JP3376904B2 - Biological denitrification method - Google Patents
Biological denitrification methodInfo
- Publication number
- JP3376904B2 JP3376904B2 JP02207998A JP2207998A JP3376904B2 JP 3376904 B2 JP3376904 B2 JP 3376904B2 JP 02207998 A JP02207998 A JP 02207998A JP 2207998 A JP2207998 A JP 2207998A JP 3376904 B2 JP3376904 B2 JP 3376904B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- denitrification
- electron donor
- tank
- rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は微生物の脱窒反応に
より廃水中の窒素分を分解除去し、膜分離により微生物
と処理水とに固液分離する生物脱窒方法に係り、特に、
分離膜の汚染(膜フラックスの低下,差圧上昇)を抑制
し、長時間薬品洗浄することなく安定かつ効率的な処理
を行う方法に関する。
【0002】
【従来の技術及び先行技術】従来、窒素含有水の処理方
法として、窒素含有水を電子供与体の供給下、微生物と
接触させて生物的脱窒反応により窒素分を分解除去し、
この脱窒処理水を膜分離処理することにより固液分離
し、透過水を処理水として得る方法がある。
【0003】この方法で脱窒処理水の膜分離を長時間継
続して行うと、分離膜の汚染で膜フラックスが低下した
り、或いは、定流量運転を行っている場合であれば、一
定の膜フラックスに対する差圧が上昇してくる。
【0004】膜の汚染により膜フラックスが低下ないし
差圧が上昇した場合には、膜の薬品洗浄を行うか、或い
は膜を新品のものと交換することにより、再び所定の膜
フラックスないし差圧で運転を行うことが可能となる。
【0005】特公平6−83838号公報には、このよ
うな膜の薬品洗浄を容易に行うための装置が提案されて
いるが、膜の薬品洗浄回数が多くなると洗浄薬品コスト
やメンテナンスコストが嵩み、さらに膜が劣化して膜の
寿命が短くなるため、膜交換コストの増大にもつなが
る。このため、膜の薬品洗浄手段を工夫するだけではな
く、膜の汚染そのものを抑制する方法が望まれる。
【0006】これに対して、特開平8−332495号
公報には、活性汚泥処理水を膜分離するに当り、活性汚
泥の呼吸速度を測定し、活性汚泥を内生呼吸に近い状態
に近づけてから膜分離を行うことで膜の汚染を抑制する
方法が提案されている。
【0007】なお、特願平8−302149号には、脱
窒反応を促進させるための電子供与体の添加方法とし
て、曝気槽で間欠曝気を行い、その処理水を膜分離する
方法において、脱窒工程(嫌気工程)開始時の脱窒反応
の立ち上がりを速めるために、脱窒工程開始後、最初の
5分間に脱窒に必要な電子供与体を急速に添加すること
が記載されている。
【0008】
【発明が解決しようとする課題】前述の如く、膜汚染に
対する対応策としては、特公平6−83838号公報に
記載されるように、膜の薬品洗浄のための装置設備を改
良することよりも、特開平8−332495号公報に記
載されるように、膜の汚染自体を防止することが望まれ
る。しかしながら、脱窒反応を行った活性汚泥を膜分離
する場合には、特開平8−332495号公報記載の方
法に従って、微生物の呼吸速度を低下させることにより
膜の汚染速度をある程度抑制できるものの、十分ではな
い場合があった。
【0009】なお、特願平8−302149号には、電
子供与体の添加方法について記載されているが、膜汚染
を防止するためのものではない。
【0010】本発明は上記従来の問題点を解決し、電子
供与体の供給下、廃水中の窒素分を微生物による脱窒反
応で分解除去し、脱窒処理水を膜分離して処理水と汚泥
とに固液分離する生物脱窒方法において、膜の汚染を抑
制し、長期に亘り安定かつ効率的な処理を行うことがで
きる方法を提供することを目的とする。
【0011】
【課題を解決するための手段】本発明の生物脱窒方法
は、窒素含有水を、電子供与体の供給下、微生物と接触
させて生物脱窒反応により窒素分を分解する脱窒工程
と、該脱窒工程の微生物含有混合水を膜分離して処理水
と汚泥とに分離する膜分離工程とを有する生物脱窒方法
において、前記電子供与体の供給の間、該脱窒工程にお
ける微生物量当たりの電子供与体の供給速度を0.4k
g−BOD/kg−VSS/day以下とすることを特
徴とする。
【0012】本発明に従って、脱窒反応槽における電子
供与体の供給速度を、電子供与体供給時間当たり、また
槽内微生物量(VSS)当たり、0.4kg−BOD/
kg−VSS/day以下、望ましくは0.3kg−B
OD/kg−VSS/day以下とすることにより、膜
の汚染速度を低減することができる。
【0013】このように、電子供与体の供給速度を低い
値に保つことが膜汚染を軽減する機構の詳細は明らかで
はないが、次のようなことが考えられる。即ち、電子供
与体の供給速度が高い領域では、微生物から高分子の粘
性物質等が分泌され、この物質が膜汚染を促進している
と推定される。通常、電子供与体は微生物が硝酸呼吸反
応によりエネルギー(ATP)を生産するために用いら
れるため、電子供与体の添加速度が高いということは微
生物の代謝反応が活発になることを意味する。このよう
に活発な代謝反応に伴って、上記膜汚染物質が分泌され
るものと考えられる。これに対して、本発明では、電子
供与体の供給速度を抑えることで、この膜汚染物質の分
泌を抑制し、膜の汚染速度を低減することができる。
【0014】ところで、脱窒処理水の膜分離方法として
は、膜面流速で膜面への汚染物質の付着を防止するため
に一般にクロスフロー濾過が採用されている。このクロ
スフロー濾過に当り、膜面にクロスフロー流速を与える
方法は、循環ポンプを用いる方法と、曝気により生ずる
循環流路中に膜モジュールを設けることによりクロスフ
ロー流速を与える方法(浸漬膜方式)とに大別される。
ポンプ循環で膜面流速を確保し、汚染物質の付着を防止
する膜濾過装置に比べ、浸漬膜は曝気水流による撹乱で
汚染物質を剥離するため、剥離力としては弱く、汚染物
質の影響を受けやすい。汚染物質の剥離に最も有効な膜
面流速の値で比較すると、ポンプ循環タイプは1〜3m
/secの膜面流速とするのに対し、浸漬膜では0.2
〜0.5m/sec程度であり、浸漬膜の方が汚染物質
が付着しやすい状況となっている。しかも、浸漬膜方式
の場合は、膜面に十分な曝気水流を当てる目的で強曝気
するため、膜浸漬槽中の汚泥は過曝気の状態となり著し
い酸化環境となる。一方で、脱窒反応時は酸素不足の環
境となり、特に電子供与体の供給速度が高い場合には硝
酸還元による電子受容反応が追いつかず、微生物内部は
著しい還元環境になるものと思われる。このように、環
境が激しく変化することは微生物にとってはストレスと
なるため、より一層膜を汚染する粘質物等を放出しやす
いことが推測される。
【0015】このようなことから、本発明の方法は特
に、浸漬膜方式を採用する脱窒処理に適用した場合に有
効であり、汚泥に著しい還元環境を与えないことで膜の
汚染物質の発生を防止して、膜汚染を有効に防止するこ
とができる。
【0016】
【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
【0017】本発明の生物脱窒方法は、基本的には、窒
素含有水を電子供与体の供給下に微生物と接触させて脱
窒する脱窒工程と、脱窒処理水を膜分離処理する膜分離
工程とからなる。
【0018】この脱窒工程では、電子供与体の存在下、
嫌気性条件にて水中の硝酸態窒素、亜硝酸態窒素は脱窒
細菌により窒素ガスまで分解される。この脱窒処理方式
には特に制限はなく、浮遊法、担体添加法や、連続処理
方法、回分式処理方法や、原水連続供給間欠曝気法など
のいずれでもよい。
【0019】通常、水中には窒素として有機態窒素とア
ンモニア態窒素が存在するため、脱窒処理は脱窒工程と
硝化工程とを組み合わせて実施される。例えば、硝化工
程、脱窒工程に順次通水する方法、更にそれに仕上げ脱
窒工程を付加する方法、硝化工程処理水を脱窒工程に循
環する循環法、複数の硝化、脱窒工程に原水を分注する
ステップ脱窒法などがあり、本発明はいずれの処理方式
のものにも適用可能である。
【0020】一方、脱窒処理水を膜分離処理する膜分離
手段にも特に制限はなく、任意の手段を適用できる。
【0021】分離膜としては、MF(精密濾過)膜、U
F(限外濾過)膜が用いられるが、特に運転圧が低く、
差圧上昇の小さいMF膜が好適である。
【0022】膜形式としては、中空糸膜、管状膜、平膜
などが挙げられ、装置形式としては、浸漬膜型、スパイ
ラル型、プレート型、回転円盤型などが用いられる。
【0023】膜分離装置の圧力形成方式としても、ポン
プで原水を加圧供給する方式、透過水側を減圧する吸引
方式のいずれでも良い。
【0024】なお、膜設置形式としては、前述の如く、
浸漬膜方式と非浸漬型のポンプ循環方式とがある。この
うち、浸漬膜方式はポンプ循環方式に比べてより一層膜
汚染が生じやすく、本発明の適用による膜汚染の防止効
果が有効に発揮されることから、本発明は特に、浸漬膜
方式の膜分離装置への適用が好適である。
【0025】本発明の生物脱窒方法は、このように脱窒
処理水を膜分離処理する生物脱窒方法において、脱窒工
程への電子供与体の供給の間、脱窒工程における微生物
量当たりの電子供与体の供給速度(電子供与体供給時間
当たり、脱窒槽内生物量当たりの電子供与体の供給速
度。以下単に「電子供与体の供給速度」と称す。)を
0.4kg−BOD/kg−VSS/day以下、好ま
しくは、0.3kg−BOD/kg−VSS/day以
下とすることにより、膜汚染を防止するものである。
【0026】ここで、脱窒反応を促進するために添加さ
れる電子供与体としては、微生物(脱窒細菌)に利用で
きる還元性物質であればよく、任意のものが使用でき
る。通常の生物脱窒処理では、メタノールが常用されて
いるが、その他、エタノール、酢酸などの低級有機物な
どでもよい。本発明ではメタノールのBODを1.0k
g−BOD/kg−メタノールとする。
【0027】また、原水にBODが含まれる場合には脱
窒槽に原水を導入して原水中のBODを脱窒反応におけ
る電子供与体として有効利用する場合も多い。この場
合、原水中のBODだけでは脱窒反応を完了するだけの
還元力が得られない場合には、一般に、さらにメタノー
ル等の電子供与体を脱窒槽に補給する。
【0028】本発明では、このように、メタノール等の
電子供与体をすべて外部から添加する場合、原水中のB
ODを電子供与体として利用する場合、或いは、原水中
のBODを電子供与体として利用し、不足分を外部から
補給する場合のいずれの場合にも適用することが可能で
あり、いずれの場合においても、脱窒に寄与する電子供
与体が脱窒槽に流入している期間において、当該電子供
与体の脱窒槽流入量の合計が、脱窒槽中のVSS量当た
り0.4kg−BOD/kg−VSS/day以下、好
ましくは0.3kg−BOD/kg−VSS/day以
下となるように電子供与体の供給速度を制御する。な
お、電子供与体の供給速度を過度に小さくすると、脱窒
効率が低下したり、窒素負荷を過度に低下させる必要が
生じるため、電子供与体の供給速度は0.1kg−BO
D/kg−VSS/day以上とするのが好ましい。
【0029】このような電子供与体の供給速度の調整方
法としては次の方法が挙げられる。
【0030】 電子供与体の供給速度を直接増減する
ことにより調整する。
脱窒槽の微生物量を増減することにより調整する。
【0031】上記の方法では、電子供与体の供給速度
が上記数値条件となるように、電子供与体の添加量また
は添加時間や原水の流入量を調整する。
【0032】特に、脱窒反応槽が間欠曝気槽である場
合、特願平8−302149号に記載されるように脱窒
工程の最初の5分間程度の間に急速に電子供与体を添加
する方法を採用すると、電子供与体供給時間(この場合
には5分間)当たりの電子供与体供給速度は非常に大き
くなり、膜分離工程における膜汚染速度が速くなる。こ
のため、間欠曝気法を用いる場合は、脱窒工程の60〜
100%の時間にわたって必要量の電子供与体を供給す
ることで、本発明を実現することが望ましい。また、間
欠曝気における他の工程(硝化工程、リン除去工程等)
の反応時間に余裕がある場合には、それらの工程の時間
を短くし、脱窒工程をなるべく長く取り、電子供与体の
供給速度はなるべく遅くすることが有効である。
【0033】また、本発明を達成するためには負荷変動
を抑制し、なるべく均一な負荷をかけることも有効であ
る。即ち、高負荷がかかるときにはそれに見合った量の
電子供与体を供給する必要があるため、電子供与体の供
給速度は高くなり、膜の汚染速度が速くなる。これに対
して、調整槽を用いるなどして負荷を均一にかけること
により、電子供与体の供給総量を変えることなく、供給
速度を安定して低く抑えることができ、膜の汚染は抑制
される。負荷の調整方法は、本発明の要件を満たす限り
従来公知のいずれの方法でも良いが、通常はピーク時の
負荷が平均負荷の1.5倍以下になるようにするのが好
ましい。
【0034】上記の方法は、脱窒槽のMLVSSを高
濃度に維持することで、本発明の電子供与体の供給速度
を満たすものである。
【0035】通常、膜分離原水のMLSS濃度、MLV
SS濃度は15000mg/L以下、望ましくは100
00mg/L以下と、低い方が膜汚染を軽減する効果が
あると考えられていたが、脱窒反応を行う装置において
は、MLVSS濃度を低く保つと汚泥当たりの電子供与
体供給速度は高くなり、むしろ膜汚染を促進する結果に
なることが多い。このような場合には、MLVSS濃度
を高く保ち、本発明にあるように汚泥当たりの電子供与
体供給速度を0.4kg−BOD/kg−VSS/da
y以下、望ましくは0.3kg−BOD/kg−VSS
/day以下になるようにする。本発明によれば、ML
VSS濃度10000〜30000mg/Lの高濃度領
域においても膜汚染速度が低い状態で固液分離すること
が可能である。但し、MLVSS濃度20000〜30
000mg/Lとする場合には電子供与体の供給速度を
更に低くし、0.025kg−BOD/kg−VSS/
day以下に保つことが望ましい。
【0036】このように、脱窒槽の汚泥量を高くするに
は、脱窒槽からの汚泥引き抜き量を調整するか、膜分離
工程からの返送汚泥量を調整すれば良い。即ち、膜分離
工程の上流側の脱窒槽(脱窒槽或いは間欠曝気槽)の浮
遊汚泥濃度に比べて、例えば膜分離槽の浮遊汚泥濃度
は、次の式で示されるように濃縮されるため、返送汚泥
量を多くすることで濃縮を防止すれば、上流側の浮遊汚
泥濃度を高めることができる。
【0037】
【数1】
【0038】例えば、α=1のときには上流側の浮遊汚
泥濃度は膜分離槽中の浮遊汚泥濃度の1/2となってし
まうが、α=3まで上げれは、上流側の浮遊汚泥濃度を
膜分離槽中の濃度の3/4まで高めることができる。こ
のためαは2以上、好ましくは3以上とすることで、本
発明の電子供与体の供給速度を容易に実現することがで
きるようになる。
【0039】このような本発明の生物脱窒方法は、有機
態窒素、アンモニア態窒素、硝酸態窒素、亜硝酸態窒素
等、生物学的な硝化反応ないし脱窒反応によって除去す
ることができる窒素分を含有する全ての廃水の処理に適
用することができる。
【0040】
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
【0041】実施例1,2、比較例1,2
図1に示す装置に、埋立浸出水を炭酸ソーダ添加アルカ
リ凝集沈殿法で連続的にカルシウム除去し、硫酸でpH
6.0に中和したものを原水として800L/dayで
連続的に通水して生物的脱窒処理を行った。各槽の容量
は次の通りであり、水質は各RUNごとに表1に示すよ
うに調整した。なお、BOD濃度は酢酸を主体として低
級脂肪酸の混合液を添加して調整し、T−Nは硫酸アン
モニウムを添加することにより調整した。
【0042】
間欠曝気槽1 :800L
仕上げ硝酸槽2: 67L
仕上げ脱窒槽3:133L
膜分離槽4 :322L
【0043】
【表1】
【0044】間欠曝気槽1においては、好気工程(硝化
工程)30分間、嫌気工程(脱窒工程)30分間のサイ
クルの繰り返しとし、間欠曝気槽1は、必要に応じて苛
性ソーダ(NaOH)又は硫酸(H2SO4)を添加する
ことにより、pH7.2前後にpH調整した。また、脱
窒の電子供与体にはメタノールを用い、嫌気工程で添加
した。ただし、RUN1では嫌気工程開始直後の5分間
で必要量を添加し、RUN2,RUN3では嫌気工程中
の30分間にわたり連続して添加した。この間欠曝気槽
1からは、22.3L/dayの割合で汚泥を引き抜
き、間欠曝気槽1当たりの汚泥滞留時間(SRT)を3
6日で一定とした。
【0045】上記した条件で間欠曝気槽1を運転し、こ
の間欠曝気槽1の流出液を仕上げ硝化槽2、仕上げ脱窒
槽3に順次移送し、更に続けて膜分離槽4に導入した。
【0046】仕上げ硝化槽2では槽内液のDO値が2m
g/L以上となるように曝気を行い、また仕上げ脱窒槽
3では、ORPが−100〜−150mVとなるように
ORP計と連動してメタノールを添加して撹拌した。こ
のとき、仕上げ脱窒槽3におけるメタノール添加速度は
0〜0.25kg−メタノール/kg−VSS/day
の範囲で推移した。
【0047】膜分離槽4の浸漬膜5としては、三菱レイ
ヨン社製中空糸MF膜「ステラポアL(UMF424S
LI)」を用いた。この膜は、公称孔径0.1μm、外
径410μm、内径270μmの親水化ポリエチレン製
の中空糸MF膜を平板状に配置したものであり、膜面積
は4m2である。膜分離槽はバッフル板6を設置した旋
回流構造とし、膜の下方からは160L/min(旋回
流上昇部底面積当たり100m3/m2/hour)で空
気を曝気した。膜フラックスは0.3m3/m2/day
とし、8分稼働、2分停止の間欠運転を行った。この膜
分離槽4は硫酸を添加してpH7.2前後にpH調整
し、分離汚泥は間欠曝気槽1に返送した。この返送汚泥
量は、原水流量の3倍とした。
【0048】RUN1における、膜差圧の変化を図2
に、RUN2〜4における膜差圧の変化を図3に示す。
【0049】図2,3より次のことが明らかである。
【0050】即ち、RUN1(比較例1)では、メタノ
ールを嫌気工程の最初の5分間で急速に添加したため、
電子供与体の供給速度が、表1にあるように0.88k
g−BOD/kg−VSS/dayと高い値であった。
このとき、膜の差圧は平均0.87kPa/dayで上
昇した。この条件では、図2にあるように1ケ月で膜差
圧が約26kPaにまで上昇するため、ほぼ1ケ月ごと
に薬品洗浄を行う必要がある。なお、薬品洗浄の目安
は、膜フラックス0.3m3/m2/dayの運転におい
ては、膜差圧が25〜30kPa以上に上昇した時点で
ある。
【0051】これに対しRUN2(実施例1)では、嫌
気工程中メタノールを連続添加しており、電子供与体の
供給速度が0.32kg−BOD/kg−VSS/da
y程度と、RUN1に比べ低い値に保たれている。この
とき膜差圧の上昇速度は平均して0.1kPa/day
であり、RUN1に比べて非常に低いレベルに抑えるこ
とができた。この差圧上昇速度であれば、半年に1回の
薬品洗浄で十分であり、薬品洗浄頻度をRUN1の場合
の1/6に抑えることができる。
【0052】RUN3(比較例2)は、メタノールの添
加方法はRUN2と同様とし、窒素負荷及びメタノール
添加量を高めたものである。このRUN3では、電子供
与体の供給速度は0.64kg−BOD/kg−VSS
/dayまで上昇しており、この間の膜差圧の上昇速度
も0.38kPa/dayと、RUN2の約4倍に高ま
っている。この膜差圧の上昇速度は、2ケ月に1回の薬
品洗浄を要する速度であり、RUN2に比べて3倍の頻
度で薬品洗浄を行う必要がある。
【0053】なお、RUN3の後、膜を薬品洗浄し、再
びRUN2と同様の条件に戻して差圧上昇を調べたとこ
ろ(図3のRUN4:実施例2)、再び差圧上昇速度は
低くなった。このことからも、電子供与体の供給速度が
膜汚染と密接に関連していることが分かる。
【0054】以上の結果より、本発明によれば、電子供
与体の供給速度を制御することで、膜の差圧上昇を抑制
し、薬品洗浄頻度を著しく低減することができることが
わかる。
【0055】
【発明の効果】以上詳述した通り、本発明の生物脱窒方
法によれば、脱窒処理水を膜分離処理する生物脱窒方法
において、膜差圧の上昇ないし膜フラックスの低下を防
止して、薬品洗浄頻度を大幅に低減することができる。
この結果、薬剤使用量やメンテナンスコスト等の費用を
減らすことができる。また膜の劣化防止にも効果があ
り、膜寿命を延長して、膜交換コストを大幅に低減する
ことができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organism which decomposes and removes nitrogen in wastewater by a denitrification reaction of microorganisms, and separates solid and liquid into microorganisms and treated water by membrane separation. In connection with the denitrification method,
The present invention relates to a method for suppressing contamination of a separation membrane (reduction in membrane flux, increase in differential pressure) and performing stable and efficient treatment without chemical cleaning for a long time. 2. Description of the Related Art Conventionally, as a method for treating nitrogen-containing water, nitrogen-containing water is contacted with a microorganism under the supply of an electron donor to decompose and remove nitrogen by a biological denitrification reaction.
There is a method in which the denitrification-treated water is subjected to membrane separation treatment to be separated into a solid and a liquid to obtain permeated water as treated water. If the membrane separation of the denitrification treatment water is performed continuously for a long time by this method, the membrane flux may be reduced due to the contamination of the separation membrane, or a constant value may be maintained if a constant flow rate operation is performed. The differential pressure on the membrane flux increases. If the membrane flux is reduced or the differential pressure is increased due to the contamination of the membrane, the membrane is washed with a chemical or the membrane is replaced with a new one, so that the membrane flux is maintained at the predetermined membrane flux or the differential pressure again. Driving can be performed. Japanese Patent Publication No. 6-83838 proposes an apparatus for easily performing such chemical cleaning of a film. However, if the number of times of chemical cleaning of the film increases, the cleaning chemical cost and the maintenance cost increase. In addition, since the membrane is further deteriorated and the life of the membrane is shortened, the cost for replacing the membrane is increased. For this reason, a method is desired which not only devises a chemical cleaning means for the film but also suppresses the contamination of the film itself. [0006] On the other hand, Japanese Patent Application Laid-Open No. Hei 8-332495 discloses a method in which activated sludge treated water is subjected to membrane separation by measuring the respiration rate of the activated sludge and bringing the activated sludge closer to a state close to endogenous respiration. A method has been proposed in which membrane contamination is suppressed by performing membrane separation from water. Japanese Patent Application No. 8-302149 discloses a method of adding an electron donor for accelerating the denitrification reaction by performing intermittent aeration in an aeration tank and separating the treated water by membrane. It is described that, in order to accelerate the rise of the denitrification reaction at the start of the nitrification step (anaerobic step), an electron donor necessary for denitrification is rapidly added in the first 5 minutes after the start of the denitrification step. As described above, as a countermeasure against film contamination, as described in Japanese Patent Publication No. 6-83838, the equipment for chemical cleaning of the film is improved. Rather, it is desired to prevent the film itself from being contaminated, as described in JP-A-8-332495. However, when the activated sludge subjected to the denitrification reaction is subjected to membrane separation, according to the method described in JP-A-8-332495, the rate of contamination of the membrane can be suppressed to some extent by lowering the respiration rate of microorganisms, but it is not sufficient. There was no case. [0009] Japanese Patent Application No. 8-302149 describes a method of adding an electron donor, but it is not intended to prevent film contamination. The present invention solves the above-mentioned conventional problems. Under supply of an electron donor, nitrogen in wastewater is decomposed and removed by a denitrification reaction by microorganisms, and denitrification-treated water is subjected to membrane separation to form treated water. It is an object of the present invention to provide a biological denitrification method for solid-liquid separation into sludge, which can suppress membrane contamination and perform stable and efficient treatment for a long period of time. [0011] The biological denitrification method of the present invention is a denitrification method in which nitrogen-containing water is brought into contact with a microorganism under the supply of an electron donor to decompose nitrogen by a biological denitrification reaction. And a membrane separation step of membrane-separating the microorganism-containing mixed water of the denitrification step into treated water and sludge, wherein the denitrification step is performed during the supply of the electron donor. Supply rate of electron donor per microbial load
g-BOD / kg-VSS / day or less. According to the present invention, the supply rate of the electron donor in the denitrification reaction tank is set at 0.4 kg-BOD / per electron donor supply time and per microbial mass (VSS) in the tank.
kg-VSS / day or less, preferably 0.3 kg-B
By setting the OD / kg-VSS / day or less, the rate of film contamination can be reduced. Although the details of the mechanism for reducing the film contamination by keeping the electron donor supply rate at a low value are not clear, the following may be considered. That is, in a region where the supply speed of the electron donor is high, it is presumed that a high-molecular viscous substance or the like is secreted from the microorganism, and this substance promotes membrane contamination. Usually, an electron donor is used for a microorganism to produce energy (ATP) by a nitrate respiration reaction. Therefore, a high addition rate of the electron donor means that the metabolic reaction of the microorganism becomes active. It is considered that the membrane contaminants are secreted with the active metabolic reaction. On the other hand, in the present invention, by suppressing the supply rate of the electron donor, the secretion of this membrane contaminant can be suppressed, and the contamination rate of the membrane can be reduced. By the way, as a membrane separation method for denitrification-treated water, cross-flow filtration is generally employed in order to prevent contaminants from adhering to the membrane surface at a membrane surface flow rate. In this cross-flow filtration, a method of giving a cross-flow flow rate to the membrane surface includes a method of using a circulation pump and a method of providing a cross-flow flow rate by providing a membrane module in a circulation flow path generated by aeration (immersion membrane method). They are roughly divided into
Compared to a membrane filtration device that secures the flow rate of the membrane surface by pump circulation and prevents the adhesion of contaminants, the immersion membrane separates the contaminants by the disturbance of the aerated water flow. Cheap. Comparing with the most effective value of the film surface velocity for removing contaminants, the pump circulation type is 1-3 m
/ Sec, while the immersion film has a flow rate of 0.2
Approximately 0.5 m / sec, and the immersion film is more likely to adhere to contaminants. In addition, in the case of the immersion membrane system, the sludge in the membrane immersion tank is over-aerated because of strong aeration for the purpose of applying a sufficient aeration water flow to the membrane surface, resulting in a remarkably oxidizing environment. On the other hand, during the denitrification reaction, the environment becomes oxygen deficient, and especially when the supply rate of the electron donor is high, the electron accepting reaction due to nitrate reduction cannot catch up, and the inside of the microorganism is considered to be a remarkably reducing environment. As described above, since a drastic change in the environment is a stress for microorganisms, it is presumed that mucilage and the like contaminating the membrane are more likely to be released. From the above, the method of the present invention is particularly effective when applied to a denitrification treatment employing a submerged membrane system, and the generation of pollutants in the membrane by not giving a remarkable reducing environment to the sludge. And film contamination can be effectively prevented. Embodiments of the present invention will be described below in detail. The biological denitrification method of the present invention basically comprises a denitrification step in which nitrogen-containing water is brought into contact with a microorganism while supplying an electron donor to denitrify the water, and a membrane separation treatment of the denitrification-treated water. And a membrane separation step. In the denitrification step, in the presence of an electron donor,
Under anaerobic conditions, nitrate nitrogen and nitrite nitrogen in water are decomposed into nitrogen gas by denitrifying bacteria. The denitrification treatment method is not particularly limited, and may be any of a flotation method, a carrier addition method, a continuous treatment method, a batch treatment method, and an intermittent aeration method for continuous supply of raw water. Normally, organic nitrogen and ammonia nitrogen are present as nitrogen in water, so the denitrification treatment is carried out by combining the denitrification step and the nitrification step. For example, a method of sequentially passing water through a nitrification step and a denitrification step, a method of adding a finishing denitrification step to the method, a circulation method of circulating the nitrification step treatment water to a denitrification step, and a method of supplying raw water to a plurality of nitrification and denitrification steps. There is a step denitrification method for dispensing and the like, and the present invention can be applied to any treatment method. On the other hand, the membrane separation means for subjecting the denitrification-treated water to membrane separation is not particularly limited, and any means can be applied. As the separation membrane, MF (microfiltration) membrane, U
Although an F (ultrafiltration) membrane is used, the operating pressure is particularly low,
An MF film having a small rise in differential pressure is preferable. Examples of the membrane type include a hollow fiber membrane, a tubular membrane, and a flat membrane, and examples of the apparatus type include an immersion membrane type, a spiral type, a plate type, and a rotating disk type. As the pressure forming system of the membrane separation apparatus, any of a system for supplying raw water under pressure by a pump and a suction system for reducing the pressure on the permeated water side may be used. As described above, the membrane installation type is as follows.
There are an immersion membrane system and a non-immersion type pump circulation system. Among them, the immersion membrane system is more susceptible to membrane contamination than the pump circulation system, and the effect of preventing membrane contamination by applying the present invention is effectively exerted. Application to a separation device is preferred. [0025] The biological denitrification method of the present invention is a biological denitrification method in which the denitrification treatment water is subjected to membrane separation treatment in the biological denitrification method. (Electron donor supply rate per electron donor supply time per denitrification tank biomass; hereinafter simply referred to as “electron donor supply rate”) is 0.4 kg-BOD / The film contamination is prevented by controlling the pressure to not more than kg-VSS / day, preferably not more than 0.3 kg-BOD / kg-VSS / day. The electron donor added to promote the denitrification reaction may be any reducing substance that can be used for microorganisms (denitrifying bacteria), and any one can be used. In ordinary biological denitrification treatment, methanol is commonly used, but other lower organic substances such as ethanol and acetic acid may be used. In the present invention, the BOD of methanol is set to 1.0 k
g-BOD / kg-methanol. When BOD is contained in raw water, the BOD in the raw water is often effectively used as an electron donor in a denitrification reaction by introducing the raw water into a denitrification tank. In this case, if the BOD alone in the raw water does not provide sufficient reducing power to complete the denitrification reaction, an electron donor such as methanol is generally further supplied to the denitrification tank. According to the present invention, when all the electron donors such as methanol are added from the outside, B
It can be applied to the case where OD is used as an electron donor, or the case where BOD in raw water is used as an electron donor and the shortage is externally replenished. Also, during the period when the electron donor contributing to the denitrification is flowing into the denitrification tank, the total inflow of the electron donor into the denitrification tank is 0.4 kg-BOD / kg-VSS per VSS amount in the denitrification tank. / Day, preferably 0.3 kg-BOD / kg-VSS / day or less. If the supply rate of the electron donor is excessively reduced, the denitrification efficiency decreases and the nitrogen load needs to be excessively reduced. Therefore, the supply rate of the electron donor is 0.1 kg-BO.
D / kg-VSS / day or more is preferable. The method for adjusting the supply rate of the electron donor is as follows. The adjustment is made by directly increasing or decreasing the supply rate of the electron donor. It is adjusted by increasing or decreasing the amount of microorganisms in the denitrification tank. In the above method, the addition amount or the addition time of the electron donor and the inflow of raw water are adjusted so that the supply rate of the electron donor satisfies the above numerical conditions. In particular, when the denitrification reaction tank is an intermittent aeration tank, as described in Japanese Patent Application No. 8-302149, an electron donor is rapidly added during about the first 5 minutes of the denitrification step. When the method is adopted, the supply rate of the electron donor per the supply time of the electron donor (in this case, 5 minutes) becomes very large, and the rate of membrane contamination in the membrane separation step becomes high. Therefore, when the intermittent aeration method is used, 60 to 60
It is desirable to realize the invention by supplying the required amount of electron donor over 100% of the time. Other steps in intermittent aeration (nitrification step, phosphorus removal step, etc.)
If there is room for the reaction time, it is effective to shorten the time of these steps, take the denitrification step as long as possible, and reduce the supply rate of the electron donor as much as possible. In order to achieve the present invention, it is also effective to suppress load fluctuations and apply a load as uniform as possible. In other words, when a high load is applied, it is necessary to supply an appropriate amount of the electron donor, so that the supply speed of the electron donor is increased, and the contamination rate of the film is increased. On the other hand, by uniformly applying a load by using an adjustment tank or the like, the supply rate can be stably suppressed without changing the total supply amount of the electron donor, and the contamination of the film is suppressed. . The load may be adjusted by any conventionally known method as long as it satisfies the requirements of the present invention. However, it is usually preferable that the load at the peak time be 1.5 times or less the average load. The above method satisfies the supply rate of the electron donor of the present invention by maintaining the MLVSS in the denitrification tank at a high concentration. Usually, the MLSS concentration, MLV
SS concentration is 15000 mg / L or less, desirably 100
It was thought that the lower one, which is less than 00 mg / L, had the effect of reducing membrane contamination. However, in an apparatus for performing a denitrification reaction, if the MLVSS concentration was kept low, the electron donor supply rate per sludge would increase. Rather, it often results in increased membrane fouling. In such a case, the MLVSS concentration is kept high, and the supply rate of the electron donor per sludge is set to 0.4 kg-BOD / kg-VSS / da as in the present invention.
y or less, desirably 0.3 kg-BOD / kg-VSS
/ Day or less. According to the invention, the ML
Even in a high concentration region of a VSS concentration of 10,000 to 30,000 mg / L, solid-liquid separation can be performed with a low membrane contamination rate. However, MLVSS concentration 20000-30
When the concentration is set to 000 mg / L, the supply rate of the electron donor is further reduced to 0.025 kg-BOD / kg-VSS /
It is desirable to keep it below day. As described above, in order to increase the amount of sludge in the denitrification tank, the amount of sludge withdrawn from the denitrification tank or the amount of sludge returned from the membrane separation step may be adjusted. That is, compared to the suspended sludge concentration in the denitrification tank (denitrification tank or intermittent aeration tank) on the upstream side of the membrane separation step, for example, the suspended sludge concentration in the membrane separation tank is concentrated as shown by the following equation. If concentration is prevented by increasing the amount of returned sludge, the concentration of suspended sludge on the upstream side can be increased. ## EQU1 ## For example, when α = 1, the concentration of the suspended sludge on the upstream side is の of the concentration of the suspended sludge in the membrane separation tank. It can be increased to 3/4 of the concentration in the separation tank. Therefore, by setting α to 2 or more, preferably 3 or more, the supply rate of the electron donor of the present invention can be easily realized. In the biological denitrification method of the present invention, nitrogen which can be removed by a biological nitrification or denitrification reaction, such as organic nitrogen, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, etc. It can be applied to the treatment of all wastewater containing water. The present invention will be described more specifically below with reference to examples and comparative examples. Examples 1 and 2 and Comparative Examples 1 and 2 Landfill leachate was continuously removed by calcium coagulation and precipitation with sodium carbonate in the apparatus shown in FIG.
Biological denitrification treatment was performed by continuously passing water neutralized to 6.0 as raw water at 800 L / day. The capacity of each tank was as follows, and the water quality was adjusted as shown in Table 1 for each RUN. The BOD concentration was adjusted by adding a mixture of lower fatty acids mainly containing acetic acid, and the TN was adjusted by adding ammonium sulfate. Intermittent aeration tank 1: 800 L finishing nitric acid tank 2: 67 L finishing denitrification tank 3: 133 L Membrane separation tank 4: 322 L In the intermittent aeration tank 1, the cycle of the aerobic step (nitrification step) for 30 minutes and the anaerobic step (denitrification step) for 30 minutes is repeated, and the intermittent aeration tank 1 is filled with caustic soda (NaOH) or The pH was adjusted to around pH 7.2 by adding sulfuric acid (H 2 SO 4 ). In addition, methanol was used as an electron donor for denitrification and added in an anaerobic step. However, in RUN1, the required amount was added in 5 minutes immediately after the start of the anaerobic process, and in RUN2 and RUN3, the required amount was added continuously for 30 minutes in the anaerobic process. Sludge is extracted from the intermittent aeration tank 1 at a rate of 22.3 L / day, and the sludge retention time (SRT) per intermittent aeration tank 1 is set to 3
It was constant in 6 days. The intermittent aeration tank 1 was operated under the conditions described above, and the effluent from the intermittent aeration tank 1 was transferred to the finishing nitrification tank 2 and the finishing denitrification tank 3 sequentially, and further introduced into the membrane separation tank 4. In the finishing nitrification tank 2, the DO value of the liquid in the tank is 2 m
Aeration was performed so as to be at least g / L, and in the finishing denitrification tank 3, methanol was added in conjunction with the ORP meter and stirred so that the ORP became -100 to -150 mV. At this time, the methanol addition rate in the finishing denitrification tank 3 is 0 to 0.25 kg-methanol / kg-VSS / day.
Range. As the immersion membrane 5 of the membrane separation tank 4, a hollow fiber MF membrane “STERApore L (UMF424S) manufactured by Mitsubishi Rayon Co., Ltd.
LI) ". This membrane has a hollow fiber MF membrane made of hydrophilic polyethylene having a nominal pore diameter of 0.1 μm, an outer diameter of 410 μm, and an inner diameter of 270 μm arranged in a flat plate shape, and has a membrane area of 4 m 2 . The membrane separation tank had a swirling flow structure in which a baffle plate 6 was installed, and air was aerated from below the membrane at 160 L / min (100 m 3 / m 2 / hour per bottom area of the swirling flow rising portion). The film flux is 0.3 m 3 / m 2 / day
The operation was performed for 8 minutes, and the intermittent operation was performed for a stop of 2 minutes. The pH of the membrane separation tank 4 was adjusted to about 7.2 by adding sulfuric acid, and the separated sludge was returned to the intermittent aeration tank 1. This returned sludge amount was set to be three times the raw water flow rate. FIG. 2 shows the change in transmembrane pressure in RUN1.
FIG. 3 shows changes in the transmembrane pressure in RUN2 to RUN4. The following is clear from FIGS. That is, in RUN1 (Comparative Example 1), methanol was rapidly added in the first 5 minutes of the anaerobic step.
As shown in Table 1, the feed rate of the electron donor was 0.88 k
The value was as high as g-BOD / kg-VSS / day.
At this time, the differential pressure of the membrane increased at an average of 0.87 kPa / day. Under these conditions, as shown in FIG. 2, the membrane differential pressure rises to about 26 kPa in one month, so that it is necessary to perform chemical cleaning almost every month. In addition, the standard of chemical cleaning is the time when the membrane differential pressure rises to 25 to 30 kPa or more in the operation with the membrane flux of 0.3 m 3 / m 2 / day. On the other hand, in RUN2 (Example 1), methanol was continuously added during the anaerobic step, and the supply rate of the electron donor was 0.32 kg-BOD / kg-VSS / da.
It is kept at a value of about y, which is lower than that of RUN1. At this time, the rising speed of the transmembrane pressure is 0.1 kPa / day on average.
Thus, the level could be suppressed to a very low level as compared with RUN1. With this differential pressure increase rate, chemical cleaning once every six months is sufficient, and the frequency of chemical cleaning can be suppressed to 1/6 of that in RUN1. RUN3 (Comparative Example 2) was prepared by adding methanol in the same manner as in RUN2 and increasing the nitrogen load and the amount of methanol added. In this RUN3, the supply rate of the electron donor is 0.64 kg-BOD / kg-VSS.
/ Day, and the rate of rise of the transmembrane pressure during this time is 0.38 kPa / day, which is about four times as high as RUN2. This rate of increase in the membrane differential pressure is a rate that requires chemical cleaning once every two months, and it is necessary to perform chemical cleaning three times as frequently as RUN2. After the RUN3, the membrane was washed with a chemical, and the same conditions as those of the RUN2 were returned again to examine the increase in the differential pressure (RUN4 in FIG. 3: Example 2). Was. This also indicates that the supply rate of the electron donor is closely related to film contamination. From the above results, it can be seen that according to the present invention, by controlling the supply rate of the electron donor, it is possible to suppress an increase in the differential pressure of the film and to significantly reduce the frequency of chemical cleaning. As described above in detail, according to the biological denitrification method of the present invention, in the biological denitrification method in which denitrification-treated water is subjected to membrane separation treatment, an increase in the membrane differential pressure or a decrease in the membrane flux is achieved. Can be prevented, and the frequency of chemical cleaning can be greatly reduced.
As a result, it is possible to reduce costs such as the amount of medicine used and maintenance costs. It is also effective in preventing deterioration of the membrane, extending the life of the membrane and greatly reducing the cost of replacing the membrane.
【図面の簡単な説明】
【図1】実施例で用いた生物的脱窒装置を示す系統図で
ある。
【図2】実施例1のRUN1における膜差圧の経時変化
を示すグラフである。
【図3】実施例1のRUN2〜4における膜差圧の経時
変化を示すグラフである。
【符号の説明】
1 間欠曝気槽
2 仕上げ硝化槽
3 仕上げ脱窒槽
4 膜分離槽
5 浸漬膜
6 バッフル板BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram showing a biological denitrification apparatus used in an embodiment. FIG. 2 is a graph showing a change with time of a transmembrane pressure in RUN1 of Example 1. FIG. 3 is a graph showing a change with time of a transmembrane pressure in RUNs 2 to 4 of Example 1. [Description of Signs] 1 intermittent aeration tank 2 finishing nitrification tank 3 finishing denitrification tank 4 membrane separation tank 5 immersion membrane 6 baffle plate
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 3/12 C02F 3/28 - 3/34 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C02F 3/12 C02F 3/28-3/34
Claims (1)
生物と接触させて生物脱窒反応により窒素分を分解する
脱窒工程と、 該脱窒工程の微生物含有混合水を膜分離して処理水と汚
泥とに分離する膜分離工程とを有する生物脱窒方法にお
いて、 前記電子供与体の供給の間、該脱窒工程における微生物
量当たりの電子供与体の供給速度を0.4kg−BOD
/kg−VSS/day以下とすることを特徴とする生
物脱窒方法。(57) [Claim 1] A denitrification step in which nitrogen-containing water is brought into contact with a microorganism under the supply of an electron donor to decompose nitrogen by a biological denitrification reaction, and the denitrification step. A membrane separation step of membrane-separating the microorganism-containing mixed water into treated water and sludge, wherein during the supply of the electron donor, electrons are supplied per amount of microorganisms in the denitrification step. 0.4kg-BOD
/ Kg-VSS / day or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02207998A JP3376904B2 (en) | 1998-02-03 | 1998-02-03 | Biological denitrification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02207998A JP3376904B2 (en) | 1998-02-03 | 1998-02-03 | Biological denitrification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11216495A JPH11216495A (en) | 1999-08-10 |
JP3376904B2 true JP3376904B2 (en) | 2003-02-17 |
Family
ID=12072887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02207998A Expired - Fee Related JP3376904B2 (en) | 1998-02-03 | 1998-02-03 | Biological denitrification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3376904B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005087853A (en) * | 2003-09-17 | 2005-04-07 | Fuji Electric Systems Co Ltd | Method and apparatus for treating methane fermentation waste liquid |
JP5912353B2 (en) * | 2011-09-09 | 2016-04-27 | オルガノ株式会社 | Anaerobic biological treatment method and anaerobic biological treatment apparatus |
CN103936146B (en) * | 2014-04-14 | 2015-05-20 | 河北科技大学 | Preparation method and application of quinonoid compound modified nylon membrane biological carrier |
-
1998
- 1998-02-03 JP JP02207998A patent/JP3376904B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11216495A (en) | 1999-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5393427A (en) | Process for the biological treatment of wastewater | |
JP4224951B2 (en) | Denitrification method | |
US8323487B2 (en) | Waste water treatment apparatus | |
JP4187303B2 (en) | Biological treatment method for organic drainage | |
EP1346956A1 (en) | Process for sludge treatment using sludge pretreatment and membrane bioreactor | |
US7166220B2 (en) | Systems and methods for organic wastewater treatment | |
JP3376904B2 (en) | Biological denitrification method | |
JP2008253994A (en) | Method for biologically treating organic wastewater | |
JPH1034185A (en) | Drainage treatment method | |
JPH10296283A (en) | Carrier separating method for biological reaction tank using carrier combinedly | |
JP2000093992A (en) | Wastewater treatment system | |
KR100335761B1 (en) | Waste water treatment process for removing orgnic material and nitrogen | |
JP3478241B2 (en) | Biological treatment equipment | |
KR20020094950A (en) | Method and apparatus for wastewater treatments | |
JPH1119675A (en) | Treatment of organic matter-containing water and device therefor | |
CN210457854U (en) | Mainstream autotrophic nitrogen removal system based on MBBR | |
KR100489328B1 (en) | System and method for wastewater treatment using partition type anoxic basin and membrane basin | |
JPH1110193A (en) | Method and apparatus for shared carrier nitrification denitrification reaction | |
JPH11156392A (en) | Treating method for ethanolamine-containing waste water | |
JPH11333494A (en) | Method and apparatus for biological dentrification of waste water | |
JP2005254207A (en) | Water treatment apparatus | |
CN112723566A (en) | BAF aeration pipe and method for removing COD through BAF denitrification | |
KR200332092Y1 (en) | System for wastewater treatment using partition type anoxic basin and membrane basin | |
JP2673488B2 (en) | Method and apparatus for treating organic wastewater | |
CN111892164A (en) | Control method of integrated membrane biological reaction device based on short-cut nitrification and denitrification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121206 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121206 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131206 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |