InP layer just before starting stacking. This is due to the fact that InP is grown before the growth of Ga x In 1-x As.
The purpose is to prevent evaporation and desorption of phosphorus from the underlayer.

【0015】更に、InP緩衝層を下地としてその上に
GaxIn1-xAs感磁部層を堆積するが、このGax
1-xAsにあっても表面上に存在する成長丘の密度に
限定を加える。即ち、直径にして50μm以下の粒子の
同層の表面上の密度を170/cm2以下とする。図3
に示す様に本発明の密度値を越えるとGaInAsホー
ル素子の不平衡率が±10%を越えるからである。Ga
xIn1-xAsの表面の成長丘の密度を低減させるには、
先ず前述の如く下地となるInP層表面の成長丘の密度
を適正な規定値に納めることである。
Furthermore, although depositing a Ga x In 1-x As sensing section layer thereon an InP buffer layer as a base, the Ga x I
Limit the density of growth hills existing on the surface even in n 1-x As. That is, the density of particles having a diameter of 50 μm or less on the surface of the same layer is 170 / cm 2 or less. Figure 3
This is because the unbalance rate of the GaInAs Hall element exceeds ± 10% when the density value of the present invention is exceeded, as shown in FIG. Ga
In order to reduce the density of growth hills on the surface of x In 1-x As,
First, as described above, the density of the growth hills on the surface of the underlying InP layer is set to an appropriate specified value.

【0016】Gax In1-x Asの表面には、下地のI
nP緩衝層から引き続いて成長する成長丘の他にGax
In1-x Asに特有な成長丘が存在する。この特有な成
長丘はInP層表面上のある特定の結晶面を含まない粒
子状のものである。InP層から引き継いで存在してい
る成長丘に加え、粒子状の成長丘が在るとやはり不平衡
電圧の不均一さを助長する。本発明者は、Gax In
1-x As結晶層上の粒子状の成長丘はInP緩衝層表面
からのPの脱離に起因して発生することを見出した。G
x In1-x Asの成長にあっては、InP緩衝層の成
長後、Gax In1-x As感磁部層の成長を開始する間
の移行期間にPH3 の成長反応系へ供給を断ち、ヒ素
(As)を含むアルシン(AsH3 )ガスに切り替える
操作が行われている。本発明では従来の如く単に、周期
律表の第V族元素を含む原料ガスを切り替えるのみでな
く、Pの成長反応系での濃度を上記InP層の成長時に
比較し増加させることとした。この移行期間に成長反応
系内のP濃度を増加させるには特殊な操作は必要とせ
ず、単にP源とするPH3 ガスの成長反応系への供給流
量を増加させることによって容易に達成される。この操
作により成長環境下に所在しているInP緩衝層の表面
からのPの熱脱離を効率良く防止でき、Gax In1-x
As感磁部層表面の粒子状成長丘の発生を防止できる。
On the surface of Ga x In 1-x As, the underlying I
In addition to the growth hills that continue to grow from the nP buffer layer, Ga x
There is a growth hill peculiar to In 1-x As. This peculiar growth hill is in the form of particles that do not include a specific crystal plane on the surface of the InP layer. In addition to the growth hills existing from the InP layer, the presence of the particulate growth hills also promotes the nonuniformity of the unbalanced voltage. The present inventor has found that Ga x In
It was found that the particulate growth hills on the 1-x As crystal layer are generated due to the desorption of P from the surface of the InP buffer layer. G
In the growth of a x In 1-x As, the growth reaction system of PH 3 is supplied during the transition period between the growth of the InP buffer layer and the start of the growth of the Ga x In 1-x As magnetic sensitive layer. The operation of switching to arsine (AsH 3 ) gas containing arsenic (As) is performed. In the present invention, not only is the source gas containing the group V element of the periodic table changed as in the prior art, but the concentration of P in the growth reaction system is increased as compared with that during the growth of the InP layer. No special operation is required to increase the P concentration in the growth reaction system during this transition period, and it is easily achieved by simply increasing the supply flow rate of PH 3 gas as the P source to the growth reaction system. . By this operation, thermal desorption of P from the surface of the InP buffer layer located under the growth environment can be efficiently prevented, and Ga x In 1-x
It is possible to prevent the generation of particulate growth hills on the surface of the As magnetic sensing part layer.

【0017】尚、移行期間に於いてPを含む原料を増加
させる率については特段の制限はないが、PH3 をP源
とするMOCVD法でのInP層の一般的な成長温度で
ある550℃〜650℃の温度範囲に於いては、InP
層の成長に要したPH3 流量の2〜3倍に相当する流量
のPH3 を供給すると、Gax In1-x As結晶層の表
面の成長丘の密度の低減に効果が見受けられる。更に、
6〜7倍程度のPH3流量とすると成長丘の発生を抑制
できる。この新たなGax In1-x As/InPヘテロ
接合の製造方法により、Gax In1-x As表面に存在
する成長丘の種類を一元化できる。また、この一元化に
よりInP層表面からGax In1-x Asへ引き続き成
長する成長丘の密度を管理すれば良いという利点が生ま
れる。上記のInP緩衝層並びにGax In1-x Asの
成長方法には特に制限はなく、分子線エピタキシャル成
長法(MBE法)やMOVPE法、或はまたMOVPE
とMBE双方を複合させたMO・MBE法などが適用で
きる。
There is no particular limitation on the rate of increasing the P-containing raw material in the transition period, but it is 550 ° C. which is a general growth temperature of the InP layer in the MOCVD method using PH 3 as the P source. InP in the temperature range of ~ 650 ° C
Supplying PH 3 at a flow rate that is 2 to 3 times the PH 3 flow rate required for growing the layer is effective in reducing the density of the growth hills on the surface of the Ga x In 1-x As crystal layer. Furthermore,
If the PH 3 flow rate is about 6 to 7 times, the growth hill can be suppressed. This new method of manufacturing a Ga x In 1-x As / InP heterojunction makes it possible to unify the types of growth hills existing on the surface of the Ga x In 1-x As. Further, this unification brings an advantage that the density of the growth hills that continue to grow from the surface of the InP layer to Ga x In 1-x As may be controlled. The growth method of the above InP buffer layer and Ga x In 1-x As is not particularly limited, and may be molecular beam epitaxial growth method (MBE method), MOVPE method, or MOVPE method.
The MO / MBE method that combines both MBE and MBE can be applied.

【0018】また、感磁部を担うGax In1-x Asの
混晶比xについては、0.37≦x≦0.57とするの
が望ましい。何故ならば、InPに格子整合するGax
In 1-x Asの混晶比x=0.47からずれるに伴い、
Gax In1-x AsとInPとの格子定数の差、即ち格
子不整合度も顕著となり多量の結晶欠陥等を誘発し、結
晶性の低下を招くばかりか電子移動度の低下等の電気的
特性をも悪化させ、ホール素子の積感度の改善に多大な
支障を来すからである。また、感磁部となるGax In
1-x Asのキャリア濃度については特段の制限は無い
が、高感度GaInAsホール素子を得る基礎となる高
移動度特性を発揮させるためには、概ね1×1015cm
-3以上5×1017cm-3以下とすると好都合である。何
故ならば、キャリア濃度が1×1015cm-3未満である
と、ホール素子とした場合の入力並びに出力電極の電極
抵抗の増大に因るオーミック特性の不安定性を生ずるか
らである。キャリア濃度が5×1017cm-3を越えると
同層の電子移動度の低下が顕著となり、高い感度を有す
るGaInAsホール素子を得るには得策ではないから
である。感磁部層の膜厚にも制限はないものの、後述の
メサエッチング工程時の加工精度を勘案し、通常は数μ
m以下とされる。
Further, Ga which is responsible for the magnetic sensing sectionx In1-x Of As
Regarding the mixed crystal ratio x, 0.37 ≦ x ≦ 0.57
Is desirable. Because Ga that lattice-matches InPx 
In 1-x As the mixed crystal ratio of As deviates from x = 0.47,
Gax In1-x Difference in lattice constant between As and InP, that is, case
The degree of inconsistency also becomes remarkable and induces a large amount of crystal defects, etc.
Not only the crystallinity decreases, but also the electric mobility such as the decrease in electron mobility.
It also deteriorates the characteristics and greatly improves the product sensitivity of the Hall element.
Because it causes trouble. In addition, Ga that becomes the magnetically sensitive portionx In
1-x There is no particular limitation on the carrier concentration of As.
However, the high sensitivity which is the basis for obtaining the high sensitivity GaInAs Hall element
In order to exert mobility characteristics, it is approximately 1 × 10.15cm
-35 × 10 or more17cm-3The following is convenient. what
Therefore, the carrier concentration is 1 × 1015cm-3Is less than
And the input and output electrodes of a Hall element
Does it cause instability of ohmic characteristics due to increased resistance?
It is. Carrier concentration is 5 × 1017cm-3Crossing
The electron mobility of the same layer is remarkably reduced and it has high sensitivity.
It is not a good idea to obtain a GaInAs Hall element
Is. Although there is no limitation on the film thickness of the magnetic sensing part layer, it will be described later.
Considering the processing accuracy during the mesa etching process, it is usually several μ
m or less.

【0019】InP単結晶基板上に成長させた、InP
緩衝層とGax In1-x As感磁部層から構成されるエ
ピタキシャルウエハを母体材料として、GaInAsホ
ール素子を製作する。先ず、公知のフォトリソグラフィ
技術、エッチング技術等の加工技術を駆使し、ホール素
子としての機能を発揮するGax In1-x As並びにI
nP層にいわゆるメサエッチングを施し、素子機能領域
をメサ状に加工する。このメサ加工に際し、十字形に交
差する2つの半導体メサ層を、各々互いに直交する<0
バー11>並びに<0バー1バ−1>方向に平行に設け
る。
InP grown on an InP single crystal substrate
A GaInAs Hall element is manufactured by using an epitaxial wafer composed of a buffer layer and a Ga x In 1-x As magnetic sensing part layer as a base material. First, using well-known photolithography technology, etching technology, and other processing technologies, Ga x In 1-x As and I that exhibit the function as a Hall element are displayed.
So-called mesa etching is applied to the nP layer to process the element functional region into a mesa. In this mesa processing, two semiconductor mesa layers crossing each other in a cross shape are orthogonal to each other <0.
The bar 11> and the <0 bar 1 bar-1> direction are provided in parallel.

【0020】ここでメサ構造を得る方法につき説明を加
える。先ず、当該母体材料の最表面であるGax In
1-x As感磁部層の表面に一般的なフォトレジスト材を
塗布し、その後、通常のフォトリソグラフィー技術によ
り感磁部及び入力用並びに出力用電極の形成領域のみの
該レジスト材を残存させ、それ以外の領域に或るレジス
ト材は剥離し、除去する。然る後、無機酸を用いてGa
x In1-x Asに対しエッチングを施す。このエッチン
グにより、フォトレジスト材が除去された領域にあるG
x In1-x Asは選択的に除去され、感磁部及び電極
形成領域のみがメサ状に残存することとなる。更に、深
さ方向のエッチングを進行させ、このGax In1-x
sの直下に存在するInP層の部分をエッチングにより
選択的に除去する。このエッチングにより電極形成部並
びに感磁部の鉛直方向の断面は、それを<0バー11>
と<0バー1バ−1>方向の互いに直交する結晶軸の方
向から見れば、<0バー11>>方向の断面にあっては
台形状、いわゆる順メサ形状の断面となり、逆に<0バ
ー1バ−1>結晶軸方向にあっては逆台形状のいわゆる
逆メサ状の断面を持ち合わせることとなる。電気的に見
ればこのメサエッチングにより、電極形成部並びに感磁
部からなる素子機能部の絶縁性を確保できることとな
る。しかし、メサエッチングについては、エピタキシャ
ル成長層の全厚が5μmを超えると上記の如く結晶軸
(結晶方位)に基づくエッチング形状の差異が顕著とな
り、これによりホール素子の特性の一つである不平衡電
圧の増加を招く。よって、エピタキシャル成長層の全体
の膜厚は、主にInP緩衝層の層厚を調整することによ
り、概ね5μm以下に設定した方が不平衡率を増大させ
ないという点で好都合である。
A method for obtaining the mesa structure will be described here. First, the outermost surface of the base material, Ga x In
1-x As A general photoresist material is applied to the surface of the magnetic sensitive layer, and then the resist material is left only in the areas where the magnetic sensitive portion and the input and output electrodes are formed by the ordinary photolithography technique. The resist material existing in the other areas is peeled off and removed. Then, using an inorganic acid, Ga
Etching is performed on x In 1-x As. The G in the region where the photoresist material has been removed by this etching
The a x In 1-x As is selectively removed, and only the magnetic sensing part and the electrode formation region remain in a mesa shape. Further, etching in the depth direction is advanced, and this Ga x In 1-x A
A portion of the InP layer existing immediately below s is selectively removed by etching. Due to this etching, the vertical cross section of the electrode forming portion and the magnetic sensitive portion can be formed by <0 bar 11>
Seen from the directions of crystal axes that are orthogonal to each other in the <0 bar 1 bar-1> direction, the cross section in the <0 bar 11 >> direction has a trapezoidal shape, a so-called forward mesa shape, and conversely <0 In the direction of the bar 1 bar-1> crystal axis, an inverted trapezoidal so-called inverted mesa cross section is provided. From an electrical point of view, this mesa etching can ensure the insulation of the element functional portion including the electrode forming portion and the magnetic sensing portion. However, regarding the mesa etching, when the total thickness of the epitaxial growth layer exceeds 5 μm, the difference in the etching shape based on the crystal axis (crystal orientation) becomes remarkable as described above, which causes one of the characteristics of the Hall element, the unbalanced voltage. Will increase. Therefore, it is convenient to set the total thickness of the epitaxial growth layer to about 5 μm or less by adjusting the thickness of the InP buffer layer, because the imbalance ratio is not increased.

【0021】然るメサエッチングを施した後、入力用並
びに出力用電極を形成する。この形成に当たってはメサ
エッチングされたウエハの表面全体にフォトレジスト材
を塗布する。然る後、電極を形成すべき領域を公知のフ
ォトリソグラフィー法によりパターニングし、入・出力
電極を形成する領域に在るフォトレジスト材のみを剥離
除去し、直下に存在する感磁部層であるGax In1-x
Asの表層を露出させる。次に電極材料となす金(A
u)・ゲルマニウム(Ge)合金を真空蒸着する。ここ
では電極材料としてAu・Ge合金を例示したが、電極
材料としては別段、これに限定されることはなくn形の
GaInAs結晶につきオーミック性電極が得られる材
料を使用すれば良い。次に、パッシベーション被膜とす
る絶縁性を有する二酸化珪素(SiO2 )膜をプラズマ
CVD法によりウエハ表面に被覆する。被覆膜としてこ
こでは、二酸化珪素膜を提案したが、他の絶縁性を有す
る膜、例えば窒化珪素(SiN)などであっても良い。
また、通常の熱CVD法によりパッシベーション膜を得
ても差し支えはない。
After performing such mesa etching, input and output electrodes are formed. In this formation, a photoresist material is applied to the entire surface of the mesa-etched wafer. After that, the region where the electrode is to be formed is patterned by a known photolithography method, and only the photoresist material in the region where the input and output electrodes are formed is peeled and removed. Ga x In 1-x
The surface layer of As is exposed. Next, gold (A
u) Vacuum deposition of germanium (Ge) alloy. Although the Au.Ge alloy is exemplified here as the electrode material, the electrode material is not particularly limited to this, and a material that can obtain an ohmic electrode for the n-type GaInAs crystal may be used. Next, a silicon dioxide (SiO 2 ) film having an insulating property to be a passivation film is coated on the wafer surface by the plasma CVD method. Although a silicon dioxide film is proposed here as the coating film, a film having another insulating property, such as silicon nitride (SiN), may be used.
Further, there is no problem even if the passivation film is obtained by the usual thermal CVD method.

【0022】上記の如く製作された二酸化珪素絶縁膜を
一般的なレジスト材で被覆する。然る後、電極部と個々
の素子に分離するのに必要なダイシングラインを形成す
るための位置に相当する部分のレジスト材を、フォトリ
ソグラフィー技術により除去し、直下のSiO2 絶縁膜
を露出させる。更に、露出したSiO2 絶縁膜をフッ化
水素酸(HF)に浸し、当該部分のSiO2 絶縁膜を溶
解し除去する。これにより入・出力電極の表面並びにダ
イシングラインの形成部のGax In1-x Asの表面を
露出させる。実際に個々の素子に分離するには、ダイシ
ングラインに相当する部分に露出しているGax In
1-x Asを、適当な無機酸を利用しエッチング除去すれ
ば良い。さらにGax In1-x Asの直下にあるInP
層を無機酸により除去する。通常は、更にエッチングを
進行させInP単結晶基板の表層部の一部迄除去する。
この様に図るのはダイシングに使用するスクライバーや
ブレードなどが素子の分離の際にエピタキシャル成長層
やヘテロ界面に機械的な損傷を与えるのを低減するため
である。
The silicon dioxide insulating film manufactured as described above is covered with a general resist material. After that, the resist material in the portion corresponding to the position for forming the dicing line necessary for separating the electrode portion and each element is removed by photolithography technique to expose the SiO 2 insulating film immediately below. . Further, the exposed SiO 2 insulating film is immersed in hydrofluoric acid (HF) to dissolve and remove the SiO 2 insulating film in the relevant portion. This exposes the surface of the input / output electrodes and the surface of Ga x In 1-x As at the portion where the dicing line is formed. In order to actually separate the individual elements, the Ga x In exposed in the portion corresponding to the dicing line is exposed.
1-x As may be removed by etching using a suitable inorganic acid. InP directly under Ga x In 1-x As
The layer is removed with an inorganic acid. Usually, etching is further advanced to remove a part of the surface layer of the InP single crystal substrate.
This is done so as to reduce the mechanical damage to the epitaxial growth layer and the hetero interface during element isolation by the scriber or blade used for dicing.

【0023】[0023]

【作用】緩衝層となすInPと感磁部層となすGax
1-x Asにつき、それらの表面状態、特に成長丘の密
度に限定を加えることによって、GaInAsホール素
子の特性の均一化をもたらす作用を有する。
[Function] InP forming the buffer layer and Ga x I forming the magnetic sensitive layer
With respect to n 1-x As, by limiting the surface state of the n 1 -x As, in particular, the density of the growth hills, it has an effect of making the characteristics of the GaInAs Hall element uniform.

【0024】[0024]

【実施例】本発明を実施例を基に詳細に説明する。図4
は本発明に係わるGax In1-x Asを感磁部層とする
ホール素子の模式的な平面図である。また、図5は図4
に示した平面模式図の破線A−A’の方向に沿った垂直
断面の概略図である。母体材料となるエピタキシャルウ
エハの形成に当たっては、鉄(Fe)を添加してなる比
抵抗が約106 Ω・cm、面方位(100)の半絶縁性
高抵抗InP単結晶基板(101)を用いた。この上に
先ずC55 InをIn源としPH3 をP源とする常圧
MOCVD法により、温度610℃に於いて約200n
mの厚さにアンドープInP層(102)を成長させ
た。使用したPH3 は濃度が10%となる様に高純度の
水素ガスで希釈されたものであり、InP層(102)
の成長に当たってはPH3 の流量を60cc/分に設定
した。成長反応系に供給した水素ガス等の合計流量が7
000cc/分としたことから、成長系内のPH3 の濃
度は約0.86%となった。InP層(102)のキャ
リア濃度をホール効果法により測定した結果、約2×1
15cm-3であった。また、当該InP層(102)の
表面上の直径に換算して50μm以下の成長丘の密度を
市販のレーザ光を利用するパーテイ クルカウンタで計測
したところ4個/cm2 であった。
EXAMPLES The present invention will be described in detail based on examples. Figure 4
FIG. 3 is a schematic plan view of a Hall element having Ga x In 1-x As as a magnetic sensing layer according to the present invention. In addition, FIG.
FIG. 9 is a schematic view of a vertical cross section along the direction of the broken line AA ′ of the schematic plan view shown in FIG. In forming an epitaxial wafer as a base material, a semi-insulating high-resistance InP single crystal substrate (101) having a specific resistance of about 10 6 Ω · cm and a plane orientation (100) formed by adding iron (Fe) is used. I was there. First, by a normal pressure MOCVD method using C 5 H 5 In as an In source and PH 3 as a P source, a pressure of about 200 n was obtained at a temperature of 610 ° C.
An undoped InP layer (102) was grown to a thickness of m. The PH 3 used was diluted with high-purity hydrogen gas so that the concentration became 10%, and the InP layer (102)
The flow rate of PH 3 was set to 60 cc / min for the growth of P. The total flow rate of hydrogen gas etc. supplied to the growth reaction system is 7
Since it was 000 cc / min, the concentration of PH 3 in the growth system was about 0.86%. As a result of measuring the carrier concentration of the InP layer (102) by the Hall effect method, about 2 × 1
It was 0 15 cm -3 . Also, the density of growth hills of 50 μm or less in terms of the diameter on the surface of the InP layer (102) was measured by a particle counter using a commercially available laser beam, and it was 4 pieces / cm 2 .

【0025】然る後、上記のMOVPE成長反応系によ
るGax In1-x As結晶層の成長に移行するに当た
り、上記のPH3 の流量を360cc/分に増加させ
た。この流量は、上記のInP層(102)の成長時に
成長反応系に供給したPH3 の6倍に相当する。移行中
に於いても成長系へ供給する全ガス流量は7000cc
/分としており、従ってPH3 の系内濃度は5.1%と
なった。また、Gax In1-x Asの成長のためのAs
3 の流通の開始に先立って、PH3 の成長反応系への
供給は中止した。然る後、InP緩衝層(102)上に
キャリア濃度が2×1016cm-3でGa混晶比を0.47
としたアンドープのn形Ga0.47In0.53As(10
3)を温度610℃にて250nmの厚さに堆積した。
成長反応系に供給した全ガス流量は7000cc/分で
あり、濃度10%のAsH3 ガスの流量は120cc/
分とした。Ga0.47In0.53As(103)の成長時に
はPH3 ガスは系内に添加されていない。表面の直径に
換算して50μm以下の成長丘の密度は、パーティクル
カウンターで計測したところ8個/cm2 であった。
After that, in the transition to the growth of the Ga x In 1-x As crystal layer by the MOVPE growth reaction system, the flow rate of PH 3 was increased to 360 cc / min. This flow rate corresponds to 6 times PH 3 supplied to the growth reaction system during the growth of the InP layer (102). The total flow rate of gas supplied to the growth system is 7,000 cc even during the transition.
Therefore, the concentration of PH 3 in the system was 5.1%. In addition, As for growth of Ga x In 1-x As
The supply of PH 3 to the growth reaction system was stopped prior to the start of H 3 distribution. Then, on the InP buffer layer (102), the carrier concentration was 2 × 10 16 cm −3 and the Ga mixed crystal ratio was 0.47.
Undoped n-type Ga 0.47 In 0.53 As (10
3) was deposited at a temperature of 610 ° C. to a thickness of 250 nm.
The total flow rate of gas supplied to the growth reaction system was 7000 cc / min, and the flow rate of AsH 3 gas with a concentration of 10% was 120 cc / min.
Minutes PH 3 gas was not added to the system during the growth of Ga 0.47 In 0.53 As (103). The density of the growth hills of 50 μm or less in terms of the diameter of the surface was 8 / cm 2 when measured with a particle counter.

【0026】次に、Gax In1-x As感磁部層(10
3)の全面を通常の有機フォトレジスト材で被覆し、そ
の後、公知のフォトリソグラフィー技術とエッチング技
術を駆使し、入・出力電極を形成すべき領域並びに感磁
部となす領域(104)をメサ形状に加工した。本実施
例ではメサエッチング加工には無機酸を使用した。その
後、Gax In1-x As感磁部層(103)の表面を全
面にわたり再び有機レジスト材で被覆した。次に公知の
フォトリソグラフィー技術を利用して、各々一対をなす
入力電極(105)と出力電極(106)を形成すべき
領域に存在するレジスト材のみを除去し、Gax In
1-x As感磁部層(103)の表面を露出させた。然る
後、Geを重量で約13%程度含むAu・Ge合金を真
空蒸着した。その後、当該ウエハを有機溶剤混合液に浸
し、レジスト材を剥離すると同時に蒸着によってレジス
ト材上に被着した、素子の製作上不要となるAu・Ge
合金膜をリフトオフ法で除去した。次に、電極となる合
金膜を被着させたウエハを温度420℃で数分間熱処理
しオーミック性電極を得た。更に、各電極に入・出力用
の電極(105及び106)と電気的に連結させてパッ
ド電極(107)を設けた。該パッド電極(107)
は、メサエッチングにより露出させ、InP単結晶基板
(101)の表層部に載置した。これはアロイング時に
Gax In1-x As感磁部層に、直接歪が導入されるの
を防止するためである。
Next, the Ga x In 1-x As magnetic sensitive layer (10
3) The entire surface of 3) is covered with a normal organic photoresist material, and then the well-known photolithography technology and etching technology are used, and the area (104) to be formed with the input / output electrodes and the magnetic sensitive section is formed. Processed into shape. In this example, an inorganic acid was used for the mesa etching process. After that, the entire surface of the Ga x In 1-x As magnetic sensing part layer (103) was covered again with the organic resist material. Next, using a known photolithography technique, only the resist material existing in the regions where the pair of input electrodes (105) and output electrodes (106) are to be formed is removed, and Ga x In is removed.
The surface of the 1-x As magnetic sensitive layer (103) was exposed. After that, an Au.Ge alloy containing about 13% by weight of Ge was vacuum-deposited. After that, the wafer is immersed in an organic solvent mixed solution, the resist material is peeled off, and at the same time, the wafer is deposited on the resist material by vapor deposition.
The alloy film was removed by the lift-off method. Next, the wafer on which the alloy film to be the electrode was adhered was heat-treated at a temperature of 420 ° C. for several minutes to obtain an ohmic electrode. Further, a pad electrode (107) was provided by electrically connecting each electrode with the input / output electrodes (105 and 106). The pad electrode (107)
Was exposed by mesa etching and placed on the surface layer of the InP single crystal substrate (101). This is to prevent the strain from being directly introduced into the Ga x In 1-x As magnetic sensitive layer during alloying.

【0027】次に、上記工程を経たホール素子の表面の
入・出力電極部以外の領域をプラズマCVD法による二
酸化珪素膜(108)により、膜厚は約400nmで被
覆した。更に、再び素子の表面全体をフォトレジスト材
で覆い、ウエハの全面に形成されたホール素子を単体に
分離して、ホール素子チップとするためにダイシングラ
イン(109)を形成すべくパターニングを施した。然
る後、ダイシングライン(109)に相当する部分の直
下に存在する酸化膜(108)、Gax In1-xAs感
磁部層(103)並びにInP層(102)をエッチン
グにより除去した。更に、エッチングを進め、InP単
結晶基板(101)の表層部に至る迄、構成材料を除去
し、ダイシングライン(109)となした。
Next, a region other than the input / output electrode portions on the surface of the Hall element which has undergone the above steps was covered with a silicon dioxide film (108) by a plasma CVD method to a film thickness of about 400 nm. Further, the entire surface of the element is covered with a photoresist material again, and the Hall element formed on the entire surface of the wafer is separated into individual elements, and patterning is performed so as to form a dicing line (109) to form a Hall element chip. . After that, the oxide film (108), the Ga x In 1-x As magnetic sensitive layer (103) and the InP layer (102) existing directly below the portion corresponding to the dicing line (109) were removed by etching. Further, the etching was advanced to remove the constituent materials to reach the surface layer of the InP single crystal substrate (101), and the dicing line (109) was formed.

【0028】かくの如く製作したホール素子の電気的特
性、特に不平衡率の評価をした。また、従来例について
の不平衡率との比較もした。比較の対象としたGaIn
Asホール素子は成長丘の密度が64個/cm2 のIn
P緩衝層を含むホール素子を指す。図6に本発明と従来
例との不平衡率の絶対値の分布を対比して示す。本発明
に係わるGaInAsホール素子では、平均の不平衡率
として、±3.2%であった。一方、従来例は±14.
0%と明らかに悪く、本発明の優位性が明らかにされ
た。
The electrical characteristics of the Hall element manufactured as described above, particularly the unbalance rate, were evaluated. In addition, a comparison was made with the unbalance rate of the conventional example. GaIn for comparison
The As Hall element has a growth hill density of 64 / cm 2 In
It indicates a Hall element including a P buffer layer. FIG. 6 shows the distributions of the absolute values of the imbalance ratios of the present invention and the conventional example for comparison. In the GaInAs Hall element according to the present invention, the average unbalance rate was ± 3.2%. On the other hand, the conventional example is ± 14.
Clearly, it was 0%, and the superiority of the present invention was revealed.

【0029】[0029]

【発明の効果】緩衝層、感磁部層の表面状態に新たに規
定を設けることにより、不平衡率に優れる高性能なGa
InAsホール素子が提供される。
EFFECTS OF THE INVENTION By newly defining the surface conditions of the buffer layer and the magnetic sensitive layer, a high-performance Ga having an excellent imbalance ratio can be obtained.
An InAs Hall device is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】成長丘を模式的に示す構造断面図である。FIG. 1 is a structural sectional view schematically showing a growth hill.

【図2】成長丘の密度とInP層厚との関係を示す図で
ある。
FIG. 2 is a diagram showing the relationship between the density of growth hills and the InP layer thickness.

【図3】不平衡率と成長丘の密度との関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between an unbalance rate and a density of growth hills.

【図4】本発明に係わるホール素子の平面を模式的に示
す図である。
FIG. 4 is a diagram schematically showing a plane of a Hall element according to the present invention.

【図5】図4に示すホール素子の線A−A’に沿った垂
直断面の模式図である。
5 is a schematic view of a vertical cross section taken along line AA ′ of the Hall element shown in FIG.

【図6】不平衡率の分布を対比する図である。FIG. 6 is a diagram comparing the distributions of unbalance rates.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−198877(JP,A) 特開 昭57−177583(JP,A) 特開 平6−77556(JP,A) 特開 平5−275767(JP,A) 特開 昭52−65691(JP,A) 特開 昭63−226027(JP,A) 1992年秋季第53回応用物理学会学術講 演会講演予稿集,1992年9月16日,講演 番号16a−SZC−16,1078頁 (58)調査した分野(Int.Cl.7,DB名) H01L 43/06 H01L 43/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-60-198877 (JP, A) JP-A-57-177583 (JP, A) JP-A-6-77556 (JP, A) JP-A-5- 275767 (JP, A) JP-A-52-65691 (JP, A) JP-A-63-226027 (JP, A) Proceedings of the 53rd Autumn Meeting of the Applied Physics Society of Japan, Autumn 1992, September 16, 1992 , Lecture No. 16a-SZC-16, page 1078 (58) Fields investigated (Int.Cl. 7 , DB name) H01L 43/06 H01L 43/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】InP結晶基板上にInP緩衝層とGax
In1-xAs感磁層とからなるヘテロ接合を備え、該I
nP緩衝層は直径換算で50μm以下の成長丘の表面密
度が50個/cm2以下であるホール素子に於いて、G
xIn1-xAs感磁層は直径換算で50μm以下の成長
丘の表面密度が170個/cm2以下であることを特徴
とするホール素子。
1. An InP buffer layer and Ga x on an InP crystal substrate.
A heterojunction composed of an In 1-x As magneto - sensitive layer;
In the Hall element in which the nP buffer layer has a surface density of growth hills of 50 μm or less in terms of diameter of 50 / cm 2 or less, G
The Hall element characterized in that the a x In 1-x As magneto - sensitive layer has a surface density of 170 hills / cm 2 or less in terms of diameter of growth hills of 50 μm or less.
【請求項2】InP緩衝層上にGaxIn1-xAs感磁層
を気相成長させるに当たり、InP緩衝層を当該緩衝層
の成長に要した以上のリン濃度を有する雰囲気に曝した
後、GaxIn1-xAs感磁層を成長することを特徴とす
る請求項1に記載のホール素子の製造方法。
2. When the Ga x In 1-x As magnetosensitive layer is vapor - deposited on the InP buffer layer, the InP buffer layer is exposed to an atmosphere having a phosphorus concentration higher than that required for the growth of the buffer layer. The method for manufacturing a Hall element according to claim 1 , wherein a Ga x In 1-x As magnetosensitive layer is grown.
JP23841593A 1993-09-24 1993-09-24 Hall element and method of manufacturing the same Expired - Fee Related JP3399044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23841593A JP3399044B2 (en) 1993-09-24 1993-09-24 Hall element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23841593A JP3399044B2 (en) 1993-09-24 1993-09-24 Hall element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0794804A JPH0794804A (en) 1995-04-07
JP3399044B2 true JP3399044B2 (en) 2003-04-21

Family

ID=17029872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23841593A Expired - Fee Related JP3399044B2 (en) 1993-09-24 1993-09-24 Hall element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3399044B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1992年秋季第53回応用物理学会学術講演会講演予稿集,1992年9月16日,講演番号16a−SZC−16,1078頁

Also Published As

Publication number Publication date
JPH0794804A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
US4926154A (en) Indium arsenide magnetoresistor
JP3399044B2 (en) Hall element and method of manufacturing the same
JP3044835B2 (en) Magnetoelectric conversion element
JP3404815B2 (en) GaInAs two-dimensional electron Hall element
JP2597105Y2 (en) Hall element
JP3456254B2 (en) Epitaxial wafer for Hall element and method of manufacturing the same
JP2597774Y2 (en) Hall element
JP3289371B2 (en) Heterojunction Hall element
JP3395277B2 (en) Magnetoelectric conversion element
JP2768184B2 (en) Manufacturing method of magnetoelectric conversion element
JP3416051B2 (en) Method for manufacturing group III-V compound semiconductor device
JP3399042B2 (en) Hall element
JPH077194A (en) Hall element
JP3399046B2 (en) Hall element
JP3287054B2 (en) Magnetoelectric conversion element
JP3287053B2 (en) GaInAs magnetoelectric transducer
JPH06232475A (en) Magnetoelectric conversion element
JP3567500B2 (en) Hall element
JP3223613B2 (en) Magnetoelectric conversion element and method of manufacturing the same
JP3220879B2 (en) Magnetoelectric conversion element
JP3417014B2 (en) Heterojunction Hall element
JPH05172672A (en) Semiconductor piezo-electric element
JPH0289325A (en) Structure of compound semiconductor and formation thereof
JP3438294B2 (en) Hall element
JP3404838B2 (en) GaInAs / InP heterojunction Hall element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees