[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2701762B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JP2701762B2
JP2701762B2 JP29285894A JP29285894A JP2701762B2 JP 2701762 B2 JP2701762 B2 JP 2701762B2 JP 29285894 A JP29285894 A JP 29285894A JP 29285894 A JP29285894 A JP 29285894A JP 2701762 B2 JP2701762 B2 JP 2701762B2
Authority
JP
Japan
Prior art keywords
film
element isolation
epitaxial film
epitaxial
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29285894A
Other languages
Japanese (ja)
Other versions
JPH08153873A (en
Inventor
武雄 松木
潔 竹内
昭 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29285894A priority Critical patent/JP2701762B2/en
Publication of JPH08153873A publication Critical patent/JPH08153873A/en
Application granted granted Critical
Publication of JP2701762B2 publication Critical patent/JP2701762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置、特に電界
効果トランジスタおよびそれらを組み合わせてできる半
導体装置の構造およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a structure of a field effect transistor and a semiconductor device obtained by combining them, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、電界効果トランジスタ特にMOS
(Metal−Oxide−Semiconducto
r)電界効果トランジスタ(FET)の微細化を進め、
短チャネル効果を抑制するために基板濃度を高める必要
がある。一方、ゲート酸化膜厚は、耐圧やリーク電流に
よる制約により無制限に薄くできない。このため、微細
MOSFETのしきい値電圧が高くなる。一方、微細M
OSFETでは、消費電力の低減と長期信頼性の確保の
ために電源電圧を下げる必要がある。しかし、しきい値
電圧が高いまま電源電圧を下げると素子性能が劣化して
しまう。
2. Description of the Related Art Conventionally, field effect transistors, especially MOS
(Metal-Oxide-Semiconductor
r) miniaturization of field effect transistors (FETs)
It is necessary to increase the substrate concentration in order to suppress the short channel effect. On the other hand, the gate oxide film thickness cannot be reduced without limitation due to restrictions due to withstand voltage and leak current. Therefore, the threshold voltage of the fine MOSFET increases. On the other hand, fine M
In the OSFET, it is necessary to lower the power supply voltage in order to reduce power consumption and ensure long-term reliability. However, if the power supply voltage is reduced while the threshold voltage is high, the element performance will be degraded.

【0003】そこで半導体薄膜を不純物濃度の高い基板
上に低温でエピタキシャル成長させ、深さ方向に急峻な
不純物濃度分布を形成し、それで、短チャネル効果を抑
制しつつしきい値電圧を下げる方法が提案されている。
この構造の素子分離を考えた場合、選択的熱酸化で基板
に一部埋設するフィールド絶縁膜を形成するLOCOS
分離のように基板を高温長時間酸化することで素子分離
領域を形成する場合、酸化過程で不純物の再分布が起こ
りやすく、低温でのエピタキシャル成長により不純物濃
度を制御しても、しきい値電圧の精密制御は困難にな
る。
Therefore, a method has been proposed in which a semiconductor thin film is epitaxially grown on a substrate having a high impurity concentration at a low temperature to form a steep impurity concentration distribution in the depth direction, thereby reducing the threshold voltage while suppressing the short channel effect. Have been.
In consideration of element isolation of this structure, LOCOS which forms a field insulating film partially buried in a substrate by selective thermal oxidation is used.
When an element isolation region is formed by oxidizing a substrate at a high temperature for a long time as in the case of isolation, redistribution of impurities is likely to occur during the oxidation process. Precise control becomes difficult.

【0004】また、LOCOS分離を形成した後、素子
領域の半導体表面に選択的にエピタキシャル成長する方
法も提案されているが、その場合、エピタキシャル膜と
分離端付近で結晶欠陥が発生し、リーク電流等素子特性
の劣化をもたらす恐れがある。
A method has also been proposed in which after LOCOS isolation is formed, epitaxial growth is selectively performed on the semiconductor surface in the element region. In this case, crystal defects occur near the epitaxial film and the isolation edge, and leakage current and the like are increased. There is a risk of deteriorating device characteristics.

【0005】さらにエピタキシャル膜を形成した後、素
子分離領域にトレンチを形成した後、そのトレンチに酸
化膜等の絶縁膜を埋め込み素子分離をする方法がある。
この方法によれば、LOCOSに見られる素子分離寸法
のズレは論理的にはなくなるが、トレンチの形成時にリ
ーク電流の原因になる欠陥を基板内に発生させるという
問題がある。
Further, there is a method in which a trench is formed in an element isolation region after an epitaxial film is formed, and an insulating film such as an oxide film is buried in the trench to perform element isolation.
According to this method, the deviation of the element isolation size observed in the LOCOS is logically eliminated, but there is a problem that a defect causing a leak current is generated in the substrate when the trench is formed.

【0006】一方、短チャネル効果の抑制、信頼性の向
上、電流駆動能力の向上が可能なトランジスタ構造とし
て、ソースからドレインに向かって、チャネルの基板不
純物濃度が単調減少する構造が既に提案されている。そ
の構造の場合、ドレイン端付近の濃度をソース付近濃度
に較べて低下させることで、ドレイ近傍の局所的なしき
い値電圧が低下し、その領域の横方向の電界集中を緩和
し、上記の特徴を実現するために、ドレイン近傍の不純
物濃度をできるだけ下げることで素子特性の向上がはか
れることになる。
On the other hand, as a transistor structure capable of suppressing the short channel effect, improving the reliability, and improving the current driving capability , a structure in which the substrate impurity concentration of the channel monotonously decreases from the source to the drain has already been proposed. I have. In the case of such a structure, by lowering the concentration near the drain end compared to the concentration near the source, the local threshold voltage near the drain decreases, and the electric field concentration in the lateral direction in the region is reduced. In order to realize the above characteristics, the device characteristics are improved by lowering the impurity concentration near the drain as much as possible.

【0007】[0007]

【発明が解決しようとする課題】以上のように、チャネ
ル領域となる半導体活性層を低温で成長させたエピタキ
シャル膜によって形成する方法では、LOCOS分離等
基板を酸化することで分離絶縁膜を形成した後、半導体
薄膜をエピタキシャル成長させた場合、分離端でリーク
電流の原因となる欠陥が発生しやすい。また、素子分離
形成前にエピタキシャル膜を形成する場合、選択酸化に
よる素子分離を用いるとエピタキシャル膜の下地からの
不純物の再拡散により表面付近の不純物濃度が増加し素
子特性が劣化するという問題がある。また、トレンチ分
離では、基板に穴を開けるために応力により欠陥が生じ
る難点がある。
As described above, in the method of forming a semiconductor active layer serving as a channel region by using an epitaxial film grown at a low temperature, an isolation insulating film is formed by oxidizing a substrate such as LOCOS isolation. Thereafter, when a semiconductor thin film is epitaxially grown, a defect causing a leak current is likely to occur at the separation end. Further, when an epitaxial film is formed before element isolation formation, if element isolation by selective oxidation is used, there is a problem that impurity concentration near the surface increases due to re-diffusion of impurities from a base of the epitaxial film, and element characteristics deteriorate. . Further, in the trench isolation, there is a problem that a defect is caused by a stress due to a hole formed in the substrate.

【0008】一方、ソースからドレインに向けてチャネ
ルの不純物濃度を単調減少させた構造の場合、ドレイン
領域を取り囲む領域の不純物濃度は低くドレインバイア
スを印加しなくても、通常の横方向に一様なチャネル不
純物分布を持つ構造より、空乏層が空乏層に向かって伸
び、ソース付近の不純物濃度の高い領域でその伸びは抑
制される。そのため、短チャネル効果の抑制のためにソ
ース近傍の不純物濃度を非常に高めなければならない。
そのことにより、ソースからドレインに向けての不純物
濃度変化の匂配は大きくなり、素子特性が、プロセスの
変動に対しより影響され易くなるという問題がある。
On the other hand, in the case of a structure in which the impurity concentration of the channel is monotonously reduced from the source to the drain, the impurity concentration in the region surrounding the drain region is low and is uniform in a normal lateral direction without applying a drain bias. The depletion layer extends toward the depletion layer due to the structure having a good channel impurity distribution, and the expansion is suppressed in a region near the source where the impurity concentration is high. Therefore, the impurity concentration in the vicinity of the source must be significantly increased in order to suppress the short channel effect.
As a result, there is a problem that the odor of the change in the impurity concentration from the source to the drain becomes large, and the device characteristics are more easily affected by process variations.

【0009】[0009]

【課題を解決するための手段】本発明の特徴は、第1の
部分で活性領域となるエピタキシャル膜が素子分離絶縁
膜の下にあること、そのエピタキシャル膜の第1の部分
の不純物濃度が基板不純物濃度より低いこと、そして、
素子分離絶縁膜の直下のエピタキシャル膜の第2の部分
および素子領域のエピタキシャル膜の第1の部分より下
の基板中に基板不純物と同じ導電型でその不純物濃度よ
り高い不純物濃度の埋め込み層を有する半導体装置にあ
る。
A feature of the present invention is that an epitaxial film serving as an active region in a first portion is under an element isolation insulating film, and an impurity concentration in the first portion of the epitaxial film is lower than that of a substrate. Lower than the impurity concentration, and
A buried layer having the same conductivity type as that of the substrate impurity and a higher impurity concentration than the second portion of the epitaxial film immediately below the device isolation insulating film and the substrate below the first portion of the epitaxial film in the device region is provided. In semiconductor devices.

【0010】本発明の他の特徴は、半導体基板上全面に
エピタキシャル膜を形成しその後、そのエピタキシャル
膜上に選択的に素子分離絶縁膜を形成、その素子分離用
絶縁膜をエピタキシャル膜の厚みと同程度かまたはより
厚くし、その素子分離絶縁膜形成後のイオン注入で電気
的な素子分離のための高濃度領域を形成する半導体装置
の製造方法にある。
Another feature of the present invention is that an epitaxial film is formed over the entire surface of a semiconductor substrate, and then an element isolation insulating film is selectively formed on the epitaxial film. The present invention relates to a method of manufacturing a semiconductor device in which a high-concentration region for electrical element isolation is formed by ion implantation after forming the element isolation insulating film to have the same or larger thickness.

【0011】さらに上記半導体装置において、高濃度に
不純物がドープされた基板上の、エピタキシャル膜のチ
ャネル不純物濃度分布をソース側からドレイン側に向か
って単調減少させる事で、基板に低濃度ウェルを形成し
て同様にソースからドレインに向かって不純物濃度を変
化させる場合より、ドレイン側の表面不純物濃度が低い
電界効果トランジスタを形成することができる。
Further, in the above-mentioned semiconductor device, a low-concentration well is formed in the substrate by monotonously decreasing the channel impurity concentration distribution of the epitaxial film from the source side to the drain side on the substrate in which the impurity is heavily doped. Then, a field effect transistor having a lower surface impurity concentration on the drain side can be formed as compared with the case where the impurity concentration is similarly changed from the source to the drain.

【0012】又、上記半導体装置の製造方法において、
トランジスタのチャネル領域の不純物ドーピング法に関
し、不純物濃度の高いウェル表面上に低不純物濃度のエ
ピタキシャル膜を形成し、そこにソースからドレイン方
向に向かって不純物濃度が単調減少するように、ゲート
の斜め上方からイオン注入することができる。
In the above method for manufacturing a semiconductor device,
Regarding the impurity doping method of the channel region of a transistor, an epitaxial film with a low impurity concentration is formed on the surface of a well with a high impurity concentration, and the impurity film is obliquely above the gate so that the impurity concentration decreases monotonically from the source to the drain. Can be implanted.

【0013】[0013]

【実施例】以下、本発明の実施例を、図面を参照して説
明する。nチャネル型MOSFET(尚、本明細書で
は、絶縁ゲート電界効果トランジスタ一般をMOSFE
Tという)を例に取って、図1を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings. n-channel MOSFET (In this specification, insulated gate field effect transistors are generally referred to as MOSFE
T will be described with reference to FIG.

【0014】まず、p型半導体基板1に形成された濃度
1×1016cm-3のpウェル2上に、濃度1×1015
-3のエピタキシャル膜3の活性領域を有している。素
子分離絶縁膜4はエピタキシャル膜3上に位置し、電気
的な素子分離のためウェルより高濃度のp型領域5’
(濃度3×1018cm-3)を素子分離用絶縁膜直下のエ
ピタキシャル層領域に有している。そしてこのエピタキ
シャル膜の上面は、素子を形成する部分から素子分離絶
縁膜下の部分まで全て平坦となっている。この高濃度領
域5’により分離部分の寄生MOSトランジスタのしき
い値電圧を電源電圧より高くし、素子間の電気的な絶縁
が達成される。また、ウェルの深い領域にウェル濃度よ
り高い濃度(3×1018cm-3)のp型埋め込み層5を
有している。
First, on a p-well 2 having a concentration of 1 × 10 16 cm −3 formed on a p-type semiconductor substrate 1, a concentration of 1 × 10 15 c
It has an active area of m −3 of the epitaxial film 3. The element isolation insulating film 4 is located on the epitaxial film 3 and has a higher concentration p-type region 5 'than the well for electrical element isolation.
(Concentration: 3 × 10 18 cm −3 ) in the epitaxial layer region immediately below the isolation insulating film. The upper surface of the epitaxial film is flat from the part where the element is formed to the part below the element isolation insulating film. The high-concentration region 5 'makes the threshold voltage of the parasitic MOS transistor in the isolation part higher than the power supply voltage, and achieves electrical insulation between elements. Further, a p-type buried layer 5 having a higher concentration (3 × 10 18 cm −3 ) than the well concentration is provided in a deep region of the well.

【0015】また、酸化Siのゲート絶縁膜6上にポリ
シリコンのゲート電極7を有し、基板とは反対の導電型
のn型のソースおよびドレイン領域を有している。
A gate electrode 7 made of polysilicon is formed on a gate insulating film 6 made of silicon oxide, and n-type source and drain regions having a conductivity type opposite to that of the substrate are provided.

【0016】次に、本発明の一実施例の半導体基板の製
造方法を図2および図3を参照して説明する。
Next, a method of manufacturing a semiconductor substrate according to one embodiment of the present invention will be described with reference to FIGS.

【0017】まずp型Si基板9上に濃度1×1016
-3のpウェル10をイオン注入と熱拡散とにより形成
する(図2(A))。
First, a concentration of 1 × 10 16 c is formed on a p-type Si substrate 9.
An m −3 p well 10 is formed by ion implantation and thermal diffusion (FIG. 2A).

【0018】次に、基板上にSi膜11をCVD法等に
より基板温度600℃程度の低温で50nmエピタキシ
ャル成長させる(図2(B))。
Next, an Si film 11 is epitaxially grown on the substrate by a CVD method or the like at a low temperature of about 600 ° C. at a substrate temperature of 50 nm (FIG. 2B).

【0019】引き続き、Si酸化膜を堆積しパターニン
グする。例えばSi酸化膜12をCVD法により成膜
し、レジストマスクをマスクとしてエッチングする。こ
れにより素子分離絶縁膜12を形成し、その次に、電気
的な素子分離特性を得るために、ボロン等のp型不純物
を素子分離用Si酸化膜12の直下のエピタキシャル膜
領域に飛程を合わせてイオン注入でドープして高濃度領
域13’を形成し、この時同時に、素子分離領域以外に
もイオン注入されるが、その不純物の高濃度領域13が
エピタキシャル膜より下方に位置するように注入エネル
ギー及び素子分離用酸化膜の厚みをそのエピタキシャル
膜より厚くする(図3(A)。
Subsequently, a Si oxide film is deposited and patterned. For example, a Si oxide film 12 is formed by a CVD method, and is etched using a resist mask as a mask. As a result, an element isolation insulating film 12 is formed, and then, in order to obtain electrical element isolation characteristics, a p-type impurity such as boron is transferred to the epitaxial film region immediately below the element isolation Si oxide film 12. At the same time, a high-concentration region 13 ′ is formed by doping by ion implantation. At this time, ions are implanted into regions other than the element isolation region as well, so that the high-concentration region 13 of the impurity is located below the epitaxial film. The implantation energy and the thickness of the isolation oxide film are made larger than the epitaxial film (FIG. 3A).

【0020】次に、ゲート絶縁膜14を形成し、その上
に、ポリSiゲート電極15を形成し、引き続き、As
等のn型不純物のイオン注入によってソースおよびドレ
イン16、16’を形成する(図3(B))。この時、
ゲート電極材料は、タングステン、アルミ等の金属でも
よい。
Next, a gate insulating film 14 is formed, and a poly-Si gate electrode 15 is formed thereon.
The source and drain 16, 16 ′ are formed by ion implantation of n-type impurities such as (FIG. 3B). At this time,
The gate electrode material may be a metal such as tungsten or aluminum.

【0021】尚このpウェルをnウェルに、エピタキシ
ャル膜へのボロンのイオン注入をリンまたはヒソにする
ことによりpチャネルトランジスタの形成も可能であ
る。
It is also possible to form a p-channel transistor by using the p-well as an n-well and implanting boron ions into the epitaxial film using phosphorus or phosphor.

【0022】次に、他の実施例の半導体装置の製造方法
として、相補型MOS半導体装置の製造工程を図4およ
び図5を用いて説明する。
Next, as a method of manufacturing a semiconductor device of another embodiment, a process of manufacturing a complementary MOS semiconductor device will be described with reference to FIGS.

【0023】まず、p型のSi基板17上に選択的にp
ウェル18とnウェル19を形成する(図4(A))。
ここで、p型基板によってはpウェルを必要としない場
合もある。
First, p-type silicon substrate 17 is selectively p-type.
A well 18 and an n-well 19 are formed (FIG. 4A).
Here, a p-well may not be required depending on the p-type substrate.

【0024】次に、基板上にエピタキシャルSi膜20
を形成する。その上に選択的に素子分離用絶縁膜である
Si酸化膜21を形成する(図4(B))。
Next, an epitaxial Si film 20 is formed on the substrate.
To form An Si oxide film 21 as an element isolation insulating film is selectively formed thereon (FIG. 4B).

【0025】その後、電気的な素子分離のためにレジス
トマスク22等を利用し、素子分離絶縁膜下のエピタキ
シャル膜にドープされるように、pウェルにはボロン
を、nウェルにはリンをイオン注入し、その後の活性化
熱処理でp型不純物高濃度領域23,23’およびn型
不純物高濃度領域24,24’を形成する。この時、ボ
ロンの代わりにガリウムまたはインジウムでもよく、リ
ンの代わりにヒソまたはアンチモンでもよい(図4
(C))。次に、ゲート絶縁膜31としてSi酸化膜を
形成し、その上に選択的に不純物ドープしたポリシリコ
ンゲート電極25,26を形成する(図5(A))。こ
こで、ゲート電極への不純物ドーピングは、ポリシリン
コ加工前にドープする事も、また、加工後、イオン注入
法等によりドープする事も可能である。
Then, using a resist mask 22 or the like for electrical element isolation, boron is ion-implanted into the p-well and phosphorus is ion-implanted into the n-well so as to be doped into the epitaxial film below the element isolation insulating film. Implantation and subsequent activation heat treatment form p-type impurity high concentration regions 23 and 23 'and n-type impurity high concentration regions 24 and 24'. At this time, gallium or indium may be used instead of boron, and hisso or antimony may be used instead of phosphorus (FIG. 4).
(C)). Next, a Si oxide film is formed as the gate insulating film 31, and polysilicon gate electrodes 25 and 26 selectively doped with impurities are formed thereon (FIG. 5A). Here, the impurity doping to the gate electrode can be performed before the polysilicon processing, or after the processing by ion implantation or the like.

【0026】引き続き、n型、p型それぞれのソースお
よびドレイン領域27、27’、28、28’を形成す
る(図5(B))。ここで、側壁絶縁膜と組み合わせて
LDD領域を設けることも可能である。
Subsequently, n-type and p-type source and drain regions 27, 27 ', 28 and 28' are formed (FIG. 5B). Here, an LDD region can be provided in combination with the sidewall insulating film.

【0027】次に図6および図7を参照して本発明の別
の実施例の半導体装置及びその製造方法を説明する。
Next, a semiconductor device according to another embodiment of the present invention and a method of manufacturing the same will be described with reference to FIGS.

【0028】図6は図3(B)においてエピタキシャル
膜11の不純物濃度を1×1014cm-3とし、ゲート電
極15下のエピタキシャル膜に、ソース16からドレイ
ン16’方向にその不純物濃度分布が単調減少した領域
29を付加した構造である。
FIG. 6 shows that the impurity concentration of the epitaxial film 11 is 1 × 10 14 cm −3 in FIG. 3B, and that the impurity concentration distribution in the epitaxial film under the gate electrode 15 extends from the source 16 to the drain 16 ′. This is a structure in which a monotonically reduced region 29 is added.

【0029】図7に図6を製造する工程を示す。図3
(B)までの工程の後、基板法線方向から20°程度に
傾けてボロン(B+ )をイオン注入する。ここで、ボロ
ンのイオン注入をソースおよびドレイン16、16’形
成前に行うことも可能である。また、イオン注入する角
度θは、しきい値電圧等の素子性能の設計の都合によ
り、変更することが可能である。
FIG. 7 shows a process for manufacturing FIG. FIG.
After the steps up to (B), boron (B + ) ions are implanted at an angle of about 20 ° from the normal direction of the substrate. Here, it is also possible to perform boron ion implantation before forming the source and drain 16, 16 '. The angle θ at which ions are implanted can be changed depending on the design of the device performance such as the threshold voltage.

【0030】[0030]

【発明の効果】本発明の半導体装置によれば、素子分離
絶縁膜がエピタキシャル膜上に形成された構成であるか
ら、エピタキシャル膜の成膜時に素子分離端で膜中に結
晶欠陥の発生及び下地の不純物の再拡散をさせることな
く、素子領域の設計寸法からの変動抑制と素子特性の向
上が同時に達成できる。
According to the semiconductor device of the present invention, since the element isolation insulating film is formed on the epitaxial film, the occurrence of crystal defects in the film at the element isolation end and the formation of the underlayer during the formation of the epitaxial film. In this case, it is possible to simultaneously suppress the variation from the design dimensions of the element region and improve the element characteristics without re-diffusion of the impurity.

【0031】また本発明の製造方法によれば、エピタキ
シャル膜中の素子分離端に欠陥をエピタキシャル成長時
に導入すること無く、電気的な素子分離とウェル抵抗の
低減、ラッチアップ防止を同時に達成できる構造を容易
に作ることができる。
Further, according to the manufacturing method of the present invention, a structure capable of simultaneously achieving electrical element isolation, reduction of well resistance and prevention of latch-up without introducing defects at the element isolation end in the epitaxial film during epitaxial growth. Can be easily made.

【0032】さらに図6のような構成を用いることによ
り、従来の低濃度ウェルに較べて、ドレイン端のチャネ
ル基板不純物濃度を下げることが可能になり、その結
果、電流駆動能力がより向上する。そして、ソースから
ドレインに向けてそのチャネル不純物濃度を単調減少さ
せた構造のみの場合より、短チャネル効果によるしき値
の低下を抑制する事が可能になる。
Further, by using the structure as shown in FIG. 6, it becomes possible to lower the impurity concentration of the channel substrate at the drain end as compared with the conventional low concentration well, and as a result, the current driving capability is further improved. Then, it is possible to suppress a decrease in the threshold value due to the short channel effect as compared with the case of only the structure in which the channel impurity concentration is monotonously decreased from the source to the drain.

【0033】さらに図7のような工程を用いる事によ
り、エピタキシャル膜中にその下地からの不純物の再拡
散を抑制することで、チャネルのドレイン端の不純物濃
度を低く保ち、かつ、微細ゲート長でのしきい値電圧の
低下を抑制することが可能な上記に構成を得ることがで
きる。
Further, by using the process as shown in FIG. 7, the re-diffusion of impurities from the base in the epitaxial film is suppressed, so that the impurity concentration at the drain end of the channel is kept low and the gate length is reduced. The above configuration capable of suppressing the threshold voltage from being lowered can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の半導体装置を示す断面図で
ある。
FIG. 1 is a sectional view showing a semiconductor device according to one embodiment of the present invention.

【図2】本発明の一実施例の半導体装置の製造方法を工
程順に示す断面図である。
FIG. 2 is a sectional view illustrating a method of manufacturing a semiconductor device according to an embodiment of the present invention in the order of steps.

【図3】図2の続きの工程を順に示す断面図である。FIG. 3 is a cross-sectional view showing a step subsequent to FIG. 2 in order;

【図4】本発明の他の実施例の半導体装置の製造方法を
工程順に示す断面図である。
FIG. 4 is a sectional view illustrating a method of manufacturing a semiconductor device according to another embodiment of the present invention in the order of steps.

【図5】図4の続きの工程を順に示す断面図である。FIG. 5 is a cross-sectional view showing a step subsequent to FIG. 4 in order;

【図6】本発明の別の実施例の半導体装置を示す断面図
である。
FIG. 6 is a sectional view showing a semiconductor device according to another embodiment of the present invention.

【図7】図6の半導体装置を得るための工程を示す断面
図である。
FIG. 7 is a sectional view showing a step for obtaining the semiconductor device of FIG. 6;

【符号の説明】[Explanation of symbols]

1 p型半導体基板 2 pウェル 3 エピタキシャル膜 4 素子分離絶縁膜 5,5’ p型不純物高濃度領域 6 ゲート絶縁膜 7 ポリSiゲート電極 8,8’ ソース,ドレイン 9 p型Si基板 10 pウェル 11 Si膜 12 素子分離絶縁膜 13,13’ 不純物高濃度領域 14 ゲート絶縁膜 15 ゲートポリSi電極 16,16’ ソース,ドレイン 17 p型Si基板 18 pウェル 19 nウェル 20 エピタキシャルSi膜 21 素子分離Si酸化膜 22 レジストマスク 23,23’ p型不純物高濃度領域 24,24’ n型不純物高濃度領域 25 nチャネルMOSトランジスタゲート電極 26 pチャネルMOSトランジスタゲート電極 27,27’ nチャネルMOSトランジスタソー
ス,ドレイン 28,28’ pチャネルMOSトランジスタソー
ス,ドレイン 29 ソースからドレインに向けて不純物濃度が単調
減少している領域 30 レジストマスク 31 ゲート絶縁膜
Reference Signs List 1 p-type semiconductor substrate 2 p-well 3 epitaxial film 4 element isolation insulating film 5, 5 ′ p-type impurity high concentration region 6 gate insulating film 7 poly-Si gate electrode 8, 8 ′ source, drain 9 p-type Si substrate 10 p-well REFERENCE SIGNS LIST 11 Si film 12 element isolation insulating film 13, 13 ′ high impurity concentration region 14 gate insulating film 15 gate poly Si electrode 16, 16 ′ source, drain 17 p-type Si substrate 18 p well 19 n well 20 epitaxial Si film 21 element isolation Si Oxide film 22 Resist mask 23,23 'High concentration p-type impurity region 24,24' High concentration n-type impurity region 25 N-channel MOS transistor gate electrode 26 P-channel MOS transistor gate electrode 27,27 'N-channel MOS transistor source and drain 28,28 'p-channel MOS transistor Source, region 30 resist mask 31 gate insulating film impurity concentration toward the drain from the drain 29 source monotonically decreases

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一導電型半導体基板上に半導体エピタキ
シャル膜を具備し、該半導体エピタキシャル膜の低不純
物濃度または不純物を含まない第1の部分を活性領域に
有する半導体装置において、素子分離絶縁膜が前記エピ
タキシャル膜の第2の部分上に配置され、かつ、前記半
導体エピタキシャル膜の前記第1の部分の下に位置する
個所の不純物濃度が前記エピタキシャル膜の前記第1の
部分の不純物濃度より高く、かつ、前記素子分離絶縁膜
下の前記エピタキシャル膜の前記第2の部分の不純物濃
度が前記エピタキシャル膜の前記第1の部分の不純物濃
度より高いことを特徴とする半導体装置。
In a semiconductor device having a semiconductor epitaxial film on a semiconductor substrate of one conductivity type and a first portion having a low impurity concentration or no impurity in the semiconductor epitaxial film in an active region, the element isolation insulating film is An impurity concentration of a portion located on the second portion of the epitaxial film and located below the first portion of the semiconductor epitaxial film is higher than an impurity concentration of the first portion of the epitaxial film; In addition, the impurity concentration of the second portion of the epitaxial film below the element isolation insulating film is higher than the impurity concentration of the first portion of the epitaxial film.
【請求項2】 一導電型半導体基板上に低濃度または不
純物を含まないエピタキシャル膜を成長する工程と、前
記エピタキシャル膜上の素子分離領域のみに素子分離絶
縁膜を形成する工程と、基板全面にイオン注入を行っ
て、その素子分離絶縁膜下のエピタキシャル層と素子分
離領域以外の領域のエピタキシャル層より下に不純物を
導入して濃度を高める工程とを有することを特徴とする
半導体装置の製造方法。
A step of growing an epitaxial film having a low concentration or containing no impurities on a semiconductor substrate of one conductivity type; a step of forming an element isolation insulating film only in an element isolation region on the epitaxial film; Implanting impurities below the epitaxial layer below the element isolation insulating film and the epitaxial layer in a region other than the element isolation region to increase the concentration by ion implantation. .
【請求項3】 ゲート電極直下の前記エピタキシャル膜
の不純物濃度がソースからドレインに向かって単調減少
する分布を有することを特徴とする請求項1記載の半導
体装置。
3. The semiconductor device according to claim 1, wherein the impurity concentration of the epitaxial film immediately below the gate electrode has a distribution that monotonically decreases from the source to the drain.
【請求項4】 一導電型半導体基板上に低濃度または不
純物を含まないエピタキシャル膜を成長する工程と、前
記エピタキシャル膜上の素子分離領域のみに素子分離絶
縁膜を形成する工程と、基板全面にイオン注入を行っ
て、その素子分離絶縁膜下のエピタキシャル層と素子分
離領域以外の領域のエピタキシャル層より下に不純物を
導入して濃度を高める工程と、ゲート電極形成後にソー
ス側から該ゲート電極下に不純物を基板法線から傾けた
角度でイオン注入する工程とを有することを特徴とする
請求項3記載の半導体装置の製造方法。
4. A step of growing an epitaxial film having a low concentration or containing no impurities on a semiconductor substrate of one conductivity type; a step of forming an element isolation insulating film only in an element isolation region on the epitaxial film; Performing ion implantation to increase the concentration by introducing impurities below the epitaxial layer under the device isolation insulating film and the epitaxial layer in a region other than the device isolation region; 4. The method according to claim 3, further comprising the step of: ion-implanting impurities at an angle inclined from a substrate normal.
JP29285894A 1994-11-28 1994-11-28 Semiconductor device and manufacturing method thereof Expired - Fee Related JP2701762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29285894A JP2701762B2 (en) 1994-11-28 1994-11-28 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29285894A JP2701762B2 (en) 1994-11-28 1994-11-28 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08153873A JPH08153873A (en) 1996-06-11
JP2701762B2 true JP2701762B2 (en) 1998-01-21

Family

ID=17787288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29285894A Expired - Fee Related JP2701762B2 (en) 1994-11-28 1994-11-28 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2701762B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001296754A1 (en) * 2000-10-19 2002-04-29 Sun Microsystems, Inc. Method and apparatus for introducing an equivalent rc circuit in a mos device using resistive wells
JP2006186261A (en) 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
KR101746246B1 (en) * 2009-09-30 2017-06-12 엠아이이 후지쯔 세미컨덕터 리미티드 Electronic devices and systems, and methods for making and using the same
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
US8273617B2 (en) 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8970289B1 (en) * 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9112495B1 (en) 2013-03-15 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods

Also Published As

Publication number Publication date
JPH08153873A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
JP2701762B2 (en) Semiconductor device and manufacturing method thereof
US7297994B2 (en) Semiconductor device having a retrograde dopant profile in a channel region
US6277675B1 (en) Method of fabricating high voltage MOS device
US6881641B2 (en) Semiconductor device having a retrograde dopant profile in a channel region and method for fabricating the same
US5532175A (en) Method of adjusting a threshold voltage for a semiconductor device fabricated on a semiconductor on insulator substrate
US5937297A (en) Method for making sub-quarter-micron MOSFET
US20070184623A1 (en) Semiconductor device comprising buried channel region and method for manufacturing the same
JP2004241755A (en) Semiconductor device
JPH11330454A (en) Semiconductor device and its manufacture
JP2000260987A (en) Semiconductor device and its manufacture
KR100376182B1 (en) Insulated gate field effect transistor and its manufacturing method
KR20030045633A (en) Semiconductor device and method for manufacturing the same
US6399961B1 (en) Field effect transistor having dielectrically isolated sources and drains and method for making same
US6724049B2 (en) SOI semiconductor device with insulating film having different properties relative to the buried insulating film
US20010002058A1 (en) Semiconductor apparatus and method of manufacture
US6391728B1 (en) Method of forming a highly localized halo profile to prevent punch-through
US6172405B1 (en) Semiconductor device and production process therefore
US6680504B2 (en) Method for constructing a metal oxide semiconductor field effect transistor
JP2852901B2 (en) Method of manufacturing MOSFET
JP4265890B2 (en) Method for manufacturing insulated gate field effect transistor
US6720224B2 (en) Method for forming transistor of semiconductor device
US6905932B2 (en) Method for constructing a metal oxide semiconductor field effect transistor
JP3714396B2 (en) Manufacturing method of semiconductor device
JP4265889B2 (en) Method for manufacturing insulated gate field effect transistor
JPH09199716A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970902

LAPS Cancellation because of no payment of annual fees