[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3397986B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JP3397986B2
JP3397986B2 JP22676796A JP22676796A JP3397986B2 JP 3397986 B2 JP3397986 B2 JP 3397986B2 JP 22676796 A JP22676796 A JP 22676796A JP 22676796 A JP22676796 A JP 22676796A JP 3397986 B2 JP3397986 B2 JP 3397986B2
Authority
JP
Japan
Prior art keywords
region
impurity region
channel
conductivity type
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22676796A
Other languages
Japanese (ja)
Other versions
JPH1070264A (en
Inventor
弘樹 江藤
孝昭 齋藤
忠男 万代
詔 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22676796A priority Critical patent/JP3397986B2/en
Publication of JPH1070264A publication Critical patent/JPH1070264A/en
Application granted granted Critical
Publication of JP3397986B2 publication Critical patent/JP3397986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に関し、
オン抵抗の低減化及びアバランシェ耐量を向上させた低
電圧用の制御回路機能付きの縦型パワーMOS用の半導
体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device,
The present invention relates to a semiconductor device for a vertical power MOS with a control circuit function for low voltage, which has a reduced on-resistance and an improved avalanche withstand capability, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】図7は、従来の一般的な制御部とパワー
部とを有したパワーMOSFETの断面図である。N+
型半導体基板1には、その表面にN-型のエピタキシャ
ル層2を有しており、上記したパワー部のドレイン領域
の一部を構成する。パワー部のドレイン領域2には多数
の規則的に配列されたP型のボディ領域6を備えてお
り、そのボディ領域6内には、リング状のN+型のソー
ス領域が形成されている。チャネル領域3となるボディ
ー領域6上には絶縁層を介して、多結晶シリコンからな
るゲート電極8が形成される。
2. Description of the Related Art FIG. 7 is a sectional view of a conventional power MOSFET having a general control section and a power section. N +
The type semiconductor substrate 1 has an N − type epitaxial layer 2 on its surface, and constitutes a part of the drain region of the power section. The drain region 2 of the power portion is provided with a large number of regularly arranged P type body regions 6, and in the body region 6, a ring-shaped N + type source region is formed. A gate electrode 8 made of polycrystalline silicon is formed on the body region 6 to be the channel region 3 via an insulating layer.

【0003】一方、制御部となるN-型のエピタキシャ
ル層2はP型の拡散層で電気的に分離され、その分離領
域内にはトランジスタ等を含む制御回路が形成される。
制御部に形成された制御回路により、パワー部に形成さ
れたパワーMOSFETに流れる電流、電圧等の検出を
行い、パワーMOSFETを過電流、過電圧等から保護
するものである。上記した同様の技術は、例えば、特開
平7−231090号公報に記載されている。
On the other hand, the N-type epitaxial layer 2 serving as a control portion is electrically isolated by a P-type diffusion layer, and a control circuit including a transistor and the like is formed in the isolation region.
The control circuit formed in the control unit detects the current, voltage, etc. flowing through the power MOSFET formed in the power unit, and protects the power MOSFET from overcurrent, overvoltage, and the like. The above-mentioned similar technique is described in, for example, Japanese Patent Laid-Open No. 7-231090.

【0004】上記したパワーMOSFETは、大電流を
扱うものなので、オン抵抗をできるだけ低減させること
が望まれている。一方で、パワーMOSFETは、パワ
ー部のデバイス構造上、ソース領域、ボディー領域、ド
レイン領域で寄生バイポーラトランジスタが形成され
る。スイッチング電源モーター制御などのインダクタン
ス負荷で使用された場合、アバランシェ動作時にインダ
クタンスに蓄積されたエネルギーにより、上記寄生バイ
ポーラトランジスタが動作し局部的な電流が流れ半導体
素子が破壊しないようにアバランシェ耐量を向上させる
ことも望まれている。
Since the above-mentioned power MOSFET handles a large current, it is desired to reduce the on resistance as much as possible. On the other hand, in the power MOSFET, a parasitic bipolar transistor is formed in the source region, the body region, and the drain region due to the device structure of the power section. When used in an inductance load such as switching power supply motor control, energy stored in the inductance during avalanche operation improves the avalanche resistance so that the parasitic bipolar transistor operates and local current flows so that semiconductor elements are not destroyed. Is also desired.

【0005】[0005]

【発明が解決しようとする課題】上記した特開平7−2
31090号公報に記載された従来のパワーMOSFE
Tでは、制御部を形成するための分離拡散層が深く形成
されるために、パワー部に流れる電流の電流経路のエピ
タキシャル層の厚みも厚くなり、オン抵抗が大きくなる
問題がある。また、同公報に記載された発明によれば、
パワー部の電流経路のN-型のエピタキシャル層にN+型
の高濃度の不純物を拡散してオン抵抗の低減化を行うこ
とが記載されている。しかし、エピタキシャル層そのも
のも膜厚は厚いままの状態であり、更なるオン抵抗の低
減化には好適したものではない。さらに、同公報にはア
バランシェ耐量を向上させるこについての記載はない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Conventional power MOSFE described in Japanese Patent No. 31090
In T, since the isolation diffusion layer for forming the control portion is formed deeply, the thickness of the epitaxial layer of the current path of the current flowing in the power portion also becomes large, and there is a problem that the on-resistance becomes large. According to the invention described in the publication,
It is described that N + -type high-concentration impurities are diffused into the N-type epitaxial layer in the current path of the power section to reduce the on-resistance. However, the epitaxial layer itself is still thick and is not suitable for further reduction of the on-resistance. Further, the publication does not describe how to improve the avalanche resistance.

【0006】ところで、特開平7−263667号公報
には、アバランシェ耐量を向上させる技術が記載されて
いる。同公報に記載された技術を図7を用いて説明する
と、高濃度不純物領域6の深さbをチャネルが形成され
るチャネル不純物領域3の幅aの1/2以上の深さにす
ることで、ソース、ドレイン間がアバランシェ状態にな
り生じるアバランシェ電流を高濃度不純物領域6を経て
そのままソース電極11に流し、寄生バイポーラトラン
ジスタの動作を抑制するものである。
By the way, Japanese Patent Laid-Open No. 7-263667 discloses a technique for improving the avalanche resistance. The technique described in the publication will be described with reference to FIG. 7, in which the depth b of the high concentration impurity region 6 is set to be 1/2 or more of the width a of the channel impurity region 3 in which a channel is formed. , An avalanche current generated between the source and drain in an avalanche state is passed through the high-concentration impurity region 6 to the source electrode 11 as it is to suppress the operation of the parasitic bipolar transistor.

【0007】しかし、かかる、構造のように高濃度不純
物領域6を深くすればアバランシェ耐量を向上させるこ
とはできるものの、高濃度拡散領域6の底面から基板1
までの間の耐圧を考慮し、その間のエピタキシャル層2
の膜厚は最低限の実効厚が必要である。その結果、ON
電流が流れる経路のエピタキシャル層の膜厚も厚くなり
オン抵抗が増加し、新たにオン抵抗を低減化させる別の
手段が必要となる。
However, although it is possible to improve the avalanche resistance by deepening the high-concentration impurity region 6 as in the structure, the substrate 1 is exposed from the bottom of the high-concentration diffusion region 6.
Considering the breakdown voltage up to and including the epitaxial layer 2 between
The minimum effective thickness is required. As a result, ON
The thickness of the epitaxial layer in the path through which the current flows becomes thicker, the on-resistance increases, and another means for newly reducing the on-resistance becomes necessary.

【0008】上記した制御回路機能付きパワーMOSF
ET等の構造は、特に100V以上の高耐圧用のデバイ
スとして用いられることが多い。100V以下の低耐圧
用の制御回路機能付きパワーMOSFETの一般的なデ
バイス構造は図8に示すように、例えば、パワー部には
島状のP型チャネル不純物領域3内に浅い島状のP型の
高濃度不純物領域6が形成され、高濃度不純物領域6の
周辺にリング状のソース領域5、ゲート電極8、ソース
電極11が形成され、制御にはP型のウェル領域が形成
されて制御回路が形成されて制御機能付きの低電圧用の
パワーMOSFETが提供される。上記した同様の技術
は、例えば、特開平5−267672号公報に記載され
ている。
Power MOSF with control circuit function described above
A structure such as ET is often used as a device for high withstand voltage of 100 V or more. As shown in FIG. 8, a general device structure of a power MOSFET with a control circuit function for a low withstand voltage of 100 V or less is, for example, as shown in FIG. High concentration impurity region 6 is formed, a ring-shaped source region 5, a gate electrode 8 and a source electrode 11 are formed around the high concentration impurity region 6, and a P-type well region is formed for control. Is formed to provide a low voltage power MOSFET with a control function. The above-mentioned similar technique is described in, for example, Japanese Patent Laid-Open No. 5-267672.

【0009】この低耐圧用の制御機能付きパワーMOS
FETにおいても、上記したように、オン抵抗の低減化
は重要な技術要素である。上記の特開平5−26767
2号公報には記載されてないが、パワー部のチャネル不
純物領域内に形成される高濃度不純物領域6は、高耐圧
パワーMOSFETのように深く形成されていない。こ
れは低耐圧用のデバイスにあっては高濃度不純物領域を
深く形成しなくても耐圧特性が十分得られるためであ
る。
Power MOS with control function for this low breakdown voltage
Also in the FET, as described above, reducing the on-resistance is an important technical element. JP-A-5-26767 mentioned above
Although not described in Japanese Patent Laid-Open No. 2), the high-concentration impurity region 6 formed in the channel impurity region of the power section is not deeply formed unlike the high breakdown voltage power MOSFET. This is because in a low breakdown voltage device, sufficient breakdown voltage characteristics can be obtained without forming a high concentration impurity region deep.

【0010】従って、チャネル不純物領域の深さを最小
限浅くすることができ、エピタキシャル層の膜厚を薄く
することができオン抵抗の低減化を実現することが可能
である。しかし、チャネル不純物領域内に形成される高
濃度不純物領域はチャネル不純物領域形成後、高濃度不
純物領域を拡散形成していた。即ち、それぞれ別々の拡
散工程で行うために、高濃度不純物領域をあまり深く形
成することができないためにアバランシェ耐量を向上さ
せることが困難であった。
Therefore, the depth of the channel impurity region can be made as small as possible, the film thickness of the epitaxial layer can be made thin, and the reduction of the on-resistance can be realized. However, the high-concentration impurity region formed in the channel impurity region is formed by diffusing the high-concentration impurity region after forming the channel impurity region. That is, it is difficult to improve the avalanche resistance because the high-concentration impurity regions cannot be formed too deep because the diffusion steps are performed separately.

【0011】また、高濃度不純物領域を深く拡散させる
ために拡散温度を上げ、長時間拡散を行えば、先に拡散
したチャネル不純物領域がさらに拡散され耐圧特性の低
下及びチャネル長も長くなり電流特性も悪化させる問題
がある。さらに、上記の特開平5−267672号公報
記載の発明では、チャネル不純物領域とウェル領域とが
同一の不純物の熱拡散工程で形成されるために、かか
る、拡散工程後の他の拡散工程で上記各領域の拡散が著
しく進行し、結果的にエピタキシャル層の厚みを厚くし
なければならずオン抵抗の低減化を行うことができな
い。
If the diffusion temperature is raised to diffuse the high-concentration impurity region deeply and diffusion is performed for a long time, the previously diffused channel impurity region is further diffused and the withstand voltage characteristic is deteriorated and the channel length is increased, so that the current characteristic is increased. There is also a problem that makes it worse. Further, in the invention described in the above-mentioned JP-A-5-267672, since the channel impurity region and the well region are formed by the thermal diffusion process of the same impurity, the other diffusion process after the diffusion process is performed. Diffusion in each region remarkably progresses, and as a result, the thickness of the epitaxial layer must be increased, and the on-resistance cannot be reduced.

【0012】本発明は、上記した事情に鑑みて成された
ものであり、パワー部に形成される浅いチャネル不純物
領域の底面部まで高濃度不純物領域の底面部を延在させ
て、制御部が形成されるウェル領域の底面部をチャネル
不純物領域及び高濃度不純物領域の底面部より浅く形成
することにより、エピタキシャル層全体の膜厚を最小限
の膜厚とすることができ、オン抵抗の低減化及びアバラ
ンシェ耐量を向上させた、特に低耐圧用の制御機能付き
パワーMOS半導体装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and the control section extends the bottom portion of the high-concentration impurity region to the bottom portion of the shallow channel impurity region formed in the power portion. By forming the bottom portion of the formed well region to be shallower than the bottom portions of the channel impurity region and the high concentration impurity region, the overall thickness of the epitaxial layer can be minimized and the on-resistance can be reduced. Another object of the present invention is to provide a power MOS semiconductor device with a control function for improving the avalanche withstanding capability, particularly for low breakdown voltage.

【0013】[0013]

【課題を解決するための手段】本発明は、上記課題を解
決するために、以下の構成及び方法を採用した。即ち、
本発明の半導体装置は、一導電型の半導体基板と、前記
半導体基板上に形成された一導電型のエピタキシャル層
と、前記エピタキシャル層に規則的に配列されたチャネ
ル領域を形成する逆導電型のチャネル不純物領域と、前
記チャネル不純物領域内に形成され、前記チャネル不純
物領域よりも高濃度の逆導電型であり、前記チャネル不
純物領域の底面と略同一面まで拡散された高濃度不純物
領域と、前記チャネル不純物領域内にリング状に形成さ
れた一導電型のソース領域と、前記チャネル領域上に配
置されたゲート電極とからなるパワー部と、前記パワー
部を制御する制御回路が形成される逆導電型のウェル領
域の底面部が前記高濃度不純物領域の底面部と略同一若
しくは浅く形成された制御部とを備えたことを特徴とし
ている。
The present invention adopts the following configurations and methods in order to solve the above problems. That is,
A semiconductor device of the present invention is a semiconductor substrate of one conductivity type, an epitaxial layer of one conductivity type formed on the semiconductor substrate, and an opposite conductivity type that forms channel regions regularly arranged in the epitaxial layer. A channel impurity region, a high-concentration impurity region formed in the channel impurity region, having a higher concentration than that of the channel impurity region and having an opposite conductivity type, and diffused to substantially the same surface as a bottom surface of the channel impurity region; A reverse conductivity in which a power part including a source region of one conductivity type formed in a ring shape in the channel impurity region and a gate electrode arranged on the channel region, and a control circuit for controlling the power part are formed. The bottom portion of the well region of the mold has a control portion which is substantially the same as or shallower than the bottom portion of the high concentration impurity region.

【0014】また、本発明の半導体装置の製造方法は、
一導電型の半導体基板上に一導電型のエピタキシャル層
を形成し、前記エピタキシャル層に逆導電型の不純物を
拡散しウェル領域を形成し、前記ウェル領域を形成した
後、前記エピタキシャル層に規則的に配列されたチャネ
ル領域を形成するチャネル不純物領域となる逆導電型の
不純物を予備拡散し、前記予備拡散領域内に高濃度不純
物領域となる逆導電型の高濃度不純物を拡散し、前記高
濃度不純物領域の底面部と前記チャネル不純物領域の底
面部とを前記ウェル領域の底面部と略同一面となるまで
前記高濃度不純物を拡散することを特徴としている。
The method of manufacturing a semiconductor device according to the present invention is
An epitaxial layer of one conductivity type is formed on a semiconductor substrate of one conductivity type, impurities of opposite conductivity type are diffused in the epitaxial layer to form a well region, the well region is formed, and then the epitaxial layer is regularly formed. Reverse conductivity type impurities that will become channel impurity regions forming the channel regions arranged in the above are diffused and high concentration impurity of reverse conductivity type that will become high concentration impurity regions will be diffused in the preliminary diffusion region, The high-concentration impurity is diffused until the bottom surface of the impurity region and the bottom surface of the channel impurity region are substantially flush with the bottom surface of the well region.

【0015】上述したように、制御部が形成される逆導
電型のウェル領域の底面部をパワー部の略同一面に形成
された高濃度不純物領域の底面部及びチャネル不純物領
域の底面部と略同一面若しくは浅くすることにより、パ
ワーMOSFETのドレイン領域であるエピタキシャル
層の厚みを最小限薄くできオン抵抗を低減化、及びアバ
ランシェ耐量を向上させることができる。
As described above, the bottom surface portion of the well region of the opposite conductivity type in which the control portion is formed is substantially the same as the bottom surface portion of the high-concentration impurity region and the bottom surface portion of the channel impurity region formed on substantially the same surface of the power portion. By making the surfaces flush or shallow, the thickness of the epitaxial layer, which is the drain region of the power MOSFET, can be minimized, the on-resistance can be reduced, and the avalanche withstand capability can be improved.

【0016】[0016]

【発明の実施の形態】以下に、本発明の半導体装置及び
その製造方法の実施形態について図面を参照し説明す
る。図1は、本発明の実施形態の制御回路機能付パワー
MOSFETの断面図である。N+型半導体基板11の
一主面には、N-型のエピタキシャル層12が形成さ
れ、パワー部PのMOSFETのドレイン領域13の一
部を構成する。パワー部Pのドレイン領域13には、チ
ャネルを形成する浅いP型のチャネル不純物領域14が
規則的に配列形成される。そのチャネル不純物領域14
内には、チャネル不純物領域14よりも濃度が高い高濃
度不純物領域15が形成される。チャネル不純物領域1
4内に形成された高濃度不純物領域15の底面部は、浅
いチャネル不純物領域14の底面部と略同一面となるよ
うに形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a semiconductor device and a manufacturing method thereof according to the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a power MOSFET with a control circuit function according to an embodiment of the present invention. An N − type epitaxial layer 12 is formed on one main surface of the N + type semiconductor substrate 11, and constitutes a part of the drain region 13 of the MOSFET of the power section P. In the drain region 13 of the power part P, shallow P-type channel impurity regions 14 forming a channel are regularly arranged. The channel impurity region 14
A high concentration impurity region 15 having a concentration higher than that of the channel impurity region 14 is formed therein. Channel impurity region 1
The bottom portion of the high-concentration impurity region 15 formed in the trench 4 is formed to be substantially flush with the bottom portion of the shallow channel impurity region 14.

【0017】さらにチャネル不純物領域14にはリング
状のN+型のソース領域16が形成され、チャネル不純
物領域14のチャネルとなる領域上に絶縁層17を介し
てゲート電極18が形成される。ソース領域16とチャ
ネル不純物領域14とは、アルミ蒸着膜からなる金属電
極であるソース電極19に接続され、半導体基板11の
裏面には金属電極であるドレイン電極20が形成されて
いる。
Further, a ring-shaped N + type source region 16 is formed in the channel impurity region 14, and a gate electrode 18 is formed on a region of the channel impurity region 14 which becomes a channel with an insulating layer 17 interposed therebetween. The source region 16 and the channel impurity region 14 are connected to a source electrode 19 which is a metal electrode made of a vapor deposited aluminum film, and a drain electrode 20 which is a metal electrode is formed on the back surface of the semiconductor substrate 11.

【0018】一方、パワー部Pに隣接する制御部Cの上
記エピタキシャル層12内にチャネル不純物領域14の
不純物濃度より濃度の低いP型の不純物が拡散されたウ
ェル領域21が形成される。このウェル領域21内に、
パワー部Pを制御するための、例えば、NチャネルEM
OS、NチャネルDMOS等の複数の素子から構成され
る制御回路が形成され、パワー部Pに形成されたパワー
MOSFETを過電流・過電圧から保護する。
On the other hand, in the epitaxial layer 12 of the control section C adjacent to the power section P, a well region 21 in which a P-type impurity having a lower concentration than that of the channel impurity region 14 is diffused is formed. In this well region 21,
For controlling the power part P, for example, an N channel EM
A control circuit including a plurality of elements such as OS and N-channel DMOS is formed to protect the power MOSFET formed in the power section P from overcurrent and overvoltage.

【0019】本発明の特徴とするところは、パワー部P
に形成されたチャネル不純物領域14内に形成する高濃
度不純物領域15の底面部をチャネル不純物領域14の
底面部とを略同一面となるように形成し、且つ、制御回
路が形成される制御部Cのウェル領域21の底面部をチ
ャネル不純物領域14及び高濃度不純物領域15の底面
部と略同一か若しくは浅くなるように形成するところに
ある。
The feature of the present invention resides in that the power portion P
The control part in which the bottom part of the high-concentration impurity region 15 formed in the channel impurity region 14 formed in the above is formed to be substantially flush with the bottom part of the channel impurity region 14, and a control circuit is formed. The bottom surface of the C well region 21 is formed to be substantially the same as or shallower than the bottom surfaces of the channel impurity region 14 and the high concentration impurity region 15.

【0020】パワー部Pの両不純物領域14、15の底
面部を略同一面とし、且つ、制御部Cのウェル領域の底
面部を両不純物領域14、15の底面部と略同一、若し
くは、それよりも浅く形成することにより、パワー部P
及び制御部Cが形成される単一のエピタキシャル層12
の厚みを厚くすることなく、最小限の膜厚のエピタキシ
ャル層とすることができオン抵抗の低減化をすることが
できる。さらに、アバランシェ動作時にパワー部Pに流
れる電流が高濃度不純物領域15に流れることとなり、
パワー部Pのソース領域16、高濃度不純物領域15
(及びチャネル不純物領域14)、ドレイン領域13で
形成される寄生バイポーラトランジスタが動作するのを
抑制することができ、アバランシェ耐量を向上させるこ
とができる。
The bottom surfaces of the impurity regions 14 and 15 of the power portion P are substantially the same plane, and the bottom surface of the well region of the control portion C is substantially the same as the bottom surfaces of both impurity regions 14 and 15, or By forming the power portion P shallower than
And the single epitaxial layer 12 on which the control part C is formed
It is possible to form an epitaxial layer having a minimum film thickness without increasing the thickness of, and it is possible to reduce the on-resistance. Further, the current flowing through the power section P during the avalanche operation flows through the high concentration impurity region 15,
The source region 16 and the high concentration impurity region 15 of the power portion P
The operation of the parasitic bipolar transistor formed of (and the channel impurity region 14) and the drain region 13 can be suppressed, and the avalanche withstand capability can be improved.

【0021】以下に、上記した実施形態の半導体装置を
製造方法に基づき詳細に説明する。図2乃至図6は、本
発明の半導体装置の製造方法を示す断面図である。先
ず、図1に示すように、例えば、N+型半導体基板11
にN-型エピタキシャル層12を成長させた基板を準備
する。エピタキシャル層12上には、その表面を酸化性
雰囲気内で熱酸化し、所定の膜厚の絶縁膜17を形成す
る。絶縁膜17を形成した後、絶縁膜17上に選択的に
露光・現像したレジストマスクを形成しエピタキシャル
層12にP-型の不純物であるボロン(B)を注入・拡
散し制御部CとなるPウェル領域21を形成する。ここ
では、レジストマスクを用いたが、例えばウェル領域2
1を形成する絶縁層17の膜厚を薄く形成すればレジス
トマスクを用いる事なはい。
The semiconductor device of the above embodiment will be described below in detail based on the manufacturing method. 2 to 6 are sectional views showing a method for manufacturing a semiconductor device of the present invention. First, as shown in FIG. 1, for example, an N + type semiconductor substrate 11
A substrate on which the N − type epitaxial layer 12 is grown is prepared. The surface of the epitaxial layer 12 is thermally oxidized in an oxidizing atmosphere to form an insulating film 17 having a predetermined thickness. After forming the insulating film 17, a resist mask selectively exposed and developed is formed on the insulating film 17, and boron (B) which is a P − -type impurity is injected and diffused into the epitaxial layer 12 to become the control portion C. A P well region 21 is formed. Although the resist mask is used here, for example, the well region 2
If the film thickness of the insulating layer 17 forming 1 is thin, the resist mask is not used.

【0022】ここで、重要なことは、ウェル領域21の
拡散濃度を後述するチャネル不純物領域14と高濃度不
純物領域15よりも低くし、長期間の熱拡散工程を行い
ウェル領域21を安定化させ以降に行われる熱拡散工程
でウェル領域の拡散の進行を抑制する。この工程で、ウ
ェル領域21を十分に拡散させないと、以降の拡散工程
でウェル領域21の拡散が進行し、エピタキシャル層1
2の膜厚を厚くしなければ成らず、共通基板上に形成さ
れるパワーMOSFET領域のエピタキシャル層の厚み
も厚くなり、オン抵抗の低減化の妨げとなるために、長
時間で十分に拡散することが重要である。さらに、ウェ
ル領域21の深さは、次の工程で形成するチャネル不純
物領域14と高濃度不純物領域15の底面部と略同一面
か、或いは若干浅く成るように形成する。
Here, it is important to make the diffusion concentration of the well region 21 lower than that of the channel impurity region 14 and the high concentration impurity region 15 which will be described later, and perform the thermal diffusion process for a long time to stabilize the well region 21. The progress of diffusion in the well region is suppressed in the subsequent thermal diffusion process. If the well region 21 is not sufficiently diffused in this step, the diffusion of the well region 21 will proceed in the subsequent diffusion steps, and the epitaxial layer 1
2 must be made thicker, and the thickness of the epitaxial layer in the power MOSFET region formed on the common substrate also becomes thicker, which hinders the reduction of the on-resistance and therefore diffuses sufficiently for a long time. This is very important. Further, the depth of the well region 21 is formed so as to be substantially flush with the bottom surfaces of the channel impurity region 14 and the high-concentration impurity region 15 formed in the next step, or to be slightly shallow.

【0023】具体的には、例えば、打ち込みエネルギー
70KeVでドーズ量1×10-13〜3.5×10-13の
ボロンを注入し、約1100℃〜1200℃で約500
分から800分間の熱拡散を行いウェル領域を形成す
る。ウェル領域21のドーズ量は、上記した具体例に限
定されるものではなく、エピタキシャル層の濃度、即
ち、設定する耐圧値により適宜に選択し、ウェル領域2
1に形成するNチャネルEMOSのVthをコントロー
ルする。
Specifically, for example, boron having a dose energy of 1 × 10 −13 to 3.5 × 10 −13 is implanted with a driving energy of 70 KeV, and at a temperature of about 1100 ° C. to 1200 ° C., about 500 ° C.
Well to 800 minutes to form a well region. The dose amount of the well region 21 is not limited to the above-mentioned specific example, and may be appropriately selected depending on the concentration of the epitaxial layer, that is, the breakdown voltage value to be set.
Vth of the N-channel EMOS formed in 1 is controlled.

【0024】ウェル領域21を形成した後、ウェル領域
21内に制御回路素子の、例えばNチャネルDMOSの
VthをコントロールするN-型の不純物である砒素
(As)を注入・拡散し、Vthコントロール領域31
を形成する。続いて、絶縁膜17上にCVD法等により
ポリシリコンを堆積し、所定のホトエッチングを行い、
絶縁層17上に選択的にゲート電極18,18Aを形成
する。即ち、パワー部P領域には、パワーMOSFET
のゲート電極18Aを形成し、制御部C領域には、Nチ
ャネルEMOS、NチャネルDMOS等の横型MOSの
ゲート電極18Aを形成する。
After the well region 21 is formed, arsenic (As) which is an N − type impurity for controlling Vth of the N-channel DMOS of the control circuit element is implanted / diffused in the well region 21 to form the Vth control region. 31
To form. Then, polysilicon is deposited on the insulating film 17 by a CVD method or the like, and predetermined photo-etching is performed.
Gate electrodes 18 and 18A are selectively formed on the insulating layer 17. That is, in the power portion P region, the power MOSFET
Of the lateral MOS such as N-channel EMOS and N-channel DMOS is formed in the control section C region.

【0025】次に、図3に示すように、制御部Cとなる
領域表面にレジストマスクAを形成し、P型の不純物を
注入する。パワー部P領域は、ゲート電極18がマスク
として作用し、P型不純物であるボロン(B)を所定の
ドーズ量でエピタキシャル層12表面に注入し、所定の
温度条件の第1の熱拡散処理を行いチャネル領域となる
極めて浅いチャネル不純物領域14を形成する。具体的
には、例えば、打ち込みエネルギー70KeVでドーズ
量3×10-13〜5×10-13のボロンを注入し、約11
00℃〜1200℃で約100から200分間の第1の
熱処理工程を行い、予備拡散のチャネル不純物領域14
を形成する。このチャネル不純物領域14を形成する同
一工程で必要に応じてウェル領域21内にP+型の不純
物を拡散する場合もある。
Next, as shown in FIG. 3, a resist mask A is formed on the surface of the region to be the control portion C, and P-type impurities are implanted. In the power region P region, the gate electrode 18 acts as a mask, boron (B), which is a P-type impurity, is implanted into the surface of the epitaxial layer 12 at a predetermined dose amount, and the first thermal diffusion process under a predetermined temperature condition is performed. An extremely shallow channel impurity region 14 to be a channel region is formed. Specifically, for example, boron having a dose amount of 3 × 10 −13 to 5 × 10 −13 is implanted with an implantation energy of 70 KeV to obtain about 11
The first heat treatment step is performed at 00 ° C. to 1200 ° C. for about 100 to 200 minutes to perform the pre-diffusion channel impurity region 14
To form. In the same step of forming the channel impurity region 14, a P + type impurity may be diffused into the well region 21 as needed.

【0026】次に、図4に示すように、パワー部P領域
のゲート電極18及び制御部Cの表面上にレジストマス
クAを選択的に残るように露光・現像する。ゲート電極
18の側面のレジストマスクAの幅でパワーMOSFE
Tのチャネル領域の幅が制御されることになる。レジス
トマスクAを形成した後、露出したチャネル不純物領域
14表面に高濃度不純物領域15となるチャネル不純物
領域14の濃度よりも濃度の高いP型のボロン(B)を
注入する。具体的には、例えば、チャネル不純物領域1
4のボロン(B)のドーズ量が3×10-13〜5×10-
13である場合、打ち込みエネルギー80KeVでドーズ
量8×10-14〜1×10-15のボロンを注入する。ここ
で、重要なことは、次に説明する第2の拡散工程で、先
に行った予備拡散で形成したチャネル不純物領域14の
底面部と、第2の熱拡散工程で拡散する高濃度不純物領
域15の底面部とが略同一面となるように、両領域に注
入するドーズ量を設定する必要がある。この高濃度不純
物領域15を形成する同一工程で必要に応じてウェル領
域内にP++型の高濃度不純物を拡散する場合もある。
Next, as shown in FIG. 4, the resist mask A is exposed and developed so as to selectively remain on the surfaces of the gate electrode 18 and the control portion C in the power portion P region. With the width of the resist mask A on the side surface of the gate electrode 18, power MOSFE
The width of the T channel region will be controlled. After forming the resist mask A, P-type boron (B) having a higher concentration than the concentration of the channel impurity region 14 to be the high concentration impurity region 15 is implanted into the exposed surface of the channel impurity region 14. Specifically, for example, the channel impurity region 1
The dose amount of boron (B) of 4 is 3 × 10 −13 to 5 × 10 −.
In the case of 13, boron having a dose energy of 80 KeV and a dose amount of 8 × 10 −14 to 1 × 10 −15 is implanted. Here, what is important is the bottom portion of the channel impurity region 14 formed by the preliminary diffusion performed previously in the second diffusion step described below, and the high-concentration impurity region diffused in the second thermal diffusion step. It is necessary to set the dose amount to be injected into both regions so that the bottom surface of 15 is substantially flush with the surface. In the same step of forming the high-concentration impurity region 15, a P ++-type high-concentration impurity may be diffused into the well region if necessary.

【0027】次に、図5に示すように、高濃度不純物領
域15となる高濃度の不純物を注入した後、高濃度不純
物の拡散する第2の熱拡散処理を行う。この第2の拡散
工程は、高濃度不純物領域15の底面部と上記した第1
の拡散工程で拡散したチャネル不純物領域14の底面部
とが略同一面になるように行われる。高濃度不純物領域
15の底面部とチャネル不純物領域14の底面部とが略
同一面とならない場合、次の様な不具合が発生する。例
えば、高濃度不純物領域15の底面部がチャネル不純物
領域14底面部より浅く形成された場合には、アバラン
シェ動作時に流れるアバランシェ電流により、寄生バイ
ポーラトランジスタのベースとなるチャネル不純物領域
で電圧降下が生じ寄生バイポーラトランジスタを動作さ
せるアバランシェ耐量をより向上させることができなく
なる。
Next, as shown in FIG. 5, after a high-concentration impurity to be the high-concentration impurity region 15 is implanted, a second thermal diffusion process for diffusing the high-concentration impurity is performed. This second diffusion step is performed by using the bottom portion of the high-concentration impurity region 15 and the above-mentioned first diffusion step.
This is performed so that the bottom surface portion of the channel impurity region 14 diffused in the diffusion step is substantially flush with the bottom surface portion. If the bottom of the high-concentration impurity region 15 and the bottom of the channel impurity region 14 are not substantially flush with each other, the following problem occurs. For example, when the bottom of the high-concentration impurity region 15 is formed shallower than the bottom of the channel impurity region 14, the avalanche current flowing during the avalanche operation causes a voltage drop in the channel impurity region serving as the base of the parasitic bipolar transistor. It becomes impossible to further improve the avalanche withstand capability for operating the bipolar transistor.

【0028】また、高濃度不純物領域15の底面部がチ
ャネル不純物領域14の底面部より深く形成された場合
には、その直下のN-型エピタキシャル層12が薄くな
り耐圧特性が低下する。従って、高濃度不純物領域15
の底面部とチャネル不純物領域14の底面部とは、上記
したように、略同一面となるように形成することが重要
である。
If the bottom of the high-concentration impurity region 15 is formed deeper than the bottom of the channel impurity region 14, the N − type epitaxial layer 12 immediately thereunder is thinned and the withstand voltage characteristic deteriorates. Therefore, the high concentration impurity region 15
As described above, it is important that the bottom surface of the channel impurity region 14 and the bottom surface of the channel impurity region 14 are substantially flush with each other.

【0029】一般的に不純物拡散は、不純物濃度、拡散
温度、拡散時間により、その不純物の拡散深さが決定さ
れる。チャネル不純物領域の不純物濃度と高濃度不純物
領域の不純物濃度とは、上記したように濃度差を有して
いることから高濃度不純物領域の拡散の方がチャネル不
純物領域の拡散より高速である。従って、高濃度不純物
領域15に注入した不純物の濃度と、チャネル不純物領
域14に注入した不純物の濃度とを予め設定すれば第2
の熱拡散工程の温度、時間の設定を行うことで、高濃度
不純物領域15とチャネル不純物領域14とが同時に拡
散し、拡散進行方向の高濃度不純物領域15の底面部と
チャネル不純物領域14の底面部とを略同一面に形成す
ることができる。
Generally, in the impurity diffusion, the impurity diffusion depth is determined by the impurity concentration, the diffusion temperature, and the diffusion time. Since the impurity concentration of the channel impurity region and the impurity concentration of the high concentration impurity region have the difference in concentration as described above, the diffusion of the high concentration impurity region is faster than the diffusion of the channel impurity region. Therefore, if the concentration of the impurities injected into the high concentration impurity region 15 and the concentration of the impurities injected into the channel impurity region 14 are set in advance, the second concentration is obtained.
By setting the temperature and time of the thermal diffusion step of, the high-concentration impurity region 15 and the channel impurity region 14 are diffused at the same time, and the bottom portion of the high-concentration impurity region 15 and the bottom surface of the channel impurity region 14 in the diffusion proceeding direction. The part and the part can be formed on substantially the same surface.

【0030】本実施形態では、上記したように、チャネ
ル不純物領域14となる不純物であるボロン(B)のド
ーズ量を3×10-13〜5×10-13とし約1100℃〜
1200℃で100分〜200分の第1の予備熱処理工
程を行った後、高濃度不純物領域15となる不純物であ
るボロン(B)のドーズ量を8×10-14〜1×10-15
とし、約1100℃〜1200℃で約30分〜90分間
の第2の熱処理工程を行うことにより、上記したよう
に、高濃度不純物領域15の底面部とチャネル不純物領
域14の底面部とを略同一面に形成することができる。
In the present embodiment, as described above, the dose amount of boron (B), which is the impurity which becomes the channel impurity region 14, is 3 × 10 −13 to 5 × 10 −13, and the dose is about 1100 ° C.
After performing the first preliminary heat treatment step at 1200 ° C. for 100 minutes to 200 minutes, the dose amount of boron (B), which is an impurity to be the high-concentration impurity region 15, is 8 × 10 −14 to 1 × 10 −15.
By performing the second heat treatment step at about 1100 ° C. to 1200 ° C. for about 30 minutes to 90 minutes, as described above, the bottom surface portion of the high concentration impurity region 15 and the bottom surface portion of the channel impurity region 14 are substantially removed. It can be formed on the same surface.

【0031】ここで、重要なことは、上記したように、
チャネル不純物領域14、高濃度不純物領域15の両底
面部を略同一となるように拡散し、且つ、制御部Cとな
るP型のウェル領域21の底面部が前記両底面部と略同
一面若しくは両底面部より浅くなるように形成すること
である。ウェル領域21は上述したように、濃度を低く
し、長時間の拡散工程を行い、予め設計されるチャネル
不純物領域14、高濃度不純物領域15の深さ近傍まで
拡散が行われており、チャネル不純物領域14、高濃度
不純物領域15の拡散工程で濃度の低いウェル領域21
は拡散が進行せず、ウェル領域21の底面部を前記両底
面部と略同一面とすることができる。その結果、パワー
MOSFETを形成するパワー部P領域、制御回路を形
成する制御部C領域の基板の全領域でエピタキシャル層
12の厚みを最小限の厚みとすることができる。
Here, the important thing is, as described above,
Both bottom surface portions of the channel impurity region 14 and the high-concentration impurity region 15 are diffused so as to be substantially the same, and the bottom surface portion of the P-type well region 21 serving as the control portion C is substantially flush with both bottom surface portions. It is to be formed so as to be shallower than both bottom portions. As described above, the well region 21 has a low concentration and is subjected to a diffusion process for a long time to diffuse to near the depths of the channel impurity region 14 and the high concentration impurity region 15 which are designed in advance. Well region 21 having a low concentration in the diffusion process of the region 14 and the high concentration impurity region 15
The diffusion does not proceed, and the bottom portion of the well region 21 can be made substantially flush with both bottom portions. As a result, the thickness of the epitaxial layer 12 can be minimized in the entire region of the substrate, that is, the power portion P region where the power MOSFET is formed and the control portion C region where the control circuit is formed.

【0032】従って、チャネル不純物領域14は予備拡
散である第1の熱拡散工程と高濃度不純物領域15を拡
散する第2の熱拡散工程との2段階の拡散工程により拡
散され、チャネル不純物領域14の深さを最適の状態で
両不純物領域14、15の底面部を同一、且つ、制御部
Cのウェル領域底面部が両不純物領域の底面部と略同一
とすることができ、パワー部Pに形成されるパワーMO
SFETのオン抵抗の低減化、アバランシェ耐量の向上
化を行うことができる。ゲート電極18及び制御部C上
に形成したレジストマスクAは高濃度不純物領域に不純
物を注入した後、除去し、上記の拡散工程が行われる。
Therefore, the channel impurity region 14 is diffused by the two-step diffusion process of the first thermal diffusion process which is the preliminary diffusion and the second thermal diffusion process which diffuses the high concentration impurity region 15, and the channel impurity region 14 is diffused. With the optimum depth, the bottom surfaces of both impurity regions 14 and 15 can be the same, and the bottom surface of the well region of the control portion C can be substantially the same as the bottom surface of both impurity regions. Power MO formed
It is possible to reduce the on-resistance of the SFET and improve the avalanche resistance. The resist mask A formed on the gate electrode 18 and the control portion C is removed after implanting impurities into the high-concentration impurity region, and the above diffusion process is performed.

【0033】次に、図6に示すように、パワー部P領域
のチャネル不純物領域14のチャネル領域を露出するよ
うにチャネル不純物領域14及び制御部C領域のウェル
領域のソース領域となる領域上にレジストマスクAを形
成し、そのレジストマスクAとゲート電極18、18A
とをマスクとして露出したチャネル不純物領域14及び
ウェル領域にソース領域16、16AとなるN+型の不
純物を注入拡散する。ソース領域16となるN型不純物
はリン(P)、砒素(As)等を使用することができ、
ここでは、打ち込みエネルギー100〜150KeVで
ドーズ量5×10-15〜1×10-16の砒素(As)を注
入し、約900℃〜1100℃で約30分〜60分の熱
拡散処理を行いソース領域16、16Aを形成してい
る。
Next, as shown in FIG. 6, the channel impurity region 14 and the control region C are formed on the region to be the source region of the well region of the control region C so as to expose the channel region of the channel impurity region 14 of the power region P region. A resist mask A is formed, and the resist mask A and the gate electrodes 18, 18A are formed.
The N + -type impurities to be the source regions 16 and 16A are implanted and diffused into the exposed channel impurity region 14 and the well region by using the and. As the N-type impurity that becomes the source region 16, phosphorus (P), arsenic (As), or the like can be used,
Here, arsenic (As) with a dose amount of 5 × 10 −15 to 1 × 10 −16 is implanted with an implantation energy of 100 to 150 KeV, and a thermal diffusion process is performed at about 900 ° C. to 1100 ° C. for about 30 minutes to 60 minutes. The source regions 16 and 16A are formed.

【0034】ソース領域16、16A形成後、ゲート電
極18,18Aの表面に常圧又は減圧CVD法等によっ
てSiO2等の絶縁層17を堆積、ホトエッチングしゲー
ト電極18,18A表面を絶縁層17で被覆する。そし
て、露出した表面にアルミ膜をスパッタリング又は蒸着
により、パワー部P領域に形成したソース領域16を共
通接続するソース電極19を形成し、制御部C領域に形
成したMOSのソース、ドレイン電極22、23を形成
する。さらに、半導体基板11の裏面にパワーMOSF
ETのドレイン電極20となる金属層を形成し、図1に
示す制御回路機能付パワーMOSFETが完成する。
After forming the source regions 16 and 16A, an insulating layer 17 such as SiO 2 is deposited on the surfaces of the gate electrodes 18 and 18A by atmospheric pressure or low pressure CVD method and photoetched to form the insulating layers 17 on the surfaces of the gate electrodes 18 and 18A. To cover. Then, a source electrode 19 commonly connected to the source region 16 formed in the power region P region is formed by sputtering or vapor deposition of an aluminum film on the exposed surface, and the source and drain electrodes 22 of the MOS formed in the control region C region are formed. 23 is formed. Further, a power MOSF is provided on the back surface of the semiconductor substrate 11.
A metal layer to be the drain electrode 20 of the ET is formed, and the power MOSFET with a control circuit function shown in FIG. 1 is completed.

【0035】以上の説明は、パワ部ーP領域に形成する
パワーMOSはNチャネル型のものであるが、P型チャ
ネル型パワーMOSFETについても同様に本発明を用
いることは説明するまでもない。
In the above description, the power MOS formed in the power region-P region is an N-channel type, but it goes without saying that the present invention is similarly applied to a P-type channel power MOSFET.

【0036】[0036]

【発明の効果】以上に詳述したように、本発明によれ
ば、制御部が形成される逆導電型のウェル領域の底面部
をパワー部の略同一面に形成された高濃度不純物領域の
底面部及びチャネル不純物領域の底面部と略同一面若し
くは浅くすることにより、パワーMOSFETのドレイ
ン領域であるエピタキシャル層の厚みを最小限薄くでき
オン抵抗を低減化、及びアバランシェ耐量を向上させる
ことができ、信頼性の優れた制御回路機能付パワーMO
SFETを提供することができる。
As described above in detail, according to the present invention, the bottom portion of the well region of the opposite conductivity type in which the control portion is formed is the high concentration impurity region formed on the substantially same surface of the power portion. By making the bottom surface and the bottom surface of the channel impurity region substantially flush or shallow, the thickness of the epitaxial layer, which is the drain region of the power MOSFET, can be minimized to reduce the on-resistance and improve the avalanche withstand capability. Power MO with highly reliable control circuit function
An SFET can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置を示す断面図。FIG. 1 is a cross-sectional view showing a semiconductor device of the present invention.

【図2】本発明の半導体装置の製造方法を示す断面図。FIG. 2 is a cross-sectional view showing a method for manufacturing a semiconductor device of the present invention.

【図3】本発明の半導体装置の製造方法を示す断面図。FIG. 3 is a cross-sectional view showing the method of manufacturing a semiconductor device of the present invention.

【図4】本発明の半導体装置の製造方法を示す断面図。FIG. 4 is a cross-sectional view showing the method of manufacturing a semiconductor device of the present invention.

【図5】本発明の半導体装置の製造方法を示す断面図。FIG. 5 is a cross-sectional view showing the method of manufacturing a semiconductor device of the present invention.

【図6】本発明の半導体装置の製造方法を示す断面図。FIG. 6 is a cross-sectional view showing the method of manufacturing a semiconductor device of the present invention.

【図7】従来の半導体装置を示す断面図。FIG. 7 is a sectional view showing a conventional semiconductor device.

【図8】従来の半導体装置を示す断面図。FIG. 8 is a sectional view showing a conventional semiconductor device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有山 詔 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平8−204175(JP,A) 特開 昭64−48464(JP,A) 特開 平4−180238(JP,A) 特開 平2−58371(JP,A) 特開 平5−267672(JP,A) 特開 平5−283628(JP,A) 特表 平6−508958(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 21/336 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Aki Ariyama 2-5-5 Keihan Hon-dori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-8-204175 (JP, A) Kai 64-48464 (JP, A) JP 4-180238 (JP, A) JP 2-58371 (JP, A) JP 5-267672 (JP, A) JP 5-283628 ( JP, A) Tokuheiyo Hyo 6-508958 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 29/78 H01L 21/336

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一導電型の半導体基板と、前記半導体基
板上に形成された一導電型のエピタキシャル層と、前記
エピタキシャル層に規則的に配列されたチャネル領域を
形成する逆導電型のチャネル不純物領域と、前記チャネ
ル不純物領域内に形成され、前記チャネル不純物領域よ
りも高濃度の逆導電型であり、前記チャネル不純物領域
の底面と略同一面まで拡散された高濃度不純物領域と、
前記チャネル不純物領域内にリング状に形成された一導
電型のソース領域と、前記チャネル領域上に配置された
ゲート電極とからなるパワー部と、前記パワー部を制御
する制御回路が形成される逆導電型のウェル領域の底面
部が前記高濃度不純物領域の底面部と略同一の深さにな
るように形成された制御部とを備えたことを特徴とする
半導体装置。
1. A semiconductor substrate of one conductivity type, an epitaxial layer of one conductivity type formed on the semiconductor substrate, and a channel impurity of an opposite conductivity type that forms regularly arranged channel regions in the epitaxial layer. A region, a high-concentration impurity region formed in the channel impurity region, having a higher concentration than that of the channel impurity region and having an opposite conductivity type, and a high-concentration impurity region diffused to substantially the same plane as the bottom surface of the channel impurity region;
A power part including a source region of one conductivity type formed in a ring shape in the channel impurity region and a gate electrode arranged on the channel region, and a control circuit for controlling the power part are formed in reverse. The bottom of the conductivity type well region is formed to have substantially the same depth as the bottom of the high concentration impurity region.
The semiconductor device is characterized in that a control unit formed so that.
【請求項2】 前記チャネル不純物領域の底面部と前記
高濃度不純物領域の底面部は実質同一であることを特
徴とする請求項1に記載の半導体装置。
2. A semiconductor device according to claim 1, wherein the bottom portion of the high impurity concentration region and bottom portion of the channel impurity regions are substantially coplanar.
【請求項3】 一導電型の半導体基板上に一導電型のエ
ピタキシャル層を形成し、前記エピタキシャル層に逆導
電型の不純物を拡散しウェル領域を形成し、前記ウェル
領域を形成した後、前記エピタキシャル層に規則的に配
列されたチャネル領域を形成するチャネル不純物領域と
なる逆導電型の不純物を予備拡散し、前記予備拡散領域
内に高濃度不純物領域となる逆導電型の高濃度不純物を
拡散し、前記高濃度不純物領域の底面部と前記チャネル
不純物領域の底面部とを前記ウェル領域の底面部と略同
一面となるまで前記高濃度不純物を拡散することを特徴
とする半導体装置の製造方法。
3. An epitaxial layer of one conductivity type is formed on a semiconductor substrate of one conductivity type, an impurity of opposite conductivity type is diffused into the epitaxial layer to form a well region, and the well region is formed, and then the well region is formed. Reverse-conductivity type impurities that will become channel impurity regions that form regularly arranged channel regions in the epitaxial layer are pre-diffused, and reverse-conductivity high concentration impurities that will become high concentration impurity regions are diffused in the preliminary diffusion regions. Then, the method of manufacturing a semiconductor device, wherein the high-concentration impurity is diffused until the bottom of the high-concentration impurity region and the bottom of the channel impurity region are substantially flush with the bottom of the well region. .
【請求項4】 前記チャネル不純物領域の底面と前記高
濃度不純物領域の底面は実質同一面となるように形成さ
れることを特徴とする請求項に記載の半導体装置の製
造方法。
4. The method of manufacturing a semiconductor device according to claim 3 , wherein a bottom surface of the channel impurity region and a bottom surface of the high-concentration impurity region are formed to be substantially flush with each other.
JP22676796A 1996-08-28 1996-08-28 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3397986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22676796A JP3397986B2 (en) 1996-08-28 1996-08-28 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22676796A JP3397986B2 (en) 1996-08-28 1996-08-28 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1070264A JPH1070264A (en) 1998-03-10
JP3397986B2 true JP3397986B2 (en) 2003-04-21

Family

ID=16850303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22676796A Expired - Fee Related JP3397986B2 (en) 1996-08-28 1996-08-28 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3397986B2 (en)

Also Published As

Publication number Publication date
JPH1070264A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
US5465000A (en) Threshold adjustment in vertical DMOS devices
JP4192281B2 (en) Silicon carbide semiconductor device
US5382536A (en) Method of fabricating lateral DMOS structure
JPH10270709A (en) LDMOS transistor device and method of manufacturing the same
JP4030139B2 (en) Power semiconductor device and manufacturing method thereof
JP2701762B2 (en) Semiconductor device and manufacturing method thereof
KR100883795B1 (en) Symmetrical trench MOSF device and method of manufacturing the same
JP3281847B2 (en) Method for manufacturing semiconductor device
US5817546A (en) Process of making a MOS-technology power device
US6900520B2 (en) Semiconductor element and manufacturing method thereof
JP4469524B2 (en) Manufacturing method of semiconductor device
JP3831615B2 (en) Semiconductor device and manufacturing method thereof
KR100272051B1 (en) P-channel MOS gate device fabrication process through base injection through contact window
JP3281844B2 (en) Method for manufacturing semiconductor device
JPH09129868A (en) Semiconductor device and its manufacture
JPH104187A (en) Power semiconductor device and method of manufacturing the same
JP3397986B2 (en) Semiconductor device and manufacturing method thereof
JP3392652B2 (en) Method for manufacturing semiconductor device
JP3369862B2 (en) Method for manufacturing semiconductor device
JPH07221296A (en) Vertical MOS semiconductor device and manufacturing method thereof
JPH06177376A (en) Method for manufacturing MOS field effect semiconductor device
JP3162745B2 (en) Method of manufacturing insulated gate field effect transistor
JPH1065154A (en) Semiconductor device and manufacturing method thereof
JPH10189964A (en) Semiconductor device and manufacture of semiconductor device
JPH02296342A (en) Manufacture of mosfet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees