[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005087853A - Method and apparatus for treating methane fermentation waste liquid - Google Patents

Method and apparatus for treating methane fermentation waste liquid Download PDF

Info

Publication number
JP2005087853A
JP2005087853A JP2003323988A JP2003323988A JP2005087853A JP 2005087853 A JP2005087853 A JP 2005087853A JP 2003323988 A JP2003323988 A JP 2003323988A JP 2003323988 A JP2003323988 A JP 2003323988A JP 2005087853 A JP2005087853 A JP 2005087853A
Authority
JP
Japan
Prior art keywords
waste liquid
methane fermentation
treatment tank
hydrogen donor
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003323988A
Other languages
Japanese (ja)
Inventor
Koji Shimizu
康次 清水
Yutaka Mori
豊 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003323988A priority Critical patent/JP2005087853A/en
Publication of JP2005087853A publication Critical patent/JP2005087853A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an inexpensive and compact apparatus for treating methane fermentation waste liquid, by each of which the methane fermentation waste liquid can be nitrified/denitrified efficiently by adding an absolute minimum amount of a hydrogen donor according to the property/state of the methane fermentation waste liquid and in each of which surplus organic matter in a methane fermentation system can be used effectively as the hydrogen donor. <P>SOLUTION: The amount of the organic matter to be added to the methane fermentation waste liquid as the hydrogen donor is adjusted on the basis of the value calculated from a value of the measured ammonia nitrogen concentration of the methane fermentation waste liquid and the charging amount of the methane fermentation waste liquid. A value of the nitrate nitrogen concentration when a methane fermentation waste liquid nitrifying step is completed can be used instead of the value of the ammonia nitrogen concentration. It is preferable to use a solution obtained by solubilizing waste sludge physicochemically or a filtrate obtained by subjecting the organic waste to be subjected to methane fermentation to solid-liquid separation as the organic matter to be added as the hydrogen donor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、厨芥等の有機性廃棄物をメタン発酵処理した際に排出されるメタン発酵廃液に含まれるアンモニア等の窒素化合物を効率よく低コストで硝化脱窒処理する方法及び処理装置に関する。   The present invention relates to a method and a processing apparatus for efficiently and low-cost nitrification denitrification treatment of nitrogen compounds such as ammonia contained in methane fermentation waste liquid discharged when methane fermentation treatment is performed on organic waste such as straw.

従来より、厨芥や畜産廃棄物等の有機性廃棄物を処理する方法の一つとして、嫌気性細菌等を利用してメタン発酵を行い、メタン発酵後に排出される消化廃液(本発明では、メタン発酵廃液という)を浄化処理するメタン発酵処理システムが知られている。   Conventionally, as one method for treating organic waste such as straw and livestock waste, methane fermentation is performed using anaerobic bacteria and the like, and digestive waste liquid discharged after methane fermentation (in the present invention, methane There is known a methane fermentation treatment system for purifying a fermentation waste liquor).

このメタン発酵処理システムにおけるメタン発酵廃液の浄化処理では、メタン発酵廃液に含まれる有機物を除去するだけでなく、高濃度の窒素化合物を除去する必要がある。一般にメタン発酵廃液中の窒素化合物を除去する方法として、生物学的硝化脱窒処理方法が知られている。この生物学的硝化脱窒処理は、メタン発酵廃液に含まれるアンモニア性窒素を好気性条件下で硝化菌の働きにより亜硝酸性窒素又は硝酸性窒素にする硝化工程と、生成した亜硝酸性窒素又は硝酸性窒素を嫌気性条件下で脱窒菌の働きにより窒素ガスに還元して除去する脱窒工程からなる。   In the purification treatment of methane fermentation waste liquid in this methane fermentation treatment system, it is necessary not only to remove organic substances contained in the methane fermentation waste liquid but also to remove high-concentration nitrogen compounds. In general, a biological nitrification denitrification treatment method is known as a method for removing nitrogen compounds from methane fermentation waste liquid. This biological nitrification denitrification process consists of a nitrification process in which ammonia nitrogen contained in methane fermentation wastewater is converted to nitrite nitrogen or nitrate nitrogen by the action of nitrifying bacteria under aerobic conditions, and the produced nitrite nitrogen Alternatively, it consists of a denitrification step in which nitrate nitrogen is reduced to nitrogen gas and removed by the action of denitrifying bacteria under anaerobic conditions.

上記脱窒工程においては、亜硝酸性窒素又は硝酸性窒素を窒素ガスに還元するための水素を供給する水素供与体が必要とされ、通常、メタン発酵廃液に含まれる有機物が水素供与体として利用される。また、有機物は、脱窒菌のエネルギー源としても必要であるため、脱窒工程を効率よく行うためにはメタン発酵廃液中に適量の有機物が残っていなければならない。   In the above denitrification step, a hydrogen donor that supplies hydrogen for reducing nitrite nitrogen or nitrate nitrogen to nitrogen gas is required, and organic substances contained in methane fermentation waste liquid are usually used as hydrogen donors. Is done. In addition, since the organic matter is also necessary as an energy source for denitrifying bacteria, an appropriate amount of the organic matter must remain in the methane fermentation waste liquid in order to efficiently perform the denitrification step.

一般に生物学的硝化脱窒処理を効率よく行うためには、除去する窒素の約3倍量の有機物が必要であるが、メタン発酵廃液は、メタン発酵工程で多くの有機物が消費されており、窒素除去に必要な有機物が十分存在しないため、脱窒反応が進行せず、窒素除去が不良となってしまう。   In general, in order to efficiently perform biological nitrification denitrification treatment, about three times as much organic matter as nitrogen to be removed is required, but methane fermentation waste liquid consumes a lot of organic matter in the methane fermentation process, Since there are not enough organic substances necessary for nitrogen removal, the denitrification reaction does not proceed, resulting in poor nitrogen removal.

そのため、図3に示すような従来のメタン発酵処理装置では、メタン発酵廃液に有機物としてメタノールを添加し、このメタノールを水素供与体として利用し、脱窒反応を効率よく進行させている。図3に示すように、有機性廃棄物は、粉砕分別機1でプラスチックや金属等が除去されてスラリー化された後、移送ポンプ2でメタン発酵槽3に投入され、撹拌ポンプ4によりスラリーを循環させながらメタン発酵処理が行われる。メタン発酵により発生したバイオガスは、図示しないガスホルダーに回収され、燃料電池発電装置、ガスエンジン等の発電機やボイラーの燃料として有効利用されるようになっている。   Therefore, in the conventional methane fermentation treatment apparatus as shown in FIG. 3, methanol is added as an organic substance to the methane fermentation waste liquid, and this methanol is used as a hydrogen donor to efficiently advance the denitrification reaction. As shown in FIG. 3, the organic waste is slurried by removing plastics and metals from the pulverizing / separating machine 1, and then charged into the methane fermentation tank 3 by the transfer pump 2. Methane fermentation treatment is performed while circulating. Biogas generated by methane fermentation is collected in a gas holder (not shown) and is effectively used as a fuel for a power generator such as a fuel cell power generation device and a gas engine, or boiler.

メタン発酵槽3から排出されたメタン発酵廃液は、廃液処理槽5に投入され、撹拌機7により撹拌しながら、曝気装置6により間欠的に曝気することにより、硝化脱窒処理が行われる。その際、廃液処理槽5内に、メタノール貯留槽8からメタノール注入ポンプ9によりメタノールが添加されるようになっている。   The methane fermentation waste liquid discharged from the methane fermentation tank 3 is charged into the waste liquid treatment tank 5 and aerated by the aeration device 6 while being stirred by the stirrer 7, thereby performing nitrification denitrification treatment. At that time, methanol is added from the methanol storage tank 8 to the waste liquid treatment tank 5 by the methanol injection pump 9.

硝化脱窒処理後のメタン発酵廃液は膜分離槽10に送られ、膜ユニット11により固形分(活性汚泥)が分離された後、処理水として排出される。一方、分離された活性汚泥は、汚泥返送ポンプ12によって廃液処理槽5に返送され、活性汚泥の一部は、余剰汚泥排出ポンプ13により余剰汚泥として排出される。   The methane fermentation waste liquid after the nitrification denitrification treatment is sent to the membrane separation tank 10, and after the solid content (activated sludge) is separated by the membrane unit 11, it is discharged as treated water. On the other hand, the separated activated sludge is returned to the waste liquid treatment tank 5 by the sludge return pump 12, and a part of the activated sludge is discharged as excess sludge by the excess sludge discharge pump 13.

また、廃水中の窒素化合物を生物学的に除去する他の方法として、例えば、下記特許文献1には、廃水中に含まれる窒素含有物質を、水素供与体を用いて生物学的に硝化脱窒素処理する廃水処理方法において、前記水素供与体として、有機性廃棄物を湿式粉砕して得られる有機スラリーを用いることを特徴とする廃水処理方法が開示されている。   In addition, as another method for biologically removing nitrogen compounds in wastewater, for example, in Patent Document 1 below, a nitrogen-containing substance contained in wastewater is biologically nitrified using a hydrogen donor. In a wastewater treatment method in which nitrogen treatment is performed, a wastewater treatment method is disclosed in which an organic slurry obtained by wet-grinding organic waste is used as the hydrogen donor.

また、下記特許文献2には、NOx−Nを含有する窒素含有排水を、脱窒槽を含む窒素除去系において処理する方法において、NOx−Nを含有する排水を脱窒槽に導入して窒素を生物学的に脱窒する脱窒工程と、窒素除去系において生成する生物汚泥の一部を引き抜いて易生物分解性に改質処理したのち、この改質汚泥を前記脱窒槽に導入する改質工程とを含み、前記脱窒槽において、脱窒槽流出水のNOx−N濃度が5mg−N/L以上となるように脱窒する窒素含有排水の処理方法が開示されている。   In Patent Document 2 below, in a method of treating nitrogen-containing wastewater containing NOx-N in a nitrogen removal system including a denitrification tank, the wastewater containing NOx-N is introduced into the denitrification tank and biological nitrogen is introduced. A denitrification process for denitrification, and a reforming process in which part of the biological sludge generated in the nitrogen removal system is extracted to be easily biodegradable and then introduced into the denitrification tank. In the denitrification tank, a nitrogen-containing wastewater treatment method is disclosed in which denitrification is performed so that the NOx-N concentration of the denitrification tank effluent is 5 mg-N / L or more.

また、下記特許文献3には、水を選択的に透過させる逆浸透膜の一次側に、被処理水を加圧して導入することにより硝酸性窒素を除去する水道原水中の硝酸性窒素の除去方法において、処理工程で生じる硝酸性窒素の濃縮排水に対し、脱窒菌と有機物を加え、該脱窒菌の還元作用によって硝酸性窒素を窒素ガスに還元するとともに、前記逆浸透膜の洗浄により生じる薬品洗浄排水を、前記脱窒菌に必要な有機物源として使用することを特徴とする水道原水中の硝酸性窒素の除去方法が開示されている。
特開2001−29993号公報 特開2002−192189号公報 特開2002−18486号公報
Further, in Patent Document 3 below, removal of nitrate nitrogen from tap water for removing nitrate nitrogen by pressurizing and introducing treated water to the primary side of a reverse osmosis membrane that selectively permeates water. In the method, denitrifying bacteria and organic substances are added to nitrate nitrogen concentrated wastewater generated in the treatment step, and nitrate nitrogen is reduced to nitrogen gas by the reducing action of the denitrifying bacteria, and chemicals generated by washing the reverse osmosis membrane There is disclosed a method for removing nitrate nitrogen from raw tap water characterized by using washing wastewater as a source of organic matter necessary for the denitrifying bacteria.
JP 2001-29993 A JP 2002-192189 A JP 2002-18486 A

上述したようにメタン発酵廃液中の窒素化合物を生物学的に除去しようとする場合は、メタン発酵廃液中の窒素化合物や有機物の濃度に応じて水素供与体として有機物を添加する必要があるが、有機物を必要以上に添加すると処理水に余剰の有機物が残留してしまったり、逆に有機物の添加量が不足すると硝化脱窒処理が十分に行われなくなってしまう。そのため、上記従来の方法では、メタン発酵廃液中の窒素化合物や有機物の濃度に応じて有機物の添加量を調整することが難しかった。なお、上記特許文献3においては、生物学的脱窒反応槽内の被処理水のORP(酸化還元電位)を測定し、その値に基づいてメタノールの添加量を調整することが記載されているが、この方法では間接的に硝酸性窒素濃度を測定しているため、安定性や信頼性に欠け、安定して脱窒処理が行えないという心配があった。   As described above, when the nitrogen compound in the methane fermentation waste liquid is to be biologically removed, it is necessary to add an organic substance as a hydrogen donor according to the concentration of the nitrogen compound or organic substance in the methane fermentation waste liquid. If organic matter is added more than necessary, excess organic matter will remain in the treated water, or conversely, if the amount of organic matter added is insufficient, nitrification denitrification will not be performed sufficiently. Therefore, in the above conventional method, it is difficult to adjust the addition amount of the organic substance according to the concentration of the nitrogen compound or the organic substance in the methane fermentation waste liquid. In addition, in the said patent document 3, ORP (oxidation reduction potential) of the to-be-processed water in a biological denitrification reaction tank is measured, and adjusting the addition amount of methanol based on the value is described. However, in this method, since the nitrate nitrogen concentration is indirectly measured, there is a concern that the denitrification treatment cannot be performed stably due to lack of stability and reliability.

また、一般に水素供与体として用いられるメタノールは高価であるため、処理コストが高くなるという欠点があった。そのため、上記特許文献1においては、厨芥等の有機物を湿式粉砕して得られる有機スラリーを脱窒処理の水素供与体として用いている。しかしながら、この有機スラリーには固形分が多く含まれているので、処理装置の負荷が大きくなり、廃液処理槽の容積もそれに応じて大きくする必要があるだけでなく、廃液処理槽から排出される活性汚泥の量も増加してしまうという欠点があった。   Moreover, since methanol generally used as a hydrogen donor is expensive, there is a disadvantage that the processing cost is increased. Therefore, in the said patent document 1, the organic slurry obtained by wet-grinding organic substances, such as soot, is used as a hydrogen donor of a denitrification process. However, since this organic slurry contains a large amount of solids, the load on the processing apparatus is increased, and not only the volume of the waste liquid treatment tank needs to be increased accordingly, but also discharged from the waste liquid treatment tank. There was a drawback that the amount of activated sludge also increased.

したがって、本発明の目的は、メタン発酵廃液中の窒素化合物を生物学的硝化脱窒する際に、メタン発酵廃液の性状に応じて必要最小限の量の水素供与体を添加することにより効率よく硝化脱窒処理を行うことができ、更には、水素供与体としてメタン発酵システムで余剰となった有機物等を有効に活用できる、低コストでコンパクトなメタン発酵廃液の処理方法と処理装置を提供することにある。   Therefore, the object of the present invention is to efficiently add a hydrogen donor in a minimum amount according to the properties of the methane fermentation waste liquid when biologically nitrifying and denitrifying nitrogen compounds in the methane fermentation waste liquid. Provided is a low-cost and compact methane fermentation waste liquid treatment method and treatment apparatus that can perform nitrification and denitrification treatments, and that can effectively utilize surplus organic matter in a methane fermentation system as a hydrogen donor. There is.

上記目的を達成するため、本発明のメタン発酵廃液の処理方法の一つは、有機性廃棄物をメタン発酵処理した際に排出されるメタン発酵廃液に含まれる窒素化合物を、水素供与体を用いて生物学的に硝化脱窒処理する方法において、廃液処理槽に投入する前記メタン発酵廃液のアンモニア性窒素濃度を測定し、このアンモニア性窒素濃度の値と、前記メタン発酵廃液の投入量とから演算される値に基づいて、前記メタン発酵廃液に前記水素供与体として添加する有機物の量を調整することを特徴とする。   In order to achieve the above object, one of the methods for treating methane fermentation waste liquid according to the present invention uses a hydrogen donor for nitrogen compounds contained in methane fermentation waste liquid discharged when methane fermentation treatment is performed on organic waste. In the method of biologically nitrifying and denitrifying, the ammonia nitrogen concentration of the methane fermentation waste liquid charged into the waste liquid treatment tank is measured, and the ammonia nitrogen concentration value and the input amount of the methane fermentation waste liquid are measured. Based on the calculated value, the amount of the organic substance added as the hydrogen donor to the methane fermentation waste liquid is adjusted.

また、本発明のメタン発酵廃液の処理方法のもう一つは、有機性廃棄物をメタン発酵処理した際に排出されるメタン発酵廃液に含まれる窒素化合物を、水素供与体を用いて生物学的に硝化脱窒処理する方法において、廃液処理槽に投入した前記メタン発酵廃液に含まれるアンモニア性窒素を好気性条件下で亜硝酸性窒素又は硝酸性窒素に変換する硝化工程を行い、該硝化工程終了時点における前記メタン発酵廃液の硝酸性窒素濃度を測定し、この硝酸性窒素濃度の値と、前記メタン発酵廃液の投入量とから演算される値に基づいて、前記メタン発酵廃液に前記水素供与体として添加する有機物の量を調整することを特徴とする。   Further, another method for treating methane fermentation waste liquid according to the present invention is to use a hydrogen donor to convert nitrogen compounds contained in methane fermentation waste liquid discharged when organic waste is subjected to methane fermentation. In the method of nitrification denitrification, a nitrification step of converting ammonia nitrogen contained in the methane fermentation waste liquid charged into the waste liquid treatment tank into nitrite nitrogen or nitrate nitrogen under aerobic conditions is performed, and the nitrification step Measure the nitrate nitrogen concentration of the methane fermentation waste liquid at the end, and based on the value calculated from the nitrate nitrogen concentration value and the input amount of the methane fermentation waste liquid, donate the hydrogen to the methane fermentation waste liquid It is characterized by adjusting the amount of organic matter added as a body.

本発明の方法によれば、廃液処理槽に投入するメタン発酵廃液のアンモニア性窒素濃度あるいは硝化工程終了時点におけるメタン発酵廃液の硝酸性窒素濃度を測定し、この値と前記メタン発酵廃液の投入量とから演算される値に基づいて、前記メタン発酵廃液に前記水素供与体として添加する有機物の量を調整することにより、必要最小限の量の有機物を添加することができるので、効率よく硝化脱窒処理を行うことができる。   According to the method of the present invention, the ammonia nitrogen concentration of the methane fermentation waste liquid charged into the waste liquid treatment tank or the nitrate nitrogen concentration of the methane fermentation waste liquid at the end of the nitrification step is measured, and this value and the input amount of the methane fermentation waste liquid By adjusting the amount of organic matter added as the hydrogen donor to the methane fermentation waste liquid based on the value calculated from Nitrogen treatment can be performed.

本発明の方法においては、前記水素供与体として添加する有機物の量を、下記式(1)〜(3)に基づいて計算することが好ましい。   In the method of the present invention, the amount of the organic substance added as the hydrogen donor is preferably calculated based on the following formulas (1) to (3).

c=a×b×3(kg−BOD/kgN)…(1)
a:廃液処理槽に投入するメタン発酵廃液のアンモニア性窒素濃度(g/L)、あるいは廃液処理槽に投入したメタン発酵廃液の硝化工程終了時点における硝酸性窒素濃度(g/L)
b:廃液処理槽へのメタン発酵廃液の投入量(L)
c:廃液処理槽に投入したメタン発酵廃液の脱窒に必要なBOD成分量(g)
c = a × b × 3 (kg-BOD / kgN) (1)
a: Ammonia nitrogen concentration (g / L) of the methane fermentation waste liquid charged into the waste liquid treatment tank or nitrate nitrogen concentration (g / L) at the end of the nitrification process of the methane fermentation waste liquid charged into the waste liquid treatment tank
b: Input amount of methane fermentation waste liquid to waste liquid treatment tank (L)
c: Amount of BOD component (g) required for denitrification of methane fermentation waste liquid charged into the waste liquid treatment tank

e=c−(d×b)…(2)
上式(2)中、b、cは前記と同じ意味
d:廃液処理槽に投入するメタン発酵廃液に含まれるBOD成分濃度(g/L)
e:廃液処理槽に投入したメタン発酵廃液を脱窒する際に不足するBOD成分量(g)
e = c− (d × b) (2)
In the above formula (2), b and c have the same meaning as described above.
d: Concentration of BOD component (g / L) contained in the methane fermentation waste liquid charged into the waste liquid treatment tank
e: Amount of BOD component (g) that is insufficient when denitrifying the methane fermentation waste liquid charged into the waste liquid treatment tank

g=e÷f…(3)
上式(3)中、eは前記と同じ意味
f:水素供与体として用いる有機物のBOD成分濃度(g/L)
g:水素供与体として添加する有機物の量(L)
g = e ÷ f (3)
In the above formula (3), e has the same meaning as described above.
f: BOD component concentration of organic substance used as hydrogen donor (g / L)
g: Amount of organic substance added as hydrogen donor (L)

また、本発明の方法においては、前記水素供与体として添加する有機物として、前記廃液処理槽から排出される余剰汚泥を物理化学的に可溶化した溶液、あるいはメタン発酵処理する有機性廃棄物を固液分離したろ液を用いることが好ましい。これによれば、水素供与体としてメタノールに比べて安価な有機物を用いるので、ランニングコストを低減することができる。また、余剰汚泥を物理化学的に可溶化した溶液を利用することで、余剰汚泥の廃棄処理費も削減することができる。   In the method of the present invention, as the organic substance to be added as the hydrogen donor, a solution obtained by physicochemically solubilizing excess sludge discharged from the waste liquid treatment tank or an organic waste to be subjected to methane fermentation is solidified. It is preferable to use a filtrate which has been subjected to liquid separation. According to this, since a cheap organic substance compared with methanol is used as the hydrogen donor, the running cost can be reduced. Moreover, the waste disposal cost of excess sludge can also be reduced by using the solution which solubilized the excess sludge physicochemically.

一方、本発明のメタン発酵廃液の処理装置の一つは、嫌気性微生物によって分解可能な有機性廃棄物をスラリー化してメタン発酵槽に導入するための有機性廃棄物供給手段と、前記有機性廃棄物をメタン発酵させるためのメタン発酵槽と、前記メタン発酵槽から排出されるメタン発酵廃液の流量を測定するための流量測定手段と、該メタン発酵廃液のアンモニア性窒素濃度を測定するためのアンモニア性窒素濃度測定手段と、前記メタン発酵廃液を硝化脱窒処理するための廃液処理槽と、前記アンモニア性窒素濃度測定手段によって測定された前記メタン発酵廃液のアンモニア性窒素濃度及び前記メタン発酵廃液流量測定手段によって測定された前記廃液処理槽への前記メタン発酵廃液の投入量とから前記メタン発酵廃液に前記水素供与体として添加する有機物の量を演算する演算手段と、前記演算手段によって計算された値に基づいて、前記廃液処理槽から排出される余剰汚泥の一部を取り出して物理化学的に可溶化した溶液、あるいはメタン発酵処理する前記有機性廃棄物の一部を取り出して固液分離したろ液を、水素供与体として前記廃液処理槽に所定量添加する水素供与体添加手段とを備えていることを特徴とする。   On the other hand, one of the processing apparatuses for methane fermentation waste liquid of the present invention is an organic waste supply means for slurrying and introducing organic waste degradable by anaerobic microorganisms into a methane fermentation tank, and the organic waste A methane fermentation tank for fermenting waste, a flow rate measuring means for measuring the flow rate of the methane fermentation waste liquid discharged from the methane fermentation tank, and an ammonia nitrogen concentration of the methane fermentation waste liquid Ammonia nitrogen concentration measuring means, a waste liquid treatment tank for nitrifying and denitrifying the methane fermentation waste liquid, the ammonia nitrogen concentration of the methane fermentation waste liquid measured by the ammonia nitrogen concentration measuring means and the methane fermentation waste liquid From the input amount of the methane fermentation waste liquid to the waste liquid treatment tank measured by the flow rate measuring means, the hydrogen donor and the hydrogen donor to the methane fermentation waste liquid A calculation means for calculating the amount of organic matter to be added, and a solution obtained by physicochemically solubilizing a part of the excess sludge discharged from the waste liquid treatment tank based on the value calculated by the calculation means, Alternatively, it comprises a hydrogen donor addition means for adding a predetermined amount of the filtrate obtained by taking out a part of the organic waste subjected to methane fermentation treatment and solid-liquid separation to the waste liquid treatment tank as a hydrogen donor. And

また、本発明のメタン発酵廃液の処理装置のもう一つは、嫌気性微生物によって分解可能な有機性廃棄物をスラリー化してメタン発酵槽に導入するための有機性廃棄物供給手段と、前記有機性廃棄物をメタン発酵させるためのメタン発酵槽と、前記メタン発酵槽から排出されるメタン発酵廃液の流量を測定するための流量測定手段と、前記メタン発酵廃液を硝化脱窒処理するための廃液処理槽と、前記廃液処理槽内のメタン発酵廃液の硝酸性窒素濃度を測定するための硝酸性窒素濃度測定手段と、前記硝酸性窒素濃度測定手段によって測定された前記メタン発酵廃液の硝酸性窒素濃度及び前記メタン発酵廃液流量測定手段によって測定された前記廃液処理槽への前記メタン発酵廃液の投入量とから前記メタン発酵廃液に前記水素供与体として添加する有機物の量を演算する演算手段と、前記演算手段によって計算された値に基づいて、前記廃液処理槽から排出される余剰汚泥の一部を取り出して物理化学的に可溶化した溶液、あるいはメタン発酵処理する前記有機性廃棄物の一部を取り出して固液分離したろ液を、水素供与体として前記廃液処理槽に所定量添加する水素供与体添加手段とを備えていることを特徴とする。   Further, another apparatus for treating methane fermentation waste liquid according to the present invention comprises an organic waste supply means for slurrying and introducing organic waste degradable by anaerobic microorganisms into a methane fermentation tank, A methane fermentation tank for fermenting volatile waste, a flow rate measuring means for measuring the flow rate of the methane fermentation waste liquid discharged from the methane fermentation tank, and a waste liquid for nitrifying and denitrifying the methane fermentation waste liquid A treatment tank, nitrate nitrogen concentration measuring means for measuring nitrate nitrogen concentration of methane fermentation waste liquid in the waste liquid treatment tank, and nitrate nitrogen of the methane fermentation waste liquid measured by the nitrate nitrogen concentration measurement means As the hydrogen donor to the methane fermentation waste liquid, the concentration and the amount of the methane fermentation waste liquid input to the waste liquid treatment tank measured by the methane fermentation waste liquid flow rate measuring means A computing means for computing the amount of organic matter to be added, and a solution obtained by physicochemically solubilizing a part of excess sludge discharged from the waste liquid treatment tank based on the value calculated by the computing means, or A hydrogen donor addition means for adding a predetermined amount of the filtrate obtained by taking out a part of the organic waste to be subjected to methane fermentation treatment and solid-liquid separation to the waste liquid treatment tank as a hydrogen donor. To do.

本発明の処理装置によれば、前記流量測定手段と、前記アンモニア性窒素濃度測定手段あるいは前記硝酸性窒素濃度測定手段とにより、硝化脱窒処理に付されるメタン発酵廃液の性状を把握することができ、前記演算手段により、メタン発酵廃液を脱窒処理するために必要な水素供与体の量を正確に計算することができる。その結果、メタン発酵廃液に必要最小限の量の水素供与体を添加することができ、効率よく硝化脱窒処理を行うことができるようになり、廃液処理槽をコンパクトにすることができる。   According to the treatment apparatus of the present invention, the flow measurement means and the ammonia nitrogen concentration measurement means or the nitrate nitrogen concentration measurement means grasp the properties of the methane fermentation waste liquid subjected to nitrification denitrification treatment. The amount of hydrogen donor required for denitrifying the methane fermentation waste liquid can be accurately calculated by the calculation means. As a result, a minimum amount of hydrogen donor can be added to the methane fermentation waste liquid, and the nitrification / denitrification treatment can be performed efficiently, and the waste liquid treatment tank can be made compact.

また、水素供与体として、前記廃液処理槽から排出される余剰汚泥の一部を取り出して物理化学的に可溶化した溶液、あるいはメタン発酵処理する前記有機性廃棄物の一部を取り出して固液分離したろ液を用いるので、ランニングコストを低減することができる。   Further, as a hydrogen donor, a part of the excess sludge discharged from the waste liquid treatment tank is taken out and a physicochemically solubilized solution, or a part of the organic waste subjected to methane fermentation treatment is taken out as a solid liquid. Since the separated filtrate is used, the running cost can be reduced.

本発明によれば、メタン発酵廃液を硝化脱窒処理する際に、廃液処理槽に投入するメタン発酵廃液の流量と、メタン発酵廃液中のアンモニア性窒素濃度あるいは硝化工程終了時点におけるメタン発酵廃液の硝酸性窒素濃度を測定し、これらの測定値に基づいて脱窒に必要な水素供与体の量を計算することにより、水素供与体の添加量を必要最小限にすることができるので、硝化脱窒処理を効率よく行うことができる。   According to the present invention, when the methane fermentation waste liquid is subjected to nitrification denitrification, the flow rate of the methane fermentation waste liquid to be introduced into the waste liquid treatment tank, the ammonia nitrogen concentration in the methane fermentation waste liquid, or the methane fermentation waste liquid at the end of the nitrification process. By measuring the nitrate nitrogen concentration and calculating the amount of hydrogen donor required for denitrification based on these measurements, the amount of hydrogen donor added can be minimized, so that Nitrogen treatment can be performed efficiently.

また、水素供与体として、メタン発酵システムで余剰となった有機物を有効に活用できるので、ランニングコストを低減することができる。   Moreover, since the organic substance which became surplus by a methane fermentation system can be utilized effectively as a hydrogen donor, a running cost can be reduced.

以下、本発明について図面を用いて更に詳細に説明する。図1には、本発明のメタン発酵廃液の処理方法に用いることができる処理装置の概略構成図が示されている。なお、図中、破線で示す経路は信号線を、実線は廃液等の流体の流れを示す。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 shows a schematic configuration diagram of a treatment apparatus that can be used in the method for treating a methane fermentation waste liquid of the present invention. In the figure, a path indicated by a broken line indicates a signal line, and a solid line indicates a flow of fluid such as waste liquid.

まず、図1の処理装置は、有機性廃棄物を粉砕する粉砕分別機21、メタン発酵を行うメタン発酵槽23、メタン発酵廃液の流量を測定する流量計25、メタン発酵廃液中のアンモニア性窒素濃度を測定するアンモニア計26、メタン発酵廃液の処理を行う廃液処理槽27、廃液処理槽内27のメタン発酵廃液の硝酸性窒素濃度を測定するNO計30、処理水と活性汚泥を分離する膜分離槽31、余剰汚泥の一部を物理化学的に可溶する可溶化槽37、水素供与体として添加する有機物の量を算出すると共に可溶化槽37への余剰汚泥の投入量を調整する演算装置35とから主に構成されている。 First, the processing apparatus of FIG. 1 includes a pulverizing and sorting machine 21 that pulverizes organic waste, a methane fermentation tank 23 that performs methane fermentation, a flow meter 25 that measures the flow rate of methane fermentation waste liquid, and ammonia nitrogen in methane fermentation waste liquid Ammonia meter 26 for measuring concentration, waste liquid treatment tank 27 for treating methane fermentation waste liquid, NO 3 meter 30 for measuring nitrate nitrogen concentration of methane fermentation waste liquid in waste liquid treatment tank 27, separating treated water and activated sludge Membrane separation tank 31, solubilization tank 37 in which a part of excess sludge is physicochemically soluble, the amount of organic matter added as a hydrogen donor is calculated, and the amount of surplus sludge input to the solubilization tank 37 is adjusted It is mainly comprised from the arithmetic unit 35.

粉砕分別機21は、配管51を介してメタン発酵槽23に連結されており、メタン発酵槽23は、配管53を介して廃液処理槽27に連結されている。そして、配管53の途中には、演算装置35に接続された流量計25とアンモニア計26が設けられており、廃液処理槽27に投入されるメタン発酵廃液の量とアンモニア性窒素濃度を測定し、演算装置35に各測定値を送信できるようになっている。なお、メタン発酵槽23には、メタン発酵を効率よく行うために、配管52を介して撹拌ポンプ24が設けられている。また、廃液処理槽27には、硝化脱窒処理を効率よく行うために曝気装置28と撹拌機29が設けられている。   The pulverization / separation machine 21 is connected to the methane fermentation tank 23 via a pipe 51, and the methane fermentation tank 23 is connected to a waste liquid treatment tank 27 via a pipe 53. In the middle of the pipe 53, a flow meter 25 and an ammonia meter 26 connected to the arithmetic unit 35 are provided, and the amount of methane fermentation waste liquid and ammonia nitrogen concentration that are put into the waste liquid treatment tank 27 are measured. Each measurement value can be transmitted to the arithmetic unit 35. In addition, the stirring pump 24 is provided in the methane fermentation tank 23 via the piping 52 in order to perform methane fermentation efficiently. The waste liquid treatment tank 27 is provided with an aeration device 28 and a stirrer 29 in order to efficiently perform the nitrification denitrification treatment.

流量計25としては、通常の流量計であれば特に制限なく用いることができる。また、アンモニア計26としては、連続計測できる濃度計が好ましく、例えば、隔膜式アンモニア電極等が使用できる。   As the flow meter 25, any ordinary flow meter can be used without particular limitation. The ammonia meter 26 is preferably a concentration meter capable of continuous measurement. For example, a diaphragm type ammonia electrode can be used.

更に、廃液処理槽27は配管54を介して膜分離槽31に連結されており、配管54の途中には、演算装置35に接続されたNO計30が設けられており、廃液処理槽27内のメタン発酵廃液の硝酸性窒素濃度を測定し、演算装置35に測定値を送信できるようになっている。 Further, the waste liquid treatment tank 27 is connected to the membrane separation tank 31 via a pipe 54, and a NO 3 meter 30 connected to the arithmetic unit 35 is provided in the middle of the pipe 54. The nitrate nitrogen concentration of the methane fermentation waste liquid is measured, and the measured value can be transmitted to the arithmetic unit 35.

NO計30としては、連続計測できる濃度計が好ましく、例えば、紫外線吸収式硝酸性窒素濃度計やイオン電極等が使用できる。 The NO 3 meter 30 is preferably a concentration meter capable of continuous measurement. For example, an ultraviolet absorption nitrate nitrogen concentration meter or an ion electrode can be used.

膜分離槽31には、膜ユニット32が設置されており、分離したろ過液を処理水として排出するための配管58と、分離した活性汚泥の一部を余剰汚泥として排出するための配管55が設けられている。また、配管55から分岐した配管56が可溶化槽37に連結されており、余剰汚泥の一部を余剰汚泥移送ポンプ36により可溶化槽37に投入できるようになっている。更に、膜分離槽31は、配管58を介して廃液処理槽27と連結されており、分離した活性汚泥を汚泥返送ポンプ33により廃液処理槽27に返送できるようになっている。   A membrane unit 32 is installed in the membrane separation tank 31, and a pipe 58 for discharging the separated filtrate as treated water and a pipe 55 for discharging a part of the separated activated sludge as excess sludge. Is provided. A pipe 56 branched from the pipe 55 is connected to the solubilization tank 37 so that a part of the excess sludge can be introduced into the solubilization tank 37 by the excess sludge transfer pump 36. Further, the membrane separation tank 31 is connected to the waste liquid treatment tank 27 via a pipe 58 so that the separated activated sludge can be returned to the waste liquid treatment tank 27 by the sludge return pump 33.

膜ユニット32としては、硝化脱窒したメタン発酵廃液を固液分離できるものであればよく、例えば、MF(マイクロフィルタレーション)膜等が使用できる。   The membrane unit 32 only needs to be capable of solid-liquid separation of nitrified and denitrified methane fermentation waste liquor. For example, an MF (microfiltration) membrane can be used.

余剰汚泥移送ポンプ36は、演算装置35に接続されており、演算装置23からの信号によって稼動時間を制御できるようになっている。ここで、演算装置35は、廃液処理槽27に投入されるメタン発酵廃液の量と、アンモニア性窒素濃度あるいは硝酸性窒素濃度の値とから、メタン発酵廃液中の窒素化合物を除去するために必要な有機物の量を算出すると共に、その結果に基づいて余剰汚泥移送ポンプ36の稼働時間を制御して可溶化槽25に投入する余剰汚泥の量を調整できるようにプログラムされている。   The surplus sludge transfer pump 36 is connected to the calculation device 35, and the operation time can be controlled by a signal from the calculation device 23. Here, the arithmetic unit 35 is necessary for removing nitrogen compounds in the methane fermentation waste liquid from the amount of the methane fermentation waste liquid charged into the waste liquid treatment tank 27 and the value of the ammonia nitrogen concentration or the nitrate nitrogen concentration. It is programmed to calculate the amount of organic matter and adjust the amount of excess sludge to be introduced into the solubilization tank 25 by controlling the operating time of the excess sludge transfer pump 36 based on the result.

可溶化槽37は、配管57を介して廃液処理槽27と連結されており、余剰汚泥を物理化学的に可溶化した溶液を廃液処理槽27に添加できるようになっている。可溶化槽37には、余剰汚泥を物理化学的に可溶化するために、例えば、オゾン添加手段や加熱手段等が設けられている。なお、本発明でいう余剰汚泥の物理化学的な可溶化とは、余剰汚泥中の微生物の細胞壁を壊して可溶化することを意味する。   The solubilization tank 37 is connected to the waste liquid treatment tank 27 via a pipe 57 so that a solution obtained by physicochemically solubilizing excess sludge can be added to the waste liquid treatment tank 27. In order to solubilize excess sludge physicochemically, the solubilization tank 37 is provided with, for example, ozone addition means, heating means, and the like. In addition, the physicochemical solubilization of surplus sludge as used in the present invention means that the cell walls of microorganisms in the surplus sludge are broken and solubilized.

次に、この処理装置を用いた、本発明のメタン発酵廃液の処理方法について説明する。 図1に示すように、厨芥等の有機性廃棄物は、粉砕分別装機21で細かく粉砕されると共に発酵不適物であるプラスチック等の異物が分離除去された後、図示しない経路から希釈水が投入されてスラリー化され、メタン発酵に適した固形分濃度(通常、固形物濃度10〜20質量%)に調整される。   Next, the processing method of the methane fermentation waste liquid of this invention using this processing apparatus is demonstrated. As shown in FIG. 1, organic waste such as soot is finely pulverized by a pulverization / separation device 21 and foreign matter such as plastic that is not suitable for fermentation is separated and removed. It is put into a slurry and adjusted to a solid content concentration suitable for methane fermentation (usually a solid concentration of 10 to 20% by mass).

スラリー化された有機性廃棄物(有機性スラリー)は、移送ポンプ22によりメタン発酵槽23に投入されてメタン発酵が行われる。メタン発酵槽23には撹拌ポンプ24が設けられており、これによりメタン発酵槽内の有機性スラリーの循環撹拌が行われる。そして、発酵により生成したバイオガスは、図示しないガスホルダーに回収され、燃料電池発電装置、ガスエンジン等の発電機やボイラーの燃料として有効利用されるようになっている。   The slurried organic waste (organic slurry) is put into the methane fermentation tank 23 by the transfer pump 22 to perform methane fermentation. The methane fermentation tank 23 is provided with an agitation pump 24, whereby the organic slurry in the methane fermentation tank is circulated and agitated. And the biogas produced | generated by fermentation is collect | recovered by the gas holder which is not shown in figure, and is effectively utilized as fuel of generators, such as a fuel cell power generation device and a gas engine, and a boiler.

メタン発酵槽23には、メタン菌等の嫌気性微生物が付着・担持された固定化微生物を充填した固定ろ床等が設置されており、ここで有機性スラリーのメタン発酵が行われ、嫌気性微生物による有機性廃棄物の分解が行われる。メタン発酵における温度は50〜60℃で行うことが好ましい。これによれば、より活性の高い、高温メタン菌での発酵が行えるので、有機性廃棄物の分解速度を更に向上することができる。   The methane fermentation tank 23 is provided with a fixed filter bed or the like filled with immobilized microorganisms to which anaerobic microorganisms such as methane bacteria are attached and supported. Here, methane fermentation of the organic slurry is performed, and anaerobic is performed. Organic waste is decomposed by microorganisms. It is preferable to perform the temperature in methane fermentation at 50-60 degreeC. According to this, since it is possible to perform fermentation with a more active high-temperature methane bacterium, the decomposition rate of organic waste can be further improved.

メタン発酵槽11から排出されたメタン発酵廃液は、窒素化合物を除去するために廃液処理槽27に投入される。この時、メタン発酵廃液中の窒素化合物を脱窒するために必要な量の有機物(余剰汚泥を物理化学的に可溶化した溶液)も同時に添加される。   The methane fermentation waste liquid discharged from the methane fermentation tank 11 is put into the waste liquid treatment tank 27 in order to remove nitrogen compounds. At this time, an organic substance (a solution obtained by physicochemically solubilizing excess sludge) in an amount necessary for denitrifying nitrogen compounds in the methane fermentation waste liquid is also added at the same time.

本発明においては、廃液処理槽27にメタン発酵廃液を投入する際に、メタン発酵廃液の投入量とアンモニア性窒素濃度が、流量計25及びアンモニア計30により測定されて演算装置35に送信され、メタン発酵廃液中の窒素化合物を脱窒するために必要な有機物の量が算出される。なお、アンモニア性窒素濃度の代わりにNO計30により測定される硝酸性窒素濃度を利用することもできる。 In the present invention, when the methane fermentation waste liquid is introduced into the waste liquid treatment tank 27, the input amount of the methane fermentation waste liquid and the ammonia nitrogen concentration are measured by the flow meter 25 and the ammonia meter 30 and transmitted to the arithmetic unit 35. The amount of organic matter necessary for denitrifying nitrogen compounds in the methane fermentation waste liquid is calculated. Note that the nitrate nitrogen concentration measured by the NO 3 meter 30 can be used instead of the ammonia nitrogen concentration.

メタン発酵廃液中の窒素化合物を脱窒するために必要な有機物の量の計算は、具体的には下記式(1)〜(3)に基づいて行われる。   Calculation of the amount of organic matter necessary for denitrifying nitrogen compounds in the methane fermentation waste liquid is specifically performed based on the following formulas (1) to (3).

c=a×b×3(kg−BOD/kgN)…(1)
a:廃液処理槽に投入するメタン発酵廃液のアンモニア性窒素濃度(g/L)、あるいは廃液処理槽に投入したメタン発酵廃液の硝化工程終了時点における硝酸性窒素濃度(g/L)
b:廃液処理槽へのメタン発酵廃液の投入量(L)
c:廃液処理槽に投入したメタン発酵廃液の脱窒に必要なBOD成分量(g)
c = a × b × 3 (kg-BOD / kgN) (1)
a: Ammonia nitrogen concentration (g / L) of the methane fermentation waste liquid charged into the waste liquid treatment tank or nitrate nitrogen concentration (g / L) at the end of the nitrification process of the methane fermentation waste liquid charged into the waste liquid treatment tank
b: Input amount of methane fermentation waste liquid to waste liquid treatment tank (L)
c: Amount of BOD component (g) required for denitrification of methane fermentation waste liquid charged into the waste liquid treatment tank

e=c−(d×b)…(2)
上式(2)中、b、cは前記と同じ意味
d:廃液処理槽に投入するメタン発酵廃液に含まれるBOD成分濃度(g/L)
e:廃液処理槽に投入したメタン発酵廃液を脱窒する際に不足するBOD成分量(g)
e = c− (d × b) (2)
In the above formula (2), b and c have the same meaning as described above. D: Concentration of BOD component (g / L) contained in the methane fermentation waste liquid charged into the waste liquid treatment tank
e: Amount of BOD component (g) that is insufficient when denitrifying the methane fermentation waste liquid charged into the waste liquid treatment tank

g=e÷f…(3)
上式(3)中、eは前記と同じ意味
f:水素供与体として用いる有機物のBOD成分濃度(g/L)
g:水素供与体として添加する有機物の量(L)
g = e ÷ f (3)
In the above formula (3), e has the same meaning as described above.
f: BOD component concentration of organic substance used as hydrogen donor (g / L)
g: Amount of organic substance added as hydrogen donor (L)

すなわち、上記式(1)において、パラメーターaは、アンモニア計30あるいはNO計30により測定されたアンモニア性窒素濃度あるいは硝酸性窒素濃度であり、パラメーターbは、流量計25により測定されたメタン発酵廃液の投入量である。そして、上記式(1)により、メタン発酵廃液の脱窒に必要なBOD(生物学的酸素要求量)成分の全量(c)が求められる。なお、本発明において、BOD成分とは、水中の好気性微生物によって分解可能な有機物を意味する。 That is, in the above formula (1), the parameter a is the ammonia nitrogen concentration or nitrate nitrogen concentration measured by the ammonia meter 30 or the NO 3 meter 30, and the parameter b is methane fermentation measured by the flow meter 25. The amount of waste liquid input. Then, the total amount (c) of the BOD (biological oxygen demand) component necessary for denitrification of the methane fermentation waste liquid is obtained by the above formula (1). In the present invention, the BOD component means an organic substance that can be decomposed by aerobic microorganisms in water.

次に、上記式(2)により、廃液処理槽に投入したメタン発酵廃液を脱窒する際に不足するBOD成分の量、すなわち、メタン発酵廃液に添加すべきBOD成分の量が求められる。   Next, the amount of the BOD component that is insufficient when denitrifying the methane fermentation waste liquid charged into the waste liquid treatment tank, that is, the amount of the BOD component to be added to the methane fermentation waste liquid is obtained by the above formula (2).

そして、上記式(3)により、実際にメタン発酵廃液に添加される有機物の量が求められる。   And the quantity of the organic substance actually added to a methane fermentation waste liquid is calculated | required by the said Formula (3).

上記計算式により算出された値に基づいて、演算装置35が余剰汚泥移送ポンプ36の稼働時間を制御し、所定量の余剰汚泥が可溶化槽37に投入される。可溶化槽37に投入された余剰汚泥は、該槽内で可溶化されてから廃液処理槽27に投入される。例えば、余剰汚泥の可溶化を加熱により行う場合は、80〜100℃で1〜2時間加熱することにより行うことができる。   Based on the value calculated by the above formula, the arithmetic unit 35 controls the operating time of the excess sludge transfer pump 36 and a predetermined amount of excess sludge is charged into the solubilization tank 37. The excess sludge charged into the solubilization tank 37 is solubilized in the tank and then charged into the waste liquid treatment tank 27. For example, when solubilization of excess sludge is performed by heating, it can be performed by heating at 80 to 100 ° C. for 1 to 2 hours.

廃液処理槽27には、硝化菌や脱窒菌等を含む活性汚泥が入っており、所定量の有機物が添加されたメタン発酵廃液は、曝気装置28により間欠的に曝気されて嫌気状態と好気状態が交互に繰り返されることにより、好気条件下ではメタン発酵廃液に含まれるアンモニア性窒素が硝化菌により硝化されて亜硝酸性窒素又は硝酸性窒素に変換され、生成した亜硝酸性窒素又は硝酸性窒素は、嫌気条件下でメタン発酵廃液中の有機物を水素供与体として脱窒菌により窒素ガスに還元され大気に放出される。メタン発酵廃液は、嫌気状態のときに廃液処理槽27に投入され、通常、10〜35℃の条件下で、嫌気状態0.5〜1.5時間、好気状態1.5〜0.5時間を交互に繰り返しながら、5〜10日間廃液処理槽27内に滞留され、生物学的硝化脱窒処理が行われる。   The waste liquid treatment tank 27 contains activated sludge containing nitrifying bacteria, denitrifying bacteria, and the like, and the methane fermentation waste liquid to which a predetermined amount of organic matter is added is intermittently aerated by the aeration apparatus 28 to be anaerobic and aerobic. By repeating the state alternately, under aerobic conditions, ammonia nitrogen contained in methane fermentation waste liquid is nitrified by nitrifying bacteria and converted into nitrite nitrogen or nitrate nitrogen, and the produced nitrite nitrogen or nitrate Nitrogen is reduced to nitrogen gas by denitrifying bacteria using the organic matter in the methane fermentation wastewater as a hydrogen donor under anaerobic conditions and released to the atmosphere. The methane fermentation waste liquid is put into the waste liquid treatment tank 27 in an anaerobic state, and is usually anaerobic state for 0.5 to 1.5 hours and an aerobic state for 1.5 to 0.5 at 10 to 35 ° C. While repeating the time alternately, the sample is retained in the waste liquid treatment tank 27 for 5 to 10 days, and biological nitrification denitrification treatment is performed.

硝化脱窒処理されたメタン発酵廃液は、廃液処理槽27から排出され、膜分離槽12に送られ、膜ユニット13によって残存する固形分(活性汚泥)が分離された後、ろ過液は処理水として排出される。一方、分離された活性汚泥は、再び廃液処理槽27に返送されるが、その一部は余剰汚泥として上記のように可溶化槽37に投入される、あるいは余剰汚泥排出ポンプ34により系外に排出され、脱水等の処理を行ったのち廃棄物として処分される。   The methane fermentation waste liquid that has been subjected to nitrification and denitrification is discharged from the waste liquid treatment tank 27, sent to the membrane separation tank 12, and after the solid content (activated sludge) is separated by the membrane unit 13, the filtrate is treated water. As discharged. On the other hand, the separated activated sludge is returned again to the waste liquid treatment tank 27, but a part of the activated sludge is introduced into the solubilization tank 37 as the excess sludge as described above, or is removed from the system by the excess sludge discharge pump 34. It is discharged, and after disposal such as dehydration, it is disposed of as waste.

図2には、本発明のメタン発酵廃液の処理方法に用いることができる別の処理装置の概略構成図が示されている。なお、以下の説明においては、図1と基本的に同一の部分には同じ符号を付してその説明を省略する。   FIG. 2 shows a schematic configuration diagram of another processing apparatus that can be used in the method for processing a methane fermentation waste liquid of the present invention. In the following description, parts that are basically the same as those in FIG.

図2の処理装置は、水素供与体添加手段として、余剰汚泥移送ポンプ36と余剰汚泥の一部を物理化学的に可溶する可溶化槽37の代わりに、有機性スラリーを固液分離する脱水機38、有機性スラリーのろ液を貯留するろ液槽39、ろ液移送ポンプ40を有している点で図1に示す処理装置と相違する。   In the treatment apparatus of FIG. 2, as a hydrogen donor addition means, instead of the solubilization tank 37 that physically solubilizes a part of the excess sludge transfer pump 36 and the excess sludge, dehydration that separates the organic slurry into solid and liquid is performed. It differs from the processing apparatus shown in FIG. 1 in that it has a machine 38, a filtrate tank 39 for storing filtrate of organic slurry, and a filtrate transfer pump 40.

粉砕分別機21は、配管60を介してメタン発酵槽23に連結されており、途中で分岐した配管61は脱水機38に連結されている。そして、メタン発酵槽23は、配管64を介して廃液処理槽27に連結されている。配管64の途中には、演算装置35に接続された流量計25とアンモニア計26が設けられており、廃液処理槽27に投入されるメタン発酵廃液の量とアンモニア性窒素濃度を測定し、演算装置35に各測定値を送信できるようになっている。   The pulverizing / separating machine 21 is connected to the methane fermentation tank 23 via a pipe 60, and a pipe 61 branched in the middle is connected to a dehydrator 38. The methane fermentation tank 23 is connected to the waste liquid treatment tank 27 via a pipe 64. In the middle of the pipe 64, a flow meter 25 and an ammonia meter 26 connected to the arithmetic unit 35 are provided, and the amount of methane fermentation waste liquid and ammonia nitrogen concentration to be introduced into the waste liquid treatment tank 27 are measured and calculated. Each measurement value can be transmitted to the device 35.

廃液処理槽27は配管65を介して膜分離槽31に連結されており、配管65の途中には、演算装置35に接続されたNO計30が設けられており、廃液処理槽27内のメタン発酵廃液の硝酸性窒素濃度を測定し、演算装置35に測定値を送信できるようになっている。 The waste liquid treatment tank 27 is connected to the membrane separation tank 31 via a pipe 65, and a NO 3 meter 30 connected to the arithmetic unit 35 is provided in the middle of the pipe 65. The nitrate nitrogen concentration of the methane fermentation waste liquid is measured, and the measured value can be transmitted to the arithmetic unit 35.

膜分離槽31には、膜ユニット32が設置されており、分離したろ過液を処理水として排出するための配管67と、分離した活性汚泥の一部を余剰汚泥として排出するための配管66が設けられている。更に、膜分離槽31は、配管68を介して廃液処理槽27と連結されており、分離した活性汚泥を汚泥返送ポンプ33により廃液処理槽27に返送できるようになっている。   A membrane unit 32 is installed in the membrane separation tank 31, and a pipe 67 for discharging the separated filtrate as treated water and a pipe 66 for discharging a part of the separated activated sludge as excess sludge. Is provided. Further, the membrane separation tank 31 is connected to the waste liquid treatment tank 27 through a pipe 68 so that the separated activated sludge can be returned to the waste liquid treatment tank 27 by the sludge return pump 33.

この装置においては、脱水機38により分離されたろ液はろ液槽39に貯留され、ろ液移送ポンプ40によって、配管69を通って廃液処理槽27に投入できるようになっている。ろ液移送ポンプ40は、演算装置35に接続されており、該演算装置により稼働時間を制御できるようになっている。一方、分離された固形物は、配管62により粉砕分別機21に返送されるようになっている。   In this apparatus, the filtrate separated by the dehydrator 38 is stored in the filtrate tank 39 and can be introduced into the waste liquid treatment tank 27 through the pipe 69 by the filtrate transfer pump 40. The filtrate transfer pump 40 is connected to the calculation device 35, and the operation time can be controlled by the calculation device. On the other hand, the separated solid matter is returned to the pulverizing / separating machine 21 through the pipe 62.

脱水機38としては、有機性スラリーを固液分離できるものであればよく、例えば、遠心分離脱水機やスクリュープレス脱水機等が使用できる。   The dehydrator 38 only needs to be capable of solid-liquid separation of the organic slurry. For example, a centrifugal dehydrator or a screw press dehydrator can be used.

次に、この処理装置を用いた、本発明のメタン発酵廃液の処理方法について説明する。 図2に示すように、厨芥等の有機性廃棄物は、粉砕分別装機21で細かく粉砕されると共に発酵不適物であるプラスチック等の異物が分離除去された後、図示しない経路から希釈水が投入されてスラリー化される。   Next, the processing method of the methane fermentation waste liquid of this invention using this processing apparatus is demonstrated. As shown in FIG. 2, organic waste such as soot is finely pulverized by a pulverization / separation device 21 and foreign matter such as plastic that is unsuitable for fermentation is separated and removed. It is put into a slurry.

有機性スラリーは、移送ポンプ22によりメタン発酵槽23に投入されてメタン発酵が行われ、発酵により生成したバイオガスは、図示しないガスホルダーに回収され、燃料電池発電装置、ガスエンジン等の発電機やボイラーの燃料として有効利用されるようになっている。   The organic slurry is put into the methane fermentation tank 23 by the transfer pump 22 and methane fermentation is performed. The biogas generated by the fermentation is collected in a gas holder (not shown), and a generator such as a fuel cell power generator or a gas engine. It has come to be used effectively as fuel for boilers and boilers.

また、有機性スラリーの一部は、脱水機38に送られて固液分離される。分離された固形分を含まないろ液はろ液槽39に貯留され、分離された固形分は、粉砕分別機21に返送される。   A part of the organic slurry is sent to the dehydrator 38 for solid-liquid separation. The separated filtrate containing no solid content is stored in the filtrate tank 39, and the separated solid content is returned to the pulverization / separator 21.

メタン発酵槽11から排出されたメタン発酵廃液は、窒素化合物を除去するために廃液処理槽27に投入される。この時、メタン発酵廃液中の窒素化合物を脱窒するために必要な量の有機物(メタン発酵の原料となる有機性スラリーを固液分離したろ液)も同時に添加される。   The methane fermentation waste liquid discharged from the methane fermentation tank 11 is put into the waste liquid treatment tank 27 in order to remove nitrogen compounds. At this time, an amount of organic matter (filtrate obtained by solid-liquid separation of an organic slurry as a raw material for methane fermentation) necessary for denitrifying nitrogen compounds in the methane fermentation waste liquid is also added at the same time.

本発明においては、廃液処理槽27にメタン発酵廃液を投入する際に、メタン発酵廃液の投入量とアンモニア性窒素濃度が、流量計25及びアンモニア計30により測定されて演算装置35に送信され、上述したようにメタン発酵廃液中の窒素化合物を脱窒するために必要な有機物の量が算出される。なお、アンモニア性窒素濃度の代わりにNO計30により測定される硝酸性窒素濃度を利用することもできる。 In the present invention, when the methane fermentation waste liquid is introduced into the waste liquid treatment tank 27, the input amount of the methane fermentation waste liquid and the ammonia nitrogen concentration are measured by the flow meter 25 and the ammonia meter 30 and transmitted to the arithmetic unit 35. As described above, the amount of organic matter necessary to denitrify the nitrogen compound in the methane fermentation waste liquid is calculated. Note that the nitrate nitrogen concentration measured by the NO 3 meter 30 can be used instead of the ammonia nitrogen concentration.

そして、算出された値に基づいて、演算装置35がろ液移送ポンプ40の稼働時間を制御し、所定量のろ液が廃液処理槽27に投入される。   Then, based on the calculated value, the arithmetic unit 35 controls the operating time of the filtrate transfer pump 40, and a predetermined amount of filtrate is put into the waste liquid treatment tank 27.

硝化脱窒処理されたメタン発酵廃液は、廃液処理槽27から排出され、膜分離槽12に送られ、膜ユニット13によって残存する固形分(活性汚泥)が分離された後、ろ過液は処理水として排出される。一方、分離された活性汚泥は、再び廃液処理槽27に返送されるが、その一部は余剰汚泥として余剰汚泥排出ポンプ34により系外に排出され、脱水等の処理を行ったのち廃棄物として処分される。   The methane fermentation waste liquid that has been subjected to nitrification and denitrification is discharged from the waste liquid treatment tank 27, sent to the membrane separation tank 12, and after the solid content (activated sludge) is separated by the membrane unit 13, the filtrate is treated water. As discharged. On the other hand, the separated activated sludge is returned again to the waste liquid treatment tank 27, but a part of the activated sludge is discharged out of the system by the surplus sludge discharge pump 34 as surplus sludge, and after being subjected to treatment such as dehydration, as waste Will be disposed of.

このような装置構成及び運転を行うことにより、生物学的硝化脱窒の水素供与体として一般的に用いられていた高価なメタノールの代わりに、従来、廃棄物として処分されていた余剰汚泥の可溶化溶液、あるいはメタン発酵の原料である有機性スラリーのろ液を用いることができ、ランニングコストの低減が可能となる。また、その添加量も、メタン発酵廃液量と、アンモニア性窒素濃度あるいは硝酸性窒素濃度の測定値に基づいて算出するので、メタン発酵廃液に含まれる窒素化合物を除去できる必要最小限な有機物量とすることができ、効率よく硝化脱窒処理を行うことができ、過剰な有機物を廃液処理槽で処理する必要がない。したがって、廃液処理槽の容積もコンパクトにすることができる。   By performing such an apparatus configuration and operation, surplus sludge that has been disposed of as waste in the past can be used instead of expensive methanol that is generally used as a hydrogen donor for biological nitrification denitrification. A solubilized solution or a filtrate of an organic slurry that is a raw material for methane fermentation can be used, and the running cost can be reduced. In addition, the amount of addition is calculated based on the amount of methane fermentation waste liquid and the measured value of ammonia nitrogen concentration or nitrate nitrogen concentration, so the minimum amount of organic substances that can remove nitrogen compounds contained in methane fermentation waste liquid Therefore, it is possible to efficiently perform nitrification / denitrification treatment, and it is not necessary to treat excess organic matter in a waste liquid treatment tank. Therefore, the volume of the waste liquid treatment tank can be made compact.

図2に示す構成の処理装置により、本発明のメタン発酵処理廃液の処理方法を用いて牛糞尿及び生ゴミを含む有機性廃棄物のメタン発酵処理を行った。なお、メタン発酵は55℃で行い、メタン発酵槽23内での滞留時間は10日間とした。   By the processing apparatus having the configuration shown in FIG. 2, the methane fermentation treatment of organic waste containing cow manure and raw garbage was performed using the method for treating a methane fermentation treatment waste liquid of the present invention. In addition, methane fermentation was performed at 55 degreeC and the residence time in the methane fermentation tank 23 was 10 days.

そして、メタン発酵槽23から排出されたメタン発酵廃液を100m/日の流量で廃液処理槽27に投入すると同時に、有機性スラリーを固液分離して得られたろ液(BOD濃度98,000mg/L)を2.86m/日投入して硝化脱窒処理を行った。表1に、メタン発酵廃液の性状を示す。 The methane fermentation waste liquid discharged from the methane fermentation tank 23 is charged into the waste liquid treatment tank 27 at a flow rate of 100 m 3 / day, and at the same time, the filtrate obtained by solid-liquid separation of the organic slurry (BOD concentration 98,000 mg / day). L) was added at 2.86 m 3 / day for nitrification denitrification treatment. Table 1 shows the properties of the methane fermentation waste liquid.

Figure 2005087853
Figure 2005087853

なお、上記ろ液の投入量は、上記式(1)〜(3)に基づいて算出されたものである。また、硝化脱窒処理は20℃で行い、曝気装置28により間欠的に曝気を行いながら、廃液処理槽27内に10日間滞留させた。   The input amount of the filtrate is calculated based on the above formulas (1) to (3). Further, the nitrification denitrification treatment was performed at 20 ° C., and the nitrification denitrification treatment was held in the waste liquid treatment tank 27 for 10 days while intermittently aeration was performed by the aeration apparatus 28.

そして、廃液処理槽27から排出された硝化脱窒処理済みのメタン発酵廃液を、膜分離槽12に送り、膜ユニット13によって残存する固形分(活性汚泥)を分離した後、ろ過液を処理水として排出(100m/日)した。表2に処理水の性状を示す。
The methane fermentation waste liquid that has been subjected to the nitrification and denitrification treatment discharged from the waste liquid treatment tank 27 is sent to the membrane separation tank 12, and the solid content (activated sludge) remaining is separated by the membrane unit 13. Discharged (100 m 3 / day). Table 2 shows the properties of the treated water.

Figure 2005087853
Figure 2005087853

表2から、メタン発酵廃液中の有機物及び窒素化合物が十分に除去されていることが分かる。   From Table 2, it can be seen that organic substances and nitrogen compounds in the methane fermentation waste liquid are sufficiently removed.

本発明は、糞尿、生ゴミ、食品加工残滓等の有機性廃棄物を嫌気性微生物を用いてメタン発酵処理した際に排出されるメタン発酵廃液中の有機物及び窒素化合物の除去に好適に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for removing organic substances and nitrogen compounds in methane fermentation waste liquid discharged when methane fermentation treatment is performed on organic waste such as manure, raw garbage, and food processing residue using anaerobic microorganisms. .

本発明のメタン発酵廃液の処理装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the processing apparatus of the methane fermentation waste liquid of this invention. 本発明のメタン発酵廃液の処理装置の別の実施形態を示す概略構成図である。It is a schematic block diagram which shows another embodiment of the processing apparatus of the methane fermentation waste liquid of this invention. 従来のメタン発酵処理装置の概略構成図である。It is a schematic block diagram of the conventional methane fermentation processing apparatus.

符号の説明Explanation of symbols

21.粉砕分別機
22.移送ポンプ
23.メタン発酵槽
24.撹拌ポンプ
25.流量計
26.アンモニア計
27.廃液処理槽
28.曝気装置
29.撹拌機
30.NO
31.膜分離槽
32.膜ユニット
33.汚泥返送ポンプ
34.余剰汚泥排出ポンプ
35.演算装置
36.余剰汚泥移送ポンプ
37.可溶化槽
38.脱水機
39.ろ液槽
40.ろ液移送ポンプ
21. Crushing and sorting machine 22. Transfer pump 23. Methane fermentation tank 24. Stirring pump 25. Flow meter 26. Ammonia meter 27. Waste liquid treatment tank 28. Aeration device 29. Agitator 30. NO 3 total 31. Membrane separation tank 32. Membrane unit 33. Sludge return pump 34. Excess sludge discharge pump 35. Arithmetic device 36. Surplus sludge transfer pump37. Solubilization tank 38. Dehydrator 39. Filtrate tank 40. Filtrate transfer pump

Claims (7)

有機性廃棄物をメタン発酵処理した際に排出されるメタン発酵廃液に含まれる窒素化合物を、水素供与体を用いて生物学的に硝化脱窒処理する方法において、
廃液処理槽に投入する前記メタン発酵廃液のアンモニア性窒素濃度を測定し、このアンモニア性窒素濃度の値と、前記メタン発酵廃液の投入量とから演算される値に基づいて、前記メタン発酵廃液に前記水素供与体として添加する有機物の量を調整することを特徴とするメタン発酵廃液の処理方法。
In a method of biologically nitrifying and denitrifying nitrogen compounds contained in methane fermentation waste liquid discharged when methane fermentation treatment of organic waste is performed using a hydrogen donor,
Measure the ammonia nitrogen concentration of the methane fermentation waste liquid charged into the waste liquid treatment tank, and based on the value calculated from the ammonia nitrogen concentration value and the input amount of the methane fermentation waste liquid, A method for treating a waste liquid of methane fermentation, comprising adjusting an amount of an organic substance added as the hydrogen donor.
有機性廃棄物をメタン発酵処理した際に排出されるメタン発酵廃液に含まれる窒素化合物を、水素供与体を用いて生物学的に硝化脱窒処理する方法において、
廃液処理槽に投入した前記メタン発酵廃液に含まれるアンモニア性窒素を好気性条件下で亜硝酸性窒素又は硝酸性窒素に変換する硝化工程を行い、該硝化工程終了時点における前記メタン発酵廃液の硝酸性窒素濃度を測定し、この硝酸性窒素濃度の値と、前記メタン発酵廃液の投入量とから演算される値に基づいて、前記メタン発酵廃液に前記水素供与体として添加する有機物の量を調整することを特徴とするメタン発酵廃液の処理方法。
In a method of biologically nitrifying and denitrifying nitrogen compounds contained in methane fermentation waste liquid discharged when methane fermentation treatment of organic waste is performed using a hydrogen donor,
Performing a nitrification step of converting ammonia nitrogen contained in the methane fermentation waste solution charged into the waste liquid treatment tank into nitrite nitrogen or nitrate nitrogen under aerobic conditions, and nitric acid of the methane fermentation waste solution at the end of the nitrification step The amount of organic matter added to the methane fermentation waste liquid as the hydrogen donor is adjusted based on the value calculated from the nitrate nitrogen concentration value and the input amount of the methane fermentation waste liquid. A method for treating methane fermentation wastewater, characterized in that:
前記水素供与体として添加する有機物の量を、下記式(1)〜(3)に基づいて計算する、請求項1又は2に記載のメタン発酵廃液の処理方法。
c=a×b×3(kg−BOD/kgN)…(1)
a:廃液処理槽に投入するメタン発酵廃液のアンモニア性窒素濃度(g/L)、あるいは廃液処理槽に投入したメタン発酵廃液の硝化工程終了時点における硝酸性窒素濃度(g/L)
b:廃液処理槽へのメタン発酵廃液の投入量(L)
c:廃液処理槽に投入したメタン発酵廃液の脱窒に必要なBOD成分量(g)
e=c−(d×b)…(2)
上式(2)中、b、cは前記と同じ意味
d:廃液処理槽に投入するメタン発酵廃液に含まれるBOD成分濃度(g/L)
e:廃液処理槽に投入したメタン発酵廃液を脱窒する際に不足するBOD成分量(g)
g=e÷f…(3)
上式(3)中、eは前記と同じ意味
f:水素供与体として用いる有機物のBOD成分濃度(g/L)
g:水素供与体として添加する有機物の量(L)
The processing method of the methane fermentation waste liquid of Claim 1 or 2 which calculates the quantity of the organic substance added as the said hydrogen donor based on following formula (1)-(3).
c = a × b × 3 (kg-BOD / kgN) (1)
a: Ammonia nitrogen concentration (g / L) of the methane fermentation waste liquid charged into the waste liquid treatment tank or nitrate nitrogen concentration (g / L) at the end of the nitrification process of the methane fermentation waste liquid charged into the waste liquid treatment tank
b: Input amount of methane fermentation waste liquid to waste liquid treatment tank (L)
c: Amount of BOD component (g) required for denitrification of methane fermentation waste liquid charged into the waste liquid treatment tank
e = c− (d × b) (2)
In the above formula (2), b and c have the same meaning as described above. D: Concentration of BOD component (g / L) contained in the methane fermentation waste liquid put into the waste liquid treatment tank
e: Amount of BOD component (g) that is insufficient when denitrifying the methane fermentation waste liquid charged into the waste liquid treatment tank
g = e ÷ f (3)
In the above formula (3), e has the same meaning as described above. F: BOD component concentration (g / L) of organic substance used as a hydrogen donor
g: Amount of organic substance added as hydrogen donor (L)
前記水素供与体として添加する有機物として、前記廃液処理槽から排出される余剰汚泥を物理化学的に可溶化した溶液を用いる、請求項1〜3のいずれか一つに記載のメタン発酵廃液の処理方法。   The treatment of methane fermentation waste liquid according to any one of claims 1 to 3, wherein a solution obtained by physicochemically solubilizing excess sludge discharged from the waste liquid treatment tank is used as the organic substance added as the hydrogen donor. Method. 前記水素供与体として添加する有機物として、メタン発酵処理する有機性廃棄物を固液分離したろ液を用いる、請求項1〜3のいずれか一つに記載のメタン発酵廃液の処理方法。   The processing method of the methane fermentation waste liquid as described in any one of Claims 1-3 using the filtrate which solid-liquid-separated the organic waste to which a methane fermentation process is carried out as an organic substance added as the said hydrogen donor. 嫌気性微生物によって分解可能な有機性廃棄物をスラリー化してメタン発酵槽に導入するための有機性廃棄物供給手段と、
前記有機性廃棄物をメタン発酵させるためのメタン発酵槽と、
前記メタン発酵槽から排出されるメタン発酵廃液の流量を測定するための流量測定手段と、
該メタン発酵廃液のアンモニア性窒素濃度を測定するためのアンモニア性窒素濃度測定手段と、
前記メタン発酵廃液を硝化脱窒処理するための廃液処理槽と、
前記アンモニア性窒素濃度測定手段によって測定された前記メタン発酵廃液のアンモニア性窒素濃度及び前記メタン発酵廃液流量測定手段によって測定された前記廃液処理槽への前記メタン発酵廃液の投入量とから前記メタン発酵廃液に前記水素供与体として添加する有機物の量を演算する演算手段と、
前記演算手段によって計算された値に基づいて、前記廃液処理槽から排出される余剰汚泥の一部を取り出して物理化学的に可溶化した溶液、あるいはメタン発酵処理する前記有機性廃棄物の一部を取り出して固液分離したろ液を、水素供与体として前記廃液処理槽に所定量添加する水素供与体添加手段とを備えていることを特徴とするメタン発酵廃液の処理装置。
Organic waste supply means for slurrying and introducing organic waste degradable by anaerobic microorganisms into a methane fermentation tank,
A methane fermenter for methane fermentation of the organic waste,
Flow rate measuring means for measuring the flow rate of the methane fermentation waste liquid discharged from the methane fermentation tank;
Ammonia nitrogen concentration measuring means for measuring the ammonia nitrogen concentration of the methane fermentation waste liquid;
A waste liquid treatment tank for nitrifying and denitrifying the methane fermentation waste liquid;
From the ammonia nitrogen concentration of the methane fermentation waste liquid measured by the ammonia nitrogen concentration measuring means and the input amount of the methane fermentation waste liquid into the waste liquid treatment tank measured by the methane fermentation waste liquid flow rate measuring means Computing means for computing the amount of organic matter added to the waste liquid as the hydrogen donor;
Based on the value calculated by the calculation means, a part of the surplus sludge discharged from the waste liquid treatment tank is taken out and physicochemically solubilized, or part of the organic waste subjected to methane fermentation An apparatus for treating methane fermentation waste liquid, comprising: a hydrogen donor addition means for adding a predetermined amount of the filtrate obtained by taking out the solid and separating it into the waste liquid treatment tank as a hydrogen donor.
嫌気性微生物によって分解可能な有機性廃棄物をスラリー化してメタン発酵槽に導入するための有機性廃棄物供給手段と、
前記有機性廃棄物をメタン発酵させるためのメタン発酵槽と、
前記メタン発酵槽から排出されるメタン発酵廃液の流量を測定するための流量測定手段と、
前記メタン発酵廃液を硝化脱窒処理するための廃液処理槽と、
前記廃液処理槽内のメタン発酵廃液の硝酸性窒素濃度を測定するための硝酸性窒素濃度測定手段と、
前記硝酸性窒素濃度測定手段によって測定された前記メタン発酵廃液の硝酸性窒素濃度及び前記メタン発酵廃液流量測定手段によって測定された前記廃液処理槽への前記メタン発酵廃液の投入量とから前記メタン発酵廃液に前記水素供与体として添加する有機物の量を演算する演算手段と、
前記演算手段によって計算された値に基づいて、前記廃液処理槽から排出される余剰汚泥の一部を取り出して物理化学的に可溶化した溶液、あるいはメタン発酵処理する前記有機性廃棄物の一部を取り出して固液分離したろ液を、水素供与体として前記廃液処理槽に所定量添加する水素供与体添加手段とを備えていることを特徴とするメタン発酵廃液の処理装置。
Organic waste supply means for slurrying and introducing organic waste degradable by anaerobic microorganisms into a methane fermentation tank,
A methane fermenter for methane fermentation of the organic waste,
Flow rate measuring means for measuring the flow rate of the methane fermentation waste liquid discharged from the methane fermentation tank;
A waste liquid treatment tank for nitrifying and denitrifying the methane fermentation waste liquid;
Nitrate nitrogen concentration measuring means for measuring nitrate nitrogen concentration of methane fermentation waste liquid in the waste liquid treatment tank;
From the nitrate nitrogen concentration of the methane fermentation waste liquid measured by the nitrate nitrogen concentration measuring means and the input amount of the methane fermentation waste liquid into the waste liquid treatment tank measured by the methane fermentation waste liquid flow rate measuring means Computing means for computing the amount of organic matter added to the waste liquid as the hydrogen donor;
Based on the value calculated by the calculation means, a part of the surplus sludge discharged from the waste liquid treatment tank is taken out and physicochemically solubilized, or part of the organic waste subjected to methane fermentation An apparatus for treating methane fermentation waste liquid, comprising: a hydrogen donor addition means for adding a predetermined amount of the filtrate obtained by taking out the solid and separating it into the waste liquid treatment tank as a hydrogen donor.
JP2003323988A 2003-09-17 2003-09-17 Method and apparatus for treating methane fermentation waste liquid Pending JP2005087853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003323988A JP2005087853A (en) 2003-09-17 2003-09-17 Method and apparatus for treating methane fermentation waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003323988A JP2005087853A (en) 2003-09-17 2003-09-17 Method and apparatus for treating methane fermentation waste liquid

Publications (1)

Publication Number Publication Date
JP2005087853A true JP2005087853A (en) 2005-04-07

Family

ID=34454868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003323988A Pending JP2005087853A (en) 2003-09-17 2003-09-17 Method and apparatus for treating methane fermentation waste liquid

Country Status (1)

Country Link
JP (1) JP2005087853A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007620A (en) * 2005-07-04 2007-01-18 Fuji Electric Holdings Co Ltd Method for treating nitrogen-containing liquid waste
JP2007237055A (en) * 2006-03-07 2007-09-20 Toshiba Corp Organic waste water treatment method and arrangement
JP2008149227A (en) * 2006-12-15 2008-07-03 Fuji Electric Holdings Co Ltd Waste liquid treatment method and waste liquid treatment apparatus
JP2014113547A (en) * 2012-12-10 2014-06-26 Japan Organo Co Ltd Apparatus and method for treating waste water containing nitric acid and nitrous acid

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249597A (en) * 1985-04-26 1986-11-06 Hitachi Ltd Method for controlling methanol injection in biological denitrification process
JPH0576892A (en) * 1991-09-25 1993-03-30 Ngk Insulators Ltd Treatment of organic waste water containing nitrogen component
JPH06285493A (en) * 1993-04-01 1994-10-11 Osaka Gas Co Ltd Fixed bed type denitrification process
JPH09290290A (en) * 1996-04-30 1997-11-11 Mitsubishi Chem Eng Corp Treatment of coke-oven gas liquor
JPH1015590A (en) * 1996-07-09 1998-01-20 Hitachi Plant Eng & Constr Co Ltd Removal of nitrogen of waste water and apparatus therefor
JPH11216495A (en) * 1998-02-03 1999-08-10 Kurita Water Ind Ltd Biological denitrification method
JP2000325989A (en) * 1999-05-21 2000-11-28 Nisshin Steel Co Ltd Biological denitrification treatment method
JP2001062498A (en) * 1999-08-30 2001-03-13 Kubota Corp Treatment of sludge
JP2001062495A (en) * 1999-08-30 2001-03-13 Kubota Corp Combined collection treatment of organic waste and night soil
JP2001121192A (en) * 1999-10-28 2001-05-08 Sumitomo Heavy Ind Ltd Method and apparatus for treating tofu waste water
JP2001170685A (en) * 1999-12-21 2001-06-26 Toru Aoi Treating device for nitrogen-containing waste water
JP2001212593A (en) * 2000-02-03 2001-08-07 Mitsubishi Kakoki Kaisha Ltd Post-treatment method for ascending current anaerobic treatment apparatus
JP2001252686A (en) * 2000-03-10 2001-09-18 Kurita Water Ind Ltd Anaerobic treatment method for organic waste water
JP2001259679A (en) * 2000-03-22 2001-09-25 Kurita Water Ind Ltd Biological treating method
JP2002263686A (en) * 2001-03-06 2002-09-17 Nissin Electric Co Ltd Method for computing amount of circulating water and method for controlling operation of biological device for removing nitrogen in discharged water
JP2002273491A (en) * 2001-03-15 2002-09-24 Kubota Corp Combined collection treatment method and facility for organic liquid waste and night soil
JP2003170141A (en) * 2001-12-07 2003-06-17 Kubota Corp Method and apparatus for treating organic waste
JP2003200190A (en) * 2002-01-07 2003-07-15 Toshiba Corp Device for controlling quality of water at sewage treatment plant
JP2003230877A (en) * 2002-02-07 2003-08-19 Fuji Electric Co Ltd Method and apparatus for treating organic wastewater
JP2005021731A (en) * 2003-06-30 2005-01-27 Fuji Electric Holdings Co Ltd Treatment method for anaerobically digested liquid

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249597A (en) * 1985-04-26 1986-11-06 Hitachi Ltd Method for controlling methanol injection in biological denitrification process
JPH0576892A (en) * 1991-09-25 1993-03-30 Ngk Insulators Ltd Treatment of organic waste water containing nitrogen component
JPH06285493A (en) * 1993-04-01 1994-10-11 Osaka Gas Co Ltd Fixed bed type denitrification process
JPH09290290A (en) * 1996-04-30 1997-11-11 Mitsubishi Chem Eng Corp Treatment of coke-oven gas liquor
JPH1015590A (en) * 1996-07-09 1998-01-20 Hitachi Plant Eng & Constr Co Ltd Removal of nitrogen of waste water and apparatus therefor
JPH11216495A (en) * 1998-02-03 1999-08-10 Kurita Water Ind Ltd Biological denitrification method
JP2000325989A (en) * 1999-05-21 2000-11-28 Nisshin Steel Co Ltd Biological denitrification treatment method
JP2001062498A (en) * 1999-08-30 2001-03-13 Kubota Corp Treatment of sludge
JP2001062495A (en) * 1999-08-30 2001-03-13 Kubota Corp Combined collection treatment of organic waste and night soil
JP2001121192A (en) * 1999-10-28 2001-05-08 Sumitomo Heavy Ind Ltd Method and apparatus for treating tofu waste water
JP2001170685A (en) * 1999-12-21 2001-06-26 Toru Aoi Treating device for nitrogen-containing waste water
JP2001212593A (en) * 2000-02-03 2001-08-07 Mitsubishi Kakoki Kaisha Ltd Post-treatment method for ascending current anaerobic treatment apparatus
JP2001252686A (en) * 2000-03-10 2001-09-18 Kurita Water Ind Ltd Anaerobic treatment method for organic waste water
JP2001259679A (en) * 2000-03-22 2001-09-25 Kurita Water Ind Ltd Biological treating method
JP2002263686A (en) * 2001-03-06 2002-09-17 Nissin Electric Co Ltd Method for computing amount of circulating water and method for controlling operation of biological device for removing nitrogen in discharged water
JP2002273491A (en) * 2001-03-15 2002-09-24 Kubota Corp Combined collection treatment method and facility for organic liquid waste and night soil
JP2003170141A (en) * 2001-12-07 2003-06-17 Kubota Corp Method and apparatus for treating organic waste
JP2003200190A (en) * 2002-01-07 2003-07-15 Toshiba Corp Device for controlling quality of water at sewage treatment plant
JP2003230877A (en) * 2002-02-07 2003-08-19 Fuji Electric Co Ltd Method and apparatus for treating organic wastewater
JP2005021731A (en) * 2003-06-30 2005-01-27 Fuji Electric Holdings Co Ltd Treatment method for anaerobically digested liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007620A (en) * 2005-07-04 2007-01-18 Fuji Electric Holdings Co Ltd Method for treating nitrogen-containing liquid waste
JP2007237055A (en) * 2006-03-07 2007-09-20 Toshiba Corp Organic waste water treatment method and arrangement
JP2008149227A (en) * 2006-12-15 2008-07-03 Fuji Electric Holdings Co Ltd Waste liquid treatment method and waste liquid treatment apparatus
JP2014113547A (en) * 2012-12-10 2014-06-26 Japan Organo Co Ltd Apparatus and method for treating waste water containing nitric acid and nitrous acid

Similar Documents

Publication Publication Date Title
Nah et al. Mechanical pretreatment of waste activated sludge for anaerobic digestion process
US5232583A (en) Installation for processing manure, fermented manure and kjeldahl-n containing waste water
EP0509609A1 (en) Method and apparatus for processing manure
Nicholls et al. The readily biodegradable fraction of sewage: its influence on phosphorus removal and measurement
JP4729718B2 (en) Organic waste treatment methods
JP4576845B2 (en) Nitrogen-containing waste liquid treatment method
Morris et al. ASBR treatment of beef slaughterhouse wastewater
JP2004290921A (en) Methane fermentation method and system
JP5536894B2 (en) Digestion method of excess sludge by lack of normal time
JP2005087853A (en) Method and apparatus for treating methane fermentation waste liquid
JP2004230273A (en) Method for treating organic waste
JP2005103375A (en) Methane fermentation treatment method and apparatus
JP2006075779A (en) Sludge volume reduction device and method, and organic waste water treatment system
JP2009195783A (en) Organic wastewater treatment method
JP2004275820A (en) Wastewater treatment apparatus
JP2001070915A (en) Device and method for organic waste disposal
KR100661625B1 (en) Denitration apparatus for the wastewater having the nitrogenous compound
JP2022034249A (en) Purification treatment method for methane fermentation digestion liquid and purification treatment system for methane fermentation digestion liquid
JP2004337667A (en) Method for methane fermentation of organic substance
JP7015893B2 (en) Swill methane fermentation processing system
JP2012254393A (en) Denitrification method of methane fermentation wastewater
JP5873744B2 (en) Organic wastewater and organic waste treatment method and treatment equipment
JP2006281095A (en) Method for treating organic waste
JP2003290751A (en) Device and method for methane fermentation treatment
JP4423982B2 (en) Operation method of methane fermentation treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317