[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3367235B2 - Refrigeration cycle of vehicle air conditioner - Google Patents

Refrigeration cycle of vehicle air conditioner

Info

Publication number
JP3367235B2
JP3367235B2 JP27741194A JP27741194A JP3367235B2 JP 3367235 B2 JP3367235 B2 JP 3367235B2 JP 27741194 A JP27741194 A JP 27741194A JP 27741194 A JP27741194 A JP 27741194A JP 3367235 B2 JP3367235 B2 JP 3367235B2
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
evaporator
air
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27741194A
Other languages
Japanese (ja)
Other versions
JPH08132857A (en
Inventor
秀雅 高橋
幸博 石井
雅弘 毛利
正 中坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP27741194A priority Critical patent/JP3367235B2/en
Publication of JPH08132857A publication Critical patent/JPH08132857A/en
Application granted granted Critical
Publication of JP3367235B2 publication Critical patent/JP3367235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷媒を過冷却して冷房能
力の向上を図った車両用空調装置の冷凍サイクルに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating cycle for a vehicle air conditioner in which a cooling capacity is improved by supercooling a refrigerant.

【0002】[0002]

【従来の技術】冷凍サイクルの冷房能力を向上させる方
法の一つに、膨脹弁の入口において冷媒に過冷却度を持
たせることにより、蒸発器での冷媒の蒸発前後のエンタ
ルピ差を大きくする方法がある。この方法を実施するた
めの凝縮器の構成例として、特公平4−61262号公
報(以下、第1の従来例)に示されたもの、或いは特開
平6−2970号公報(以下、第2の従来例)に示され
たものがある。
2. Description of the Related Art One of the methods for improving the cooling capacity of a refrigeration cycle is to increase the enthalpy difference before and after evaporation of the refrigerant in an evaporator by giving the refrigerant a supercooling degree at the inlet of an expansion valve. There is. As a configuration example of a condenser for carrying out this method, one disclosed in Japanese Patent Publication No. 4-61262 (hereinafter referred to as a first conventional example) or Japanese Patent Laid-Open No. 6-2970 (hereinafter referred to as a second conventional example). Conventional example).

【0003】上記第1の従来例は、図1に示すよう
に、冷却風の送風通路に、管路長の短い小凝縮部1と管
路長の長い大凝縮部2とを上下に並べて配置した構成の
もので、小凝縮部1からは飽和液となった冷媒が受液器
3に供給され、大凝縮部2からは小凝縮部1よりも管路
長が長い部分で余分に放熱して過冷却状態となった液冷
媒が受液器3に供給される。そして、小凝縮部1からの
飽和液冷媒と大凝縮部2からの過冷却液冷媒とが受液器
3で混合されて両者の中間の過冷却度をもった液冷媒と
なり、その後、図示しない膨脹弁を介して蒸発器に送ら
れるというものである。
[0003] The first conventional example, as shown in FIG. 1 4, the air passage of the cooling air, by arranging a long and large-condensing portion 2 short small condensing portion 1 and the pipe lengths pipe length in the vertical With the arrangement, the refrigerant that has become a saturated liquid is supplied from the small condenser 1 to the liquid receiver 3, and the large condenser 2 radiates extra heat in a portion where the pipeline length is longer than that of the small condenser 1. Then, the liquid refrigerant in the supercooled state is supplied to the liquid receiver 3. Then, the saturated liquid refrigerant from the small condenser 1 and the supercooled liquid refrigerant from the large condenser 2 are mixed in the liquid receiver 3 to become a liquid refrigerant having an intermediate degree of supercooling, and then not shown. It is sent to the evaporator through an expansion valve.

【0004】第2の従来例は、図1に示すように、同
一の管路長に設定された第1及び第2の凝縮器4及び5
を冷却風の送風通路に矢印Aで示す送風方向に対し前後
に配置する構成のもので、風上側の第2の凝縮器5は風
下側の第1の凝縮器4よりも良く冷却されるので、第2
の凝縮器5からは過冷却状態の液冷媒が膨脹弁6を介し
て蒸発器7に供給され、第1の凝縮器4からは飽和液冷
媒が受液器8に一旦溜められた後、膨脹弁6を介して蒸
発器7に供給されるというものである。なお、図16の
両凝縮器4,5、蒸発器7、受液器8において、アは気
相、イは液相を示す。また、9は圧縮機である。
In the second conventional example, as shown in FIG. 15 , the first and second condensers 4 and 5 set to have the same conduit length.
Is arranged in the air flow passage of the cooling air before and after with respect to the air flow direction indicated by the arrow A, and the second condenser 5 on the windward side is cooled better than the first condenser 4 on the leeward side. , Second
The supercooled liquid refrigerant is supplied from the condenser 5 to the evaporator 7 through the expansion valve 6, and the saturated liquid refrigerant is temporarily stored in the liquid receiver 8 from the first condenser 4 and then expanded. It is supplied to the evaporator 7 via the valve 6. In addition, in both condensers 4 and 5, the evaporator 7, and the liquid receiver 8 of FIG. 16, a shows a gas phase and a shows a liquid phase. Further, 9 is a compressor.

【0005】[0005]

【発明が解決しようとする課題】凝縮器で冷媒を効率良
く冷却するためには、対向流、すなわち冷媒が凝縮器内
を全体として冷却風の送風方向と逆方向に流れるように
することであるが、上記第1及び第2の従来例では、い
ずれも乗用車に一般的に使用されているコルゲート・フ
ィン型の凝縮器(複数本の冷媒通路を並列に有した偏平
な冷却管を蛇行状に曲げ、冷却管にコルゲートフィンを
取り付けた構成のもの)が用いられていて、冷媒は冷却
風と交差する方向のみに流れる直交流となっているた
め、冷媒の冷却効率が低く、それ程大きな過冷却度が得
られないものであった。
In order to efficiently cool the refrigerant in the condenser, it is necessary to make the counterflow, that is, the refrigerant flow in the condenser in the direction opposite to the blowing direction of the cooling air as a whole. However, in each of the first and second conventional examples, a corrugated fin type condenser (a flat cooling pipe having a plurality of refrigerant passages arranged in parallel to each other, which is generally used in passenger cars is formed in a meandering shape. Bending and cooling pipes with corrugated fins attached) are used, and the refrigerant has a cross flow that flows only in the direction that intersects with the cooling air, so the cooling efficiency of the refrigerant is low, and so much supercooling is achieved. It was unattainable.

【0006】また、図1の第1の従来例の構成では、
冷却風の送風通路の断面積が一定であることを考慮する
と、小凝縮部1と大凝縮部2とを合わせた管路長は一定
の制限を受けるから、冷媒の過冷却度を高めるために大
凝縮部2の管路長を長くすると、小凝縮部1の管路長が
短くなり、冷却風の送風通路の断面積に対して占める小
凝縮部1の面積が狭くなる結果、小凝縮部1を通る冷却
風量が減少して小凝縮部1から流出する飽和液の温度が
高くなってしまい、冷房能力の向上が抑制されてしま
う。
Further, in the first conventional example of the configuration of FIG. 1. 4,
Considering that the cross-sectional area of the cooling air blowing passage is constant, the total pipe length of the small condensing section 1 and the large condensing section 2 is subject to a certain limitation, so that the degree of supercooling of the refrigerant is increased. When the conduit length of the large condensing part 2 is increased, the conduit length of the small condensing part 1 is shortened and the area of the small condensing part 1 occupying the cross-sectional area of the cooling air blowing passage is narrowed. As a result, the amount of cooling air passing through 1 decreases and the temperature of the saturated liquid flowing out from the small condensing section 1 becomes high, so that the improvement of the cooling capacity is suppressed.

【0007】図1の第2の従来例の構成では、第1及
び第2の凝縮器4及び5の管路長は第1の従来例のもの
よりも長くすることができるから、第1の凝縮器4での
飽和液冷媒の温度及び第2の凝縮器5での過冷却度を大
きくすることができるが、2台の同一大の凝縮器4及び
5を冷却風の送風方向に対し前後に配設する関係上、凝
縮器の占有スペースが全体として大きくなる。
In the configuration of the second conventional example shown in FIG. 15 , since the pipe lengths of the first and second condensers 4 and 5 can be made longer than those of the first conventional example, Although it is possible to increase the temperature of the saturated liquid refrigerant in the condenser 4 and the degree of supercooling in the second condenser 5, the two condensers 4 and 5 of the same size with respect to the blowing direction of the cooling air are provided. Due to the front and rear arrangement, the space occupied by the condenser becomes large as a whole.

【0008】本発明は上記の事情に鑑みてなされたもの
で、その目的は、過冷却用の凝縮器での冷媒流れを対向
流として冷房能力の向上を図ると共に、凝縮器の占有ス
ペースを小さくするために第1及び第2の凝縮器を冷却
風の送風方向と交差する方向に並べて配置しても第1の
凝縮器の管路長に影響を与えることなく第2の凝縮器の
管路長を長くすることができる車両用空調装置の冷凍サ
イクルを提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to improve the cooling capacity by making the refrigerant flow in the condenser for supercooling counterflow to reduce the space occupied by the condenser. Therefore, even if the first and second condensers are arranged side by side in a direction intersecting the blowing direction of the cooling air, the pipe length of the second condenser is not affected, without affecting the pipe length of the first condenser. (EN) Provided is a refrigeration cycle for an air conditioning system for a vehicle, which can be lengthened.

【0009】[0009]

【課題を解決するための手段】請求項1記載の車両用空
調装置の冷凍サイクルは、圧縮機と、冷媒通路管を繰り
返し往復する形状に形成して構成され、前記圧縮機に対
し並列に接続されて冷却風との熱交換により前記圧縮機
からの冷媒を凝縮する第1及び第2の凝縮器と、前記第
1の凝縮器からの冷媒を受ける受液器と、この受液器の
出口側に設けられた絞り手段と、前記第1及び第2の凝
縮器で凝縮された冷媒を膨脹させる膨脹手段と、この膨
脹手段により膨脹された冷媒を蒸発させて空調対象空気
を冷却する蒸発器とを備え、前記第2の凝縮器は、冷媒
を過冷却するために、その管路長が前記第1の凝縮器よ
りも長く設定され、当該第2の凝縮器の冷媒通路管は、
前記冷却風の送風通路において冷媒の入口側から出口側
に向かって風下側から風上側に変移するように配置され
ていることを特徴とするものである。
A refrigeration cycle for an air conditioner for a vehicle according to claim 1 is formed by forming a compressor and a refrigerant passage pipe in a reciprocating shape repeatedly, and is connected in parallel to the compressor. a first and a second condenser for condensing the refrigerant from the compressor by heat exchange with the cooling air is, a receiver for receiving the refrigerant from the first condenser, the receiver
Throttle means provided on the outlet side, expansion means for expanding the refrigerant condensed by the first and second condensers, and evaporation for cooling the air to be air-conditioned by evaporating the refrigerant expanded by the expansion means. The second condenser has a pipeline length longer than that of the first condenser in order to supercool the refrigerant, and the second condenser has a refrigerant passage pipe,
The cooling air blowing passage is arranged so as to shift from the leeward side to the windward side from the inlet side of the refrigerant toward the outlet side.

【0010】請求項2記載の車両用空調装置の冷凍サイ
クルは、前記第1の凝縮器の冷媒通路管も前記冷却風の
送風通路において冷媒の入口側から出口側に向かって風
下側から風上側に変移するように配置されていることを
特徴とするものである。
In the refrigerating cycle of the vehicle air conditioner according to the second aspect, the refrigerant passage pipe of the first condenser is also located in the cooling air blowing passage from the leeward side to the upwind side from the refrigerant inlet side to the refrigerant outlet side. It is characterized in that it is arranged so as to change.

【0011】請求項3の車両用空調装置の冷凍サイクル
は、前記第1及び第2の凝縮器は前記冷却風の送風通路
に送風方向と交差する方向に並べて配置され、前記第2
の凝縮器の冷媒通路管のうち、過冷却域の少なくとも一
部が前記第1の凝縮器の風上側に配置されていることを
特徴とするものである。
In the refrigeration cycle of the vehicle air conditioner according to a third aspect of the present invention, the first and second condensers are arranged side by side in a blowing passage of the cooling wind in a direction intersecting the blowing direction, and the second condenser is arranged.
At least a part of the supercooled region of the refrigerant passage pipe of the condenser is disposed on the windward side of the first condenser.

【0012】請求項4記載の車両用空調装置の冷凍サイ
クルは、前記受液器に受けられた冷媒が前記第2の凝縮
器の過冷却域に供給されるように管路構成されているこ
とを特徴とするものである。
In the refrigerating cycle of the vehicle air conditioner according to claim 4, the pipeline is constructed so that the refrigerant received by the liquid receiver is supplied to the supercooled region of the second condenser. It is characterized by.

【0013】請求項5記載の車両用空調装置の冷凍サイ
クルは、前記蒸発器は、空調対象空気の送風通路の風下
側に配置された第1の蒸発器と、風上側に配置された第
2の蒸発器とから構成され、前記第1の蒸発器には前記
第1の凝縮器により凝縮された冷媒が供給され、前記第
2の蒸発器には前記第2の凝縮器により凝縮された冷媒
が供給されることを特徴とするものである。
In the refrigeration cycle of the vehicle air conditioner according to the present invention, the evaporator includes a first evaporator arranged on a leeward side of a ventilation passage for air to be air-conditioned and a second evaporator arranged on a windward side. The refrigerant condensed by the first condenser is supplied to the first evaporator, and the refrigerant condensed by the second condenser is supplied to the second evaporator. Is supplied.

【0014】[0014]

【0015】[0015]

【作用及び発明の効果】請求項1記載の手段によれば、
第2の凝縮器の冷媒通路管が冷却風の送風通路において
冷媒の入口側から出口側に向かって風下側から風上側に
変移するように配置されているので、全体的に見ると冷
媒は第2の凝縮器内を風下側から風上側に向かって流れ
る対向流となり、第2の凝縮器で凝縮された液冷媒の過
冷却度を大きくすることができる。また、圧縮機から吐
出される冷媒量は当該圧縮機を駆動する車両のエンジン
の回転数に比例して増大するが、受液器の出口側には絞
り手段が設けられていることにより、圧縮機からの吐出
冷媒量の増加に伴って絞り手段での冷媒の圧力損失が増
大し、第1の凝縮器に供給される冷媒量が減少して第2
の凝縮器に供給される冷媒量が増加するようになるの
で、圧縮機からの吐出冷媒量の増加に伴って第2の凝縮
器での冷媒の過冷却度が低下することとなり、この結
果、エンジンのアイドリング回転時においても高い冷房
能力が得られると共に、エンジンの高速回転時において
は必要な冷房能力を確保しながら圧縮機の吐出圧力を低
くすることができる。
According to the means described in claim 1,
Since the refrigerant passage pipe of the second condenser is arranged so as to shift from the leeward side to the windward side from the refrigerant inlet side to the refrigerant outlet side in the cooling air blowing passage, the refrigerant is generally It becomes a counter flow that flows from the leeward side to the upwind side in the second condenser, and the degree of supercooling of the liquid refrigerant condensed in the second condenser can be increased. Also, discharge from the compressor
The amount of refrigerant discharged is the engine of the vehicle that drives the compressor.
Although it increases in proportion to the number of rotations of the
Discharge means from the compressor
As the amount of refrigerant increases, the pressure loss of the refrigerant in the throttle means increases.
If the amount of refrigerant supplied to the first condenser decreases,
The amount of refrigerant supplied to the condenser will increase
The second condensation with the increase in the amount of refrigerant discharged from the compressor.
As a result, the degree of supercooling of the refrigerant in the reactor will decrease.
As a result, high cooling even when the engine is idling
Ability is obtained, and at the time of high speed engine rotation
Reduces the compressor discharge pressure while ensuring the required cooling capacity.
You can do it.

【0016】請求項2記載の手段によれば、第1の凝縮
器の冷媒通路管も前記冷却風の送風通路において冷媒の
入口側から出口側に向かって風下側から風上側に変移す
るように配置されているので、第1の凝縮器内での冷媒
の流れも対向流とすることができ、第1の凝縮器で凝縮
される飽和液冷媒の温度を低くすることができる。
According to the second aspect of the present invention, the refrigerant passage pipe of the first condenser also shifts from the leeward side to the windward side from the refrigerant inlet side to the refrigerant outlet side in the cooling air blowing passage. Since it is arranged, the flow of the refrigerant in the first condenser can be made to be the counter flow, and the temperature of the saturated liquid refrigerant condensed in the first condenser can be lowered.

【0017】請求項3記載の手段によれば、第1及び第
2の凝縮器が冷却風の送風通路に送風方向と交差する方
向に並べて配置されているので、両凝縮器の占有スペー
スを小さくすることができ、しかも第2の凝縮器の冷媒
通路管のうち、過冷却域の少なくとも一部が第1の凝縮
器の風上側に配置されているので、大なる過冷却度を得
るために第2の凝縮器の管路長を長くしても、第1の凝
縮器の管路長を短くしなくとも済み、第1の凝縮器での
飽和液冷媒の温度を低くすることができる。
According to the third aspect of the invention, since the first and second condensers are arranged side by side in the air blowing passage for the cooling air in a direction intersecting the air blowing direction, the space occupied by both condensers is small. In addition, since at least a part of the supercooling region of the refrigerant passage pipe of the second condenser is arranged on the windward side of the first condenser, it is possible to obtain a large degree of supercooling. Even if the pipe length of the second condenser is lengthened, it is not necessary to shorten the pipe length of the first condenser, and the temperature of the saturated liquid refrigerant in the first condenser can be lowered.

【0018】請求項4記載の手段によれば、受液器に受
けられた冷媒が第2の凝縮器の過冷却域に供給されるよ
うに管路構成されていることにより、その過冷却域での
冷媒の流速が速くなるので、熱伝達率が大きくなって第
2の凝縮器の過冷却域での冷却性能が向上し、この結
果、冷媒の過冷却度がより大きくなる。
According to the fourth aspect of the present invention, the refrigerant is received by the liquid receiver and is configured to be supplied to the supercooling region of the second condenser. Since the flow velocity of the refrigerant becomes faster, the heat transfer coefficient is increased and the cooling performance in the supercooling region of the second condenser is improved. As a result, the degree of supercooling of the refrigerant is further increased.

【0019】請求項5記載の手段によれば、空調対象空
気の風上側にある第2の蒸発器は大なる冷房能力を必要
とし、風下側にある第1の蒸発器は第2の蒸発器に比較
してそれ程の冷房能力を必要としないという事情がある
が、第2の凝縮器により凝縮された過冷却液冷媒は風上
側の第2の蒸発器に供給され、第1の凝縮器により凝縮
器された飽和液冷媒は風下側の蒸発器に供給されるの
で、蒸発器での空調対象空気との熱交換性能が向上し、
冷房能力が高まる。
According to the means of claim 5, the second evaporator on the windward side of the air to be conditioned requires a large cooling capacity, and the first evaporator on the leeward side is the second evaporator. There is a circumstance that it does not require such a cooling capacity as compared with the above, but the supercooled liquid refrigerant condensed by the second condenser is supplied to the second evaporator on the windward side, and is cooled by the first condenser. Since the saturated liquid refrigerant that has been condensed is supplied to the evaporator on the leeward side, the heat exchange performance with the air to be air-conditioned in the evaporator is improved,
Cooling capacity increases.

【0020】[0020]

【0021】[0021]

【実施例】以下、本発明を自動車の空調装置に適用した
第1の実施例につき、図1〜図を参照しながら説明す
る。図4は冷凍サイクルの概略構成を示すもので、圧縮
機11は自動車のエンジンに電磁クラッチ(図示せず)
を介して駆動されるように構成されており、この圧縮機
11の吐出口11aに接続された吐出管12は第1及び
第2の凝縮器13及び14の冷媒入口側に接続されてい
る。上記第1の凝縮器13の冷媒出口側は受液器15の
冷媒入口管16に接続され、この受液器15の冷媒出口
管17と第2の凝縮器14の冷媒出口側に接続された冷
媒出口管18とは合流管19を介して膨脹手段としての
膨脹弁20に接続されている。そして、膨脹弁20の冷
媒出口は蒸発器21の冷媒入口に接続され、この蒸発器
21の冷媒出口は吸入管22を介して前記圧縮器11の
吸入口11bに接続されている。上記受液器15の出口
側である冷媒出口管17中には、絞り手段としての絞り
45が設けられている。この絞り45は図5に示すよう
に管内オリフィス45a,45bを2段に有して構成さ
れており、図5に矢印Cで示す冷媒の流れ方向に対し上
流側の第1のオリフィス45aよりも下流側の第2のオ
リフィス45bの方が絞り度が大きくなっている
EXAMPLES Hereinafter, the first embodiment of the present invention is applied to an automobile air conditioning system will be described with reference to FIGS. FIG. 4 shows a schematic structure of the refrigeration cycle. The compressor 11 includes an electromagnetic clutch (not shown) on the engine of the automobile.
The discharge pipe 12 connected to the discharge port 11a of the compressor 11 is connected to the refrigerant inlet side of the first and second condensers 13 and 14. The refrigerant outlet side of the first condenser 13 is connected to the refrigerant inlet pipe 16 of the liquid receiver 15, and is connected to the refrigerant outlet pipe 17 of the liquid receiver 15 and the refrigerant outlet side of the second condenser 14. The refrigerant outlet pipe 18 is connected via a merging pipe 19 to an expansion valve 20 as an expansion means. The refrigerant outlet of the expansion valve 20 is connected to the refrigerant inlet of the evaporator 21, and the refrigerant outlet of the evaporator 21 is connected to the suction port 11b of the compressor 11 via the suction pipe 22. Outlet of the receiver 15
In the refrigerant outlet pipe 17 on the side, a throttle as a throttle means is provided.
45 are provided. This diaphragm 45 is as shown in FIG.
It has two internal orifices 45a and 45b.
5 in the flow direction of the refrigerant indicated by arrow C in FIG.
A second orifice downstream of the first orifice 45a on the flow side.
The refining 45b has a larger aperture .

【0022】前記第1及び第2の凝縮器13及び14は
1台のフィン・チューブ型凝縮器本体23から構成され
る。フィン・チューブ型凝縮器本体23は、図2に示す
ように、並列配置された多数枚のアルミ製板状冷却フィ
ン24に銅管からなる多数本の冷媒通路管25を通して
構成されたもので、それら冷媒通路管25をU字接続管
26により相互に連結することにより繰り返し往復する
蛇行状の冷媒通路が形成されるようになっている。この
ときU字接続管26により相互に接続する冷媒通路管2
5を2群に分け、その一群を第1の凝縮器13として構
成し、残る一群を第2の凝縮器14として構成するよう
にしており、第1の凝縮器13は図3に示すように右側
下部の冷媒通路管25群から構成され、第2の凝縮器1
4は残りの部分に存在する冷媒通路管25群から構成さ
れようにしている。
The first and second condensers 13 and 14 are composed of one fin-tube type condenser main body 23. As shown in FIG. 2, the fin-tube type condenser main body 23 is constituted by a large number of aluminum plate-shaped cooling fins 24 arranged in parallel through a large number of refrigerant passage tubes 25 made of copper tubes. By connecting these refrigerant passage pipes 25 to each other by a U-shaped connecting pipe 26, a meandering refrigerant passage that reciprocates repeatedly is formed. At this time, the U-shaped connecting pipe 26 connects the refrigerant passage pipes 2 to each other.
5 is divided into two groups, one group is configured as a first condenser 13, and the remaining group is configured as a second condenser 14. The first condenser 13 is configured as shown in FIG. The second condenser 1 is composed of a group of refrigerant passage tubes 25 on the lower right side.
Reference numeral 4 is made up of a group of refrigerant passage pipes 25 existing in the remaining portion.

【0023】そして、凝縮器本体23は自動車のエンジ
ンルーム内の冷却風の送風通路中に、冷却フィン24が
自動車の左右方向に並ぶように、且つ第1の凝縮器13
が第2の凝縮器14の後側に位置するように配設され
る。従って、自動車の前側から後側に向かって流れる冷
却風は冷却フィン24間を通って流れるようになり、第
2の凝縮器14の左側部分は第1の凝縮器13よりも冷
却風の風上側に位置されたこととなる。なお、冷却風の
送風方向を矢印Aで示す。
In the condenser main body 23, the cooling fins 24 are arranged in the left-right direction of the vehicle in the cooling air blowing passage in the engine room of the vehicle, and the first condenser 13 is provided.
Are arranged on the rear side of the second condenser 14. Therefore, the cooling air that flows from the front side to the rear side of the automobile flows through between the cooling fins 24, and the left side portion of the second condenser 14 is on the windward side of the cooling air than the first condenser 13. It has been located in. The blowing direction of the cooling air is indicated by arrow A.

【0024】さて、第1及び第2の凝縮器13及び14
の具体的構成例を図1により説明するに、理解し易くす
るために凝縮器本体23の上下に並ぶ冷媒通路管25が
冷却風の送風方向に7列存在し、各列の冷媒通路管25
を指す場合、風下側から順に第1列、第2列……第7列
の列番を付して述べることとする。
Now, the first and second condensers 13 and 14
1 will be described with reference to FIG. 1, in order to facilitate understanding, there are seven rows of the refrigerant passage pipes 25 arranged in the upper and lower sides of the condenser main body 23 in the cooling air blowing direction, and the refrigerant passage pipes 25 in each row are arranged.
The first column, the second column, and the seventh column are numbered in order from the leeward side.

【0025】凝縮器本体23の風下側端部には、第1列
の冷媒通路管25の一端部に接続された筒状の入口ヘッ
ド27が設けられており、この入口ヘッド27には前記
圧縮機11の吐出管12が接続されている。従って、圧
縮機11から吐出された冷媒は第1の凝縮器13の第1
列の複数本の冷媒通路管25及び第2の凝縮器14の第
1列の複数本の冷媒通路管25に分流して流入するよう
になる。
At the leeward side end of the condenser main body 23, there is provided a cylindrical inlet head 27 connected to one end of the first-row refrigerant passage pipe 25, and the inlet head 27 has the above-mentioned compression head. The discharge pipe 12 of the machine 11 is connected. Therefore, the refrigerant discharged from the compressor 11 is the first refrigerant of the first condenser 13.
The plurality of refrigerant passage pipes 25 in the row and the plurality of refrigerant passage pipes 25 in the first row of the second condenser 14 are branched and flow into the refrigerant passage pipes 25.

【0026】そして、第1の凝縮器13の第1列の複数
本の冷媒通路管25は各々U字接続管26により、風上
側である第2列、第3列、第4列の冷媒通路管25に順
次接続され、第1の凝縮器13の最も風下側に存在する
第4列の冷媒通路管25は筒状の出口ヘッド28に接続
されている。そして、出口ヘッド28には受液器15の
冷媒入口管16が接続されている。このようにして構成
された第1の凝縮器13においては、冷媒通路管25が
入口側から出口側に向かって次第に風下側から風上側に
変移する形態となり、この結果、冷媒は左右方向に往復
しながら第1列から第4列までの冷媒通路管25を順に
通って全体として冷却風の風下側から風上側に向かって
流れ、その間に凝縮されて飽和液冷媒として受液器15
内に溜められるようになる。
The plurality of refrigerant passage pipes 25 in the first row of the first condenser 13 are connected to the U-shaped connecting pipes 26 so that the refrigerant passages in the second, third and fourth rows on the windward side. The fourth-row refrigerant passage pipes 25, which are sequentially connected to the pipes 25 and are located on the most leeward side of the first condenser 13, are connected to a cylindrical outlet head 28. The refrigerant inlet pipe 16 of the liquid receiver 15 is connected to the outlet head 28. In the thus configured first condenser 13, the refrigerant passage pipe 25 gradually changes from the leeward side to the windward side from the inlet side to the outlet side, and as a result, the refrigerant reciprocates in the left-right direction. While passing through the refrigerant passage pipes 25 from the first row to the fourth row in order, the cooling air flows as a whole from the leeward side to the upwind side, and is condensed in the meantime to be the saturated liquid refrigerant, which is the receiver 15
It will be stored inside.

【0027】一方、第2の凝縮器14の第1列の複数本
の冷媒通路管25も同様にして各々U字接続管26によ
り風上側である第2列、第3列、第4列の冷媒通路管2
5に順次接続される。そして、第4列の冷媒通路管25
には両端が筒状の中継ヘッド29が接続されており、こ
の中継ヘッド29は第5列の冷媒通路管25のうち最下
段のものに接続管30を介して接続される。接続管30
に接続された第5列最下段の冷媒通路管25は当該第5
列の冷媒通路管25に下段のものから順にU字接続管2
6を介して接続され、第5列最上段の冷媒通路管25は
第6列の冷媒通路管25に最上段のものから順に下段の
ものに対してU字接続管26を介して接続され、更に第
6列最下段の冷媒通路管25は第7列の冷媒通路管25
に最下段のものから順に上段のものに対してU字接続管
26を介して接続される。そして、第7列最上段の冷媒
通路管25には冷媒出口管18が接続されている。この
ようにして構成された第2の凝縮器14においては、冷
媒通路管25が入口側から出口側に向かって次第に風下
側から風上側に変移する形態となり、この結果、冷媒は
左右方向或いは上下方向に往復しながら第1列から第7
列までの冷媒通路管25を順に通って全体として冷却風
の風下側から風上側に向かって流れるようになる。な
お、入口ヘッド27、出口ヘッド28、中継ヘッド29
の両端はいずれも閉塞されている。
On the other hand, the plurality of refrigerant passage pipes 25 in the first row of the second condenser 14 are also similarly arranged in the second, third and fourth rows on the windward side by the U-shaped connecting pipes 26, respectively. Refrigerant passage tube 2
5 are sequentially connected. Then, the fourth-row refrigerant passage pipe 25
A relay head 29 having a tubular shape at both ends is connected to the relay head 29, and the relay head 29 is connected to the lowermost one of the refrigerant passage tubes 25 in the fifth row via a connection tube 30. Connection tube 30
The refrigerant passage pipe 25 at the bottom of the fifth row connected to the
The U-shaped connecting pipes 2 are arranged in order from the lower one in the row of the refrigerant passage pipes 25.
6, the refrigerant passage pipes 25 in the uppermost stage of the fifth row are connected to the refrigerant passage pipes 25 in the sixth row via U-shaped connecting pipes 26 in descending order from the uppermost one. Further, the lowermost refrigerant passage pipe 25 in the sixth row is the refrigerant passage pipe 25 in the seventh row.
To the upper ones in order from the lowermost one via a U-shaped connecting pipe 26. The refrigerant outlet pipe 18 is connected to the uppermost refrigerant passage pipe 25 in the seventh row. In the second condenser 14 thus configured, the refrigerant passage pipe 25 gradually changes from the leeward side to the windward side from the inlet side to the outlet side, and as a result, the refrigerant flows in the left-right direction or the vertical direction. From the 1st row to the 7th while reciprocating in the direction
As a whole, the cooling air flows from the leeward side to the windward side through the refrigerant passage tubes 25 up to the row in order. The inlet head 27, the outlet head 28, the relay head 29
Both ends are closed.

【0028】ところで、第2の凝縮器14の管路長は以
上の説明から理解されるように第1の凝縮器13の管路
長よりも長くなっている。そして、第2の凝縮器14に
供給された冷媒は、第1の凝縮器13の管路長と略同一
の長さの管路を流れる間、すなわち第1列から第4列ま
での冷媒通路管25を流通する間に凝縮されて飽和液と
なり、その後の管路である第5列から第7列の冷媒通路
管25を流れる間に更に冷却されて過冷却液冷媒とな
る。このような過冷却液冷媒を得るための第2の凝縮器
14の管路長は、凝縮器本体23に占める第2の凝縮器
14の容積比で表すと、0.6〜0.8が最適である。
ちなみに第2の凝縮器14の過冷却域を図3に斜線を付
して示した。この図3からも明らかなように、第2の凝
縮器14の凝縮域(斜線なしの部分)は第1の凝縮器1
3の上に位置して当該第1の凝縮器13と冷却風の送風
方向と交差する方向に並べて配置された形態となり、過
冷却域の一部である下側部分は第1の凝縮器13の風上
側に位置された形態となる。
By the way, the pipe length of the second condenser 14 is longer than that of the first condenser 13 as understood from the above description. The refrigerant supplied to the second condenser 14 flows through the pipeline having a length substantially the same as the pipeline length of the first condenser 13, that is, the refrigerant passages from the first row to the fourth row. While flowing through the pipe 25, it is condensed into a saturated liquid, and is further cooled while flowing through the refrigerant passage pipes 25 of the fifth row to the seventh row, which are subsequent pipelines, to become a supercooled liquid refrigerant. The pipe length of the second condenser 14 for obtaining such a supercooled liquid refrigerant is 0.6 to 0.8 when expressed by the volume ratio of the second condenser 14 in the condenser main body 23. Optimal.
By the way, the supercooled region of the second condenser 14 is shown in FIG. As is clear from FIG. 3, the condensing area of the second condenser 14 (the portion without hatching) is the first condenser 1
3, the first condenser 13 and the first condenser 13 are arranged side by side in a direction intersecting with the blowing direction of the cooling air, and the lower part which is a part of the supercooling region is the first condenser 13 It is located on the windward side of.

【0029】上記構成の冷凍サイクルにおいて、エンジ
ンにより圧縮機11が駆動されると、該圧縮機11によ
り圧縮された冷媒は吐出管12から圧縮機11に対して
並列接続状態にある第1及び第2の凝縮器13及び14
に分流する。そして、第1の凝縮器13に流入した冷媒
は風下側から風上側に向かって流れ、飽和液冷媒(過冷
却度略0℃)となって受液器15内に溜められる。
When the compressor 11 is driven by the engine in the refrigerating cycle having the above-described structure, the refrigerant compressed by the compressor 11 is connected in parallel with the compressor 11 from the discharge pipe 12 to the first and the first. Two condensers 13 and 14
Divert to. The refrigerant flowing into the first condenser 13 flows from the leeward side toward the leeward side and becomes a saturated liquid refrigerant (subcooling degree of approximately 0 ° C.) and is stored in the liquid receiver 15.

【0030】一方、第2の凝縮器14に流入した冷媒も
風下側から風上側に向かって流れ、その途中で飽和液と
なった後、更に冷却されて冷媒出口管18から過冷却液
冷媒となって流出し、絞り45を通って合流管19へと
流れる。第2の凝縮器14の冷媒出口管18から流出し
た過冷却液冷媒は受液器15の冷媒出口管17から流出
する飽和液冷媒と合流管19で合流し、ここで過冷却液
冷媒と飽和液冷媒とが混合されて両者の中間の過冷却度
をもった過冷却液冷媒となって膨脹弁20で膨脹され、
蒸発器21に供給される。そして、冷媒は蒸発器21で
蒸発し、この蒸発器21の周りを流れる空調対象空気で
ある車内空気を冷却する。この後、蒸発した冷媒は吸入
管22を介して圧縮機11に吸入され、ここで圧縮され
た後、再び吐出管12を介して第1及び第2の凝縮器1
3及び14に供給される。なお、図4において、冷媒の
気相をアで示し、液相をイで示した。
On the other hand, the refrigerant flowing into the second condenser 14 also flows from the leeward side toward the upwind side, becomes a saturated liquid on the way, and is further cooled to be a supercooled liquid refrigerant from the refrigerant outlet pipe 18. It flows out and passes through the restrictor 45 to the merging pipe 19.
Flowing . The supercooled liquid refrigerant flowing out of the refrigerant outlet pipe 18 of the second condenser 14 merges with the saturated liquid refrigerant flowing out of the refrigerant outlet pipe 17 of the liquid receiver 15 in the confluence pipe 19, where it is saturated with the supercooled liquid refrigerant. The liquid refrigerant is mixed and becomes a supercooled liquid refrigerant having a supercooling degree intermediate between the two, and is expanded by the expansion valve 20.
It is supplied to the evaporator 21. Then, the refrigerant evaporates in the evaporator 21, and cools the air inside the vehicle that is the air to be conditioned and flows around the evaporator 21. After that, the evaporated refrigerant is sucked into the compressor 11 through the suction pipe 22, is compressed therein, and is then again discharged through the discharge pipe 12 into the first and second condensers 1.
3 and 14. In addition, in FIG. 4, the vapor phase of the refrigerant is indicated by a and the liquid phase is indicated by a.

【0031】このように本実施例によれば、過冷却用の
第2の凝縮器14に供給された冷媒は、その入口側から
出口側に向かって風下側から風上側に向かって流れるの
で、第2の凝縮器14において冷媒は冷却風に対して対
向する流れとなる。このため、風上側の温度の低い冷却
風は冷却されて温度低下している冷媒と熱交換し、冷媒
との熱交換により温度上昇した風下側の冷却風は温度の
高い冷媒と熱交換することとなるので、冷媒は冷却風と
の温度差が略一定の状態で当該冷却風と熱交換するよう
になる。この結果、第2の凝縮器14における冷媒と冷
却風との熱交換性が向上するため、冷媒の過冷却度が大
きくなり、冷凍サイクルの冷房能力が向上する。また、
本実施例では、第1の凝縮器14においていも、冷却風
と冷媒とが対向流となるので、この第1の凝縮器14で
も飽和液冷媒の温度を低くすることができ、冷凍サイク
ルにより冷房能力がより向上する。
As described above, according to this embodiment, the refrigerant supplied to the second condenser 14 for supercooling flows from the inlet side to the outlet side, and from the leeward side to the windward side. In the second condenser 14, the refrigerant has a flow facing the cooling air. Therefore, the cooling air having a lower temperature on the windward side exchanges heat with the cooled refrigerant, and the cooling air having a temperature increased by heat exchange with the refrigerant exchanges heat with the high temperature refrigerant. Therefore, the refrigerant exchanges heat with the cooling air with a temperature difference from the cooling air being substantially constant. As a result, the heat exchange between the refrigerant and the cooling air in the second condenser 14 is improved, so that the degree of supercooling of the refrigerant is increased and the cooling capacity of the refrigeration cycle is improved. Also,
In the present embodiment, since the cooling air and the refrigerant flow in the first condenser 14 in a counter flow, the temperature of the saturated liquid refrigerant can be lowered in the first condenser 14 as well, and the cooling by the refrigeration cycle is performed. The ability is improved.

【0032】このような冷房能力の向上効果は実験によ
って確認されており、その結果を図に示す。図は第
1の従来例及び第2の従来例と本発明の冷凍サイクルの
冷房能力を、横軸に過冷却度(℃)を取り、縦軸に冷房
能力比(過冷却度0℃のものとの能力比)を取って示す
もので、同図から明らかなように、第1の従来では過冷
却度は最高20℃程度、第2の従来例でも過冷却度28
℃程度しか得られないが、本発明では過冷却度を30℃
程度まで高めることができる。また、最高能力比は第1
の従来例で過冷却度10℃において1.1程度、第2の
従来例で過冷却度18℃程度で1.1程度であるが、本
発明では過冷却度20℃で1.2程度となり、本発明は
過冷却度、冷房能力比共に高いことが理解される。
The improvement of such cooling capacity has been confirmed by experiments, and the results are shown in Figure 6. FIG. 6 shows the cooling capacity of the refrigeration cycle of the first conventional example, the second conventional example, and the present invention, the degree of supercooling (° C.) on the horizontal axis, and the cooling ability ratio (supercooling degree 0 ° C. on the vertical axis. As shown in the figure, the maximum degree of supercooling in the first conventional example is about 20 ° C., and the degree of supercooling is 28% in the second conventional example.
However, in the present invention, the degree of supercooling is 30 ° C.
Can be increased to a degree. The highest capacity ratio is the first
In the conventional example, the supercooling degree is about 1.1 at a supercooling degree of 10 ° C., and is about 1.1 at the supercooling degree of about 18 ° C. in the second conventional example. It is understood that the present invention has a high degree of supercooling and a high cooling capacity ratio.

【0033】また、本実施例では、第1及び第2の凝縮
器13及び14は冷却風の送風通路に送風方向に並べて
配置されているので、自動車のエンジンルーム内におい
て両凝縮器13及び14の占有スペースを小さくするこ
とができる。しかも、第2の凝縮器14の過冷却域が第
1の凝縮器13の風上側に配置されているので、第2の
凝縮器14の管路長が過冷却域を有する分だけ第1の凝
縮器13よりも長くなるという事情があっても、冷却風
の通路断面積中に占める第1の凝縮器13の面積が減少
することは全くなく、このことからも第1の凝縮器13
での冷媒の冷却性能がより向上する。ところで、第1の
凝縮器13の入口から受液器15の出口までの冷媒圧力
損失をΔP1 、第2の凝縮器14の入口から出口までの
冷媒の圧力損失をΔP2 とした場合、絞り45が設けら
れていない冷凍サイクルでは、第1及び第2の凝縮器1
3及び14の入口から合流管19まで圧力損失ΔP1 及
びΔP2 は冷媒流量が多くなればそれに略比例して大き
くなるが、ΔP1 とΔP2 とは常に略等しい状態を現出
するので、第1及び第2の凝縮器13及び14には圧縮
機11の吐出冷媒量が多くなっても常に略等量の冷媒が
流入する。すると、エンジンの回転数増加に伴って圧縮
機11から吐出される冷媒が増加しても、両凝縮器1
3,14には同等の多量の冷媒が流入するため、図7に
示すようにエンジン回転数の増大(圧縮機11の吐出冷
媒量の増加)に伴い第2の凝縮器14での過冷却度が大
きくなって冷却能力も大きくなるが、冷媒の凝縮温度が
高くなることから圧縮機11の吐出圧力が高くなってし
まう。すると、圧縮機11のシール構造を高耐圧、高精
度のものとしなければならず、コスト的に不利なものと
なってしまう。しかしながら、絞り45を設けた本実施
例では、絞り45での冷媒の圧力損失をΔP3 とする
と、冷媒が絞り45のオリフィス45a,45bを通過
した時の圧力低下によって液冷媒が一部蒸発して気泡が
発生しこの気泡による流路抵抗損が生ずるが、冷媒流量
が多くなればなるほど管内オリフィス45a,45bを
通過した時の圧力低下が大きく、発生する気泡も多くな
るため、流路抵抗損すなわち絞り45での圧力損失ΔP
3 が大きくなる。従って、第1の凝縮器13の入口から
合流管19までの圧力損失(ΔP1 +ΔP3 )は冷媒流
量が多くなればなる 程大きくなって図8に示すように第
2の凝縮器14の圧力損失ΔP2 との差は大きくなり、
この結果、エンジンにより駆動される圧縮機11の回転
数が高くなればなる程すなわち圧縮機11の吐出冷媒量
が増加すればする程、第2の凝縮器14への冷媒流入量
が増大するようになる。このとき、第2の凝縮器14の
管路長は長く、冷却能力が大きいため、該第2の凝縮器
14により多量の冷媒が凝縮されるようになっても、そ
の凝縮温度ひいては凝縮圧力の上昇程度は低くなり、圧
縮機11の吐出圧力の増加程度は吐出冷媒量の増加程度
に比べて低くなる。もちろん、第1の凝縮器13の管路
長は短いが、当該第1の凝縮器13に流れる冷媒量は少
ないので、低い凝縮温度(凝縮圧力)で凝縮するもので
ある。このように本実施例によれば、エンジンの低速回
転時(アイドリング時)に高い過冷却度を持たせるよう
にして冷却能力を大きくしながらも、エンジンの高速回
転時における圧縮機11の吐出圧力の上昇を極力抑える
ことができるという優れた効果を得ることができるもの
である。なお、エンジン高速回転時の冷媒の過冷却度は
低くなるが、圧縮機11の吐出冷媒量の増加により必要
な冷房能力は十分に確保できるものである。ちなみに、
第1及び第2のオリフィス45a及び45bを設けるこ
とにより、両オリフィス45a及び45b間に気泡が溜
まるようになるので、大流量時の圧力損失程度がより大
きくなって第2の凝縮器14への冷媒流入量をより増大
させることができるが、第1のオリフィス45aだけで
あっても良い。
Further, in this embodiment, since the first and second condensers 13 and 14 are arranged side by side in the air blowing passage of the cooling air, both condensers 13 and 14 are arranged in the engine room of the automobile. The space occupied by can be reduced. Moreover, since the supercooling region of the second condenser 14 is arranged on the windward side of the first condenser 13, the first condenser 13 is provided with the supercooling region. Even if it becomes longer than the condenser 13, the area of the first condenser 13 occupying in the passage cross-sectional area of the cooling air does not decrease at all, and also from this fact, the first condenser 13
The cooling performance of the refrigerant is further improved. By the way, the first
Refrigerant pressure from inlet of condenser 13 to outlet of receiver 15
Loss from ΔP1, from the inlet to the outlet of the second condenser 14
If the pressure loss of the refrigerant is ΔP2, the throttle 45 is not provided.
In the refrigeration cycle not provided, the first and second condensers 1
Pressure loss ΔP1 from inlets 3 and 14 to confluence pipe 19
And ΔP2 increase in proportion to the flow rate of the refrigerant.
However, ΔP1 and ΔP2 always appear to be almost equal.
Therefore, the first and second condensers 13 and 14 are compressed.
Even if the amount of refrigerant discharged from the machine 11 is increased, almost the same amount of refrigerant is always discharged.
Inflow. Then, as the engine speed increases, the compression
Even if the refrigerant discharged from the machine 11 increases, both condensers 1
Since a large amount of the same amount of refrigerant flows into 3, 14,
As shown, the engine speed increases (the discharge cooling of the compressor 11
As the amount of medium increases), the degree of supercooling in the second condenser 14 becomes large.
But the cooling capacity also increases, but the condensation temperature of the refrigerant
As the discharge pressure of the compressor 11 becomes high,
I will Then, the seal structure of the compressor 11 has high pressure resistance and high precision.
The cost of the
turn into. However, the present embodiment in which the diaphragm 45 is provided
In the example, the pressure loss of the refrigerant at the throttle 45 is ΔP3
And the refrigerant passes through the orifices 45a and 45b of the throttle 45.
When the pressure drops, the liquid refrigerant partially evaporates and bubbles
The flow rate resistance loss caused by these bubbles occurs, but the refrigerant flow rate
As the number of pipe orifices 45a, 45b increases,
The pressure drop when passing through is large and many bubbles are generated.
Therefore, the flow path resistance loss, that is, the pressure loss ΔP at the throttle 45
3 increases. Therefore, from the inlet of the first condenser 13
The pressure loss (ΔP1 + ΔP3) to the confluence pipe 19 is the refrigerant flow.
The larger the amount, the larger it becomes .
The difference from the pressure loss ΔP2 of the condenser 14 of No. 2 becomes large,
As a result, the rotation of the compressor 11 driven by the engine
The higher the number, that is, the amount of refrigerant discharged from the compressor 11.
As the refrigerant flow increases, the amount of refrigerant flowing into the second condenser 14 increases.
Will increase. At this time, the second condenser 14
Since the pipe length is long and the cooling capacity is large, the second condenser
Even if a large amount of refrigerant is condensed by 14,
The condensing temperature of the
The degree of increase in the discharge pressure of the compressor 11 is the degree of increase in the amount of discharged refrigerant.
Will be lower than. Of course, the conduit of the first condenser 13
Although the length is short, the amount of refrigerant flowing to the first condenser 13 is small.
Since it does not exist, it condenses at a low condensing temperature (condensing pressure).
is there. As described above, according to this embodiment, the low speed operation of the engine
To have a high degree of supercooling when turning (when idling)
While increasing the cooling capacity,
Minimize the rise of the discharge pressure of the compressor 11 during rotation.
What can obtain the excellent effect of being able to
Is. The degree of supercooling of the refrigerant at high engine speed
Although it will be lower, it is necessary due to an increase in the refrigerant discharged from the compressor 11.
A sufficient cooling capacity can be secured. By the way,
Provide first and second orifices 45a and 45b.
Causes air bubbles to collect between both orifices 45a and 45b.
Since it becomes rounded, the pressure loss at a large flow rate is larger.
And the amount of refrigerant flowing into the second condenser 14 is increased.
Can be done, but only with the first orifice 45a
It may be.

【0034】図及び図10は本発明の第2の実施例を
示すもので、前記第1の実施例との相違は第1及び第2
の凝縮器31及び32を1台のコルゲート・フィン型凝
縮器本体33から構成したところにある。コルゲート・
フィン型凝縮器本体33は図10にも示すように、内部
に冷媒通路管に相当する複数本(図及び10では6
本)の冷媒通路34aを並列に有した偏平なアルミ製冷
却管34をU字状に繰り返し曲成して蛇行状に形成し、
その蛇行状冷却管34にコルゲートフィン35を取り付
けた構成のもので、冷却風はコルゲートフィン35を矢
印A方向に流れるようになっている。
9 and 10 show the second embodiment of the present invention. The difference from the first embodiment is that the first and second embodiments are the same.
The condensers 31 and 32 are composed of a single corrugated fin type condenser main body 33. Colgate
As shown in FIG. 10 , the fin-type condenser main body 33 has a plurality of fin-type condenser bodies 33 corresponding to the refrigerant passage tubes (6 in FIGS. 9 and 10 ).
A flat aluminum cooling pipe 34 having parallel refrigerant passages 34a) is repeatedly bent in a U shape to form a meandering shape,
The corrugated fins 35 are attached to the meandering cooling pipe 34, and the cooling air flows through the corrugated fins 35 in the arrow A direction.

【0035】そして、コルゲート・フィン型凝縮器本体
33の風下側半分のうち下側部分が第1の凝縮器31と
して構成され、残りの部分が第2の凝縮器32として構
成されている。すなわち、冷却管34の上側先端部及び
下側先端部には、中央に仕切36a,37aを有した筒
状の上端ヘッド36及び下端ヘッド37が連結されてい
る。また、冷却管34の途中の1つのU字状曲成部分は
風下側半分が切断され、その切断により生じた2つの切
断端面に筒状の上中間ヘッド38及び下中間ヘッド39
が連結されており、上中間ヘッド38は接続管40によ
り下端ヘッド37の風上側部分に接続されている。
The lower part of the leeward half of the corrugated fin type condenser body 33 is configured as the first condenser 31, and the remaining part is configured as the second condenser 32. That is, the upper end portion and the lower end portion of the cooling pipe 34 are connected to a cylindrical upper end head 36 and lower end head 37 having partitions 36a and 37a in the center. Further, one U-shaped bent portion in the middle of the cooling pipe 34 is cut in the leeward side half, and the two upper end heads 38 and the lower middle head 39, which are cylindrical, are formed on the two end faces of the cut.
The upper middle head 38 is connected to the windward side portion of the lower end head 37 by a connecting pipe 40.

【0036】これにより、下中間ヘッド39から冷却管
34の風下側の3本の冷媒通路34aを通って下端ヘッ
ド37の風下側半分に至る第1の凝縮器31が構成され
ると共に、上端ヘッド36の風下側半分から冷却管34
の風下側の3本の冷媒通路34a、上中間ヘッド38、
接続管40、下端ヘッド37の風上側半分、冷却管34
の風上側の3本の冷媒通路34aを順に通って上端ヘッ
ド36の風上側半分に至る第2の凝縮器32が構成され
る。
As a result, the first condenser 31 extending from the lower intermediate head 39 to the leeward side half of the lower end head 37 through the three leeward side refrigerant passages 34a of the cooling pipe 34 is constructed, and at the same time, the upper end head. From the leeward half of 36 to the cooling pipe 34
Leeward side of the three refrigerant passages 34a, the upper intermediate head 38,
Connection pipe 40, windward half of lower end head 37, cooling pipe 34
The second condenser 32 that passes through the three refrigerant passages 34a on the windward side in order to reach the windward half of the upper end head 36 is configured.

【0037】そして、圧縮機11の吐出管12の先端部
は二分岐され、一方の分岐管12aが下中間ヘッド39
に接続され、他方の分岐管12bが上端ヘッド36の風
下側部分に接続されている。また、下端ヘッド37の風
下側半分には受液器15の冷媒入口管16が接続され、
上端ヘッド36の風上側半分には冷媒出口管18が接続
されている。
The tip of the discharge pipe 12 of the compressor 11 is bifurcated, and one of the branch pipes 12a is connected to the lower intermediate head 39.
And the other branch pipe 12b is connected to the leeward side portion of the upper end head 36. Further, the refrigerant inlet pipe 16 of the liquid receiver 15 is connected to the leeward side half of the lower end head 37,
The refrigerant outlet pipe 18 is connected to the windward half of the upper head 36.

【0038】上記構成の本実施例では、第1の凝縮器3
1に流入した冷媒は冷却管34の風下側の下側半分の3
本の冷媒通路34aを並行に流れ、その間に凝縮して飽
和液冷媒となって受液器15に溜められる。また、第2
の凝縮器32に流入した冷媒は先ず冷却管34の風下側
の上側半分の3本の冷媒通路34aを並行に流れて凝縮
し、その後、冷却管34の風上側半分の3本の冷媒通路
34aに流入してその下端から上端まで流れる間に過冷
却状態になされる。
In this embodiment having the above structure, the first condenser 3
The refrigerant that has flowed into 1 is 3 in the lower half of the lee side of the cooling pipe 34.
They flow in parallel in the book refrigerant passage 34a, and are condensed in the meantime to become saturated liquid refrigerant, which is stored in the liquid receiver 15. Also, the second
The refrigerant that has flowed into the condenser 32 of the cooling pipe 34 first flows in parallel in the three refrigerant passages 34a in the upper half of the leeward side of the cooling pipe 34 to be condensed, and then, the three refrigerant passages 34a in the upper half of the cooling pipe 34. Is supercooled while flowing from the lower end to the upper end.

【0039】このように過冷却用の第2の凝縮器32で
は、冷媒は入口側から出口側に向かって風下側から風上
側へと流れるので、冷媒が冷却風に対して対向流となっ
て効率良く冷却され、その過冷却度が大きくなる。ま
た、第1の凝縮器31の風上側に第2の凝縮器32の過
冷却域が配置された形態となっているので、第2の凝縮
器32の管路長を長くしても第1の凝縮器31の管路長
を短くせずとも済み、第1の凝縮器31においても冷媒
を良好に冷却することができる。
As described above, in the second condenser 32 for supercooling, the refrigerant flows from the leeward side to the upwind side from the inlet side to the outlet side, so that the refrigerant becomes a counterflow to the cooling wind. It is cooled efficiently and its degree of supercooling increases. Further, since the supercooled region of the second condenser 32 is arranged on the windward side of the first condenser 31, even if the pipe length of the second condenser 32 is lengthened, The length of the conduit of the condenser 31 does not have to be shortened, and the refrigerant can be satisfactorily cooled also in the first condenser 31.

【0040】ところで、第1の凝縮器31では冷媒は冷
却風の送風方向に関して同一位置を上から下へと流れ、
風下側から風上側へと流れるようにはなっていない。し
かしながら、第1の凝縮器31の風上側には第2の凝縮
器32の過冷却域が位置されているので、第1の凝縮器
31と第2の凝縮器32の過冷却域との関係では、温度
の低い第2の凝縮器32の過冷却域が風上側で冷却さ
れ、温度の高い第1の凝縮器31が風下側で冷却される
こととなるので、全体的に見れば対向流式の熱交換が行
われることとなり、第1の凝縮器31それ自体が対向流
でなくとも、その冷却性能は十分なものとなる。
By the way, in the first condenser 31, the refrigerant flows from the top to the bottom in the same position in the blowing direction of the cooling air,
It does not flow from leeward to upwind. However, since the supercooling zone of the second condenser 32 is located on the windward side of the first condenser 31, the relationship between the first condenser 31 and the subcooling zone of the second condenser 32 is related. Then, the supercooled region of the second condenser 32 having a low temperature is cooled on the windward side, and the first condenser 31 having a high temperature is cooled on the leeward side. As a result, the heat exchange is carried out by a formula, and the cooling performance thereof is sufficient even if the first condenser 31 itself is not the counterflow.

【0041】図11は本発明の第3の実施例を示すもの
で、前記第1の実施例との相違は受液器15の冷媒出口
管17を第2の凝縮器14の過冷却域の開始部分に接続
したところにある。このように構成した場合には、第2
の凝縮器14の過冷却域には受液器15からの飽和液冷
媒が余分に流入するので、当該過冷却域での冷媒の流速
が速くなり、冷却性能が向上する。
FIG. 11 shows a third embodiment of the present invention. The difference from the first embodiment is that the refrigerant outlet pipe 17 of the liquid receiver 15 is located in the supercooling region of the second condenser 14. It's just connected to the beginning. When configured in this way, the second
Since the saturated liquid refrigerant from the liquid receiver 15 additionally flows into the supercooling area of the condenser 14, the flow velocity of the refrigerant in the supercooling area is increased and the cooling performance is improved.

【0042】すなわち、冷媒が冷却風に奪われる熱量Q
は熱慣流係数Kに比例するが、その熱慣流係数Kは次の
(1)式で表される。
That is, the heat quantity Q of the refrigerant taken by the cooling air.
Is proportional to the heat flow coefficient K, and the heat flow coefficient K is expressed by the following equation (1).

【数1】 [Equation 1]

【0043】また、両熱伝達率αは下記(2)式で示さ
れるように冷媒流速の0.8 乗に比例する。
Both heat transfer coefficients α are proportional to the 0.8th power of the refrigerant flow velocity as shown in the following equation (2).

【数2】 [Equation 2]

【0044】上記(1)及び(2)式から明らかなよう
に冷媒の流速が速くなると、冷媒側熱伝達率(冷媒から
冷媒通路管25への熱伝達率)が高くなるので、過冷却
域での冷媒流速が速くなることにより、その冷却性能が
高くなり、更なる過冷却度の向上を期待することができ
る。
As is clear from the above equations (1) and (2), when the flow velocity of the refrigerant becomes faster, the heat transfer coefficient on the refrigerant side (heat transfer coefficient from the refrigerant to the refrigerant passage pipe 25) becomes higher, so that the supercooled region is obtained. Since the flow velocity of the refrigerant in the above section becomes faster, its cooling performance becomes higher, and further improvement of the supercooling degree can be expected.

【0045】図12は本発明の第4の実施例を示すもの
で、前記第1の実施例との相違は蒸発器を空調対象空気
の送風方向(矢印Bで示す)に対し、風下側に位置する
第1の蒸発器41と風上側に位置する第2の蒸発器42
とから構成し、第1の凝縮器13により凝縮されて受液
器15に溜められた飽和液冷媒を膨脹手段としての第1
の膨脹弁43を介して第1の蒸発器41に供給し、第2
の凝縮器14により過冷却状態とされた冷媒を膨脹手段
としての第2の膨脹弁44を介して第2の蒸発器42に
供給するように構成したところにある。
FIG. 12 shows a fourth embodiment of the present invention. The difference from the first embodiment is that the evaporator is placed on the leeward side with respect to the blowing direction of the air to be air-conditioned (shown by arrow B). A first evaporator 41 located and a second evaporator 42 located on the windward side.
And a saturated liquid refrigerant that has been condensed by the first condenser 13 and accumulated in the liquid receiver 15 as the expansion means.
Is supplied to the first evaporator 41 through the expansion valve 43 of
The refrigerant supercooled by the condenser 14 is supplied to the second evaporator 42 via the second expansion valve 44 as expansion means.

【0046】このように第1及び第2の蒸発器41及び
42を空調対象空気の送風方向の風下側から順に並べた
場合、風上側の第2の蒸発器42は未冷却の空気と熱交
換せねばならないので、その熱的負荷は大きく、風下側
の第1の蒸発器41は第2の蒸発器42により冷却され
た空気と熱交換するので、その熱的負荷は比較的小さい
という事情があるが、本実施例では、熱的負荷の大なる
第2の蒸発器42には冷却能力の大なる過冷却液冷媒を
供給し、熱的負荷の小なる第1の蒸発器41には比較的
冷却能力の小なる飽和液冷媒を供給することとなる。こ
のため、1個の蒸発器により空調対象空気を冷却する場
合に比べて、第1及び第2の蒸発器41及び42での空
調対象空気との熱交換性能が高くなり、冷房能力が向上
する。
In this way, when the first and second evaporators 41 and 42 are arranged in order from the leeward side in the air blowing direction of the air to be air-conditioned, the second evaporator 42 on the upwind side exchanges heat with uncooled air. Since the thermal load is large, the first evaporator 41 on the leeward side exchanges heat with the air cooled by the second evaporator 42. Therefore, the thermal load is relatively small. However, in this embodiment, the second evaporator 42 having a large thermal load is supplied with the supercooling liquid refrigerant having a large cooling capacity, and the first evaporator 41 having a small thermal load is compared. A saturated liquid refrigerant having a small effective cooling capacity is supplied. Therefore, the heat exchange performance with the air to be air-conditioned in the first and second evaporators 41 and 42 is higher than that in the case where the air to be air-conditioned is cooled by one evaporator, and the cooling capacity is improved. .

【0047】[0047]

【0048】[0048]

【0049】[0049]

【0050】[0050]

【0051】[0051]

【0052】図1は本発明の第の実施例を示すもの
で、これは絞り45の出口を第2の凝縮器14の過冷却
域の開始部分に接続するようにしたものである。このよ
うに構成した場合には、エンジンの低速回転時(アイド
リング時)に高い過冷却度を持たせるようにして冷却能
力を大きくしながらも、エンジンの高速回転時における
圧縮機11の吐出圧力の上昇を極力抑えることができる
ことはもちろん、過冷却域での冷媒の冷却性能が高くな
って過冷却度を高めることができるという効果を併せて
得ることができる。
[0052] Figure 1 3 shows a fifth embodiment of the present invention, which is obtained so as to connect the 45 outlets of for the aperture to the beginning of the supercooled region of the second condenser 14 . In the case of such a configuration, the discharge pressure of the compressor 11 at the time of high speed rotation of the engine is increased while increasing the cooling capacity by providing a high degree of supercooling at the time of low speed rotation of the engine (at the time of idling). In addition to being able to suppress the rise as much as possible, it is possible to obtain the effect that the cooling performance of the refrigerant in the supercooling region is improved and the degree of supercooling can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す凝縮器の斜視図FIG. 1 is a perspective view of a condenser showing a first embodiment of the present invention.

【図2】フィン・チューブ型凝縮器の基本形態を示す斜
視図
FIG. 2 is a perspective view showing a basic form of a fin-tube type condenser.

【図3】凝縮器本体での第1及び第2の凝縮器の構成範
囲を示す側面図
FIG. 3 is a side view showing the configuration range of the first and second condensers in the condenser body.

【図4】冷凍サイクルの概略構成図FIG. 4 is a schematic configuration diagram of a refrigeration cycle.

【図5】絞りの断面図 FIG. 5 is a sectional view of a diaphragm.

【図6】冷房能力比較図[Figure 6] Cooling capacity comparison diagram

【図7】圧縮機の回転数と冷房能力、吐出圧力、過冷却
度との関係を示す図
[Fig. 7] Compressor speed, cooling capacity, discharge pressure, supercooling
Diagram showing the relationship with degrees

【図8】冷媒流量と第1及び第2の凝縮器の圧力損失と
の関係を示す図
FIG. 8 shows the refrigerant flow rate and the pressure loss of the first and second condensers.
Diagram showing the relationship between

【図9】本発明の第の実施例を示す図相当図FIG. 9 is a view corresponding to FIG. 1 showing a second embodiment of the present invention.

【図10】冷却管の端面図 FIG. 10 is an end view of the cooling pipe.

【図11】本発明の第3の実施例を示す図4相当図 FIG. 11 is a view corresponding to FIG. 4, showing a third embodiment of the present invention.

【図12】本発明の第4の実施例を示す図4相当図 FIG. 12 is a view corresponding to FIG. 4 showing a fourth embodiment of the present invention.

【図13】本発明の第5の実施例を示す図4相当図 FIG. 13 is a view corresponding to FIG. 4, showing a fifth embodiment of the present invention.

【図14】第1の従来例を示す凝縮器の正面図 FIG. 14 is a front view of a condenser showing a first conventional example.

【図15】第の従来例を示す冷凍サイクルの概略構成
FIG. 15 is a schematic configuration of a refrigeration cycle showing a second conventional example.
Figure

【符号の説明】[Explanation of symbols]

11は圧縮機、13は第1の凝縮器、14は第2の凝縮
器、15は受液器、20は膨張弁(膨脹手段)、21は
蒸発器、25は冷媒通路管、31は第1の凝縮器、32
は第2の凝縮器、34は冷却管(冷媒通路管)、41は
第1の蒸発器、42は第2の蒸発器、43は第1の膨脹
弁(膨脹手段)、44は第2の膨脹弁(膨脹手段)、4
5は絞り(絞り手段)である。
11 is a compressor, 13 is a first condenser, 14 is a second condenser, 15 is a liquid receiver, 20 is an expansion valve (expansion means), 21 is an evaporator, 25 is a refrigerant passage pipe, 31 is a first 1 condenser, 32
Is a second condenser, 34 is a cooling pipe (refrigerant passage pipe), 41 is a first evaporator, 42 is a second evaporator, 43 is a first expansion valve (expansion means), and 44 is a second evaporator. Expansion valve (expansion means), 4
Reference numeral 5 denotes a diaphragm (diaphragm means).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中坊 正 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (56)参考文献 特開 平4−61262(JP,A) 特開 平1−302079(JP,A) 特開 平4−227436(JP,A) 特開 平6−2970(JP,A) 特開 平6−129732(JP,A) 特開 平5−223365(JP,A) 特開 昭58−8418(JP,A) 実開 昭52−9938(JP,U) 特公 昭62−13574(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B60H 1/32 613 F25B 6/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masaru Nakabo, 1-1, Showa-cho, Kariya city, Aichi Prefecture, Nihon Denso Co., Ltd. (56) References JP-A-4-61262 (JP, A) JP-A-1- 302079 (JP, A) JP-A-4-227436 (JP, A) JP-A-6-2970 (JP, A) JP-A-6-129732 (JP, A) JP-A-5-223365 (JP, A) JP 58-8418 (JP, A) Actual development Sho 52-9938 (JP, U) JP 62-13574 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) B60H 1/32 613 F25B 6/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機と、 冷媒通路管を繰り返し往復する形状に形成して構成さ
れ、前記圧縮機に対し並列に接続されて冷却風との熱交
換により前記圧縮機からの冷媒を凝縮する第1及び第2
の凝縮器と、 前記第1の凝縮器からの冷媒を受ける受液器と、この受液器の出口側に設けられた絞り手段と、 前記第1及び第2の凝縮器で凝縮された冷媒を膨脹させ
る膨脹手段と、 この膨脹手段により膨脹された冷媒を蒸発させて空調対
象空気を冷却する蒸発器とを備え、 前記第2の凝縮器は、冷媒を過冷却するために、その管
路長が前記第1の凝縮器よりも長く設定され、 当該第2の凝縮器の冷媒通路管は、前記冷却風の送風通
路において冷媒の入口側から出口側に向かって風下側か
ら風上側に変移するように配置されていることを特徴と
する車両用空調装置の冷凍サイクル。
1. A compressor and a refrigerant passage pipe are repeatedly formed in a reciprocating shape, and are connected in parallel to the compressor to condense the refrigerant from the compressor by heat exchange with cooling air. First and second
Condenser, a receiver for receiving the refrigerant from the first condenser, a throttle means provided on the outlet side of the receiver, and a refrigerant condensed in the first and second condensers. And an evaporator that evaporates the refrigerant expanded by the expansion means to cool the air to be air-conditioned, and the second condenser has a pipeline for supercooling the refrigerant. The length is set longer than that of the first condenser, and the refrigerant passage pipe of the second condenser moves from the leeward side to the windward side from the refrigerant inlet side to the refrigerant side in the cooling air blowing passage. A refrigeration cycle for an air conditioning system for a vehicle, characterized in that the refrigeration cycle is arranged.
【請求項2】 前記第1の凝縮器の冷媒通路管も前記冷
却風の送風通路において冷媒の入口側から出口側に向か
って風下側から風上側に変移するように配置されている
ことを特徴とする請求項1記載の車両用空調装置の冷凍
サイクル。
2. The refrigerant passage pipe of the first condenser is also arranged in the cooling air blowing passage so as to shift from the leeward side to the upwind side from the inlet side to the outlet side of the refrigerant. The refrigeration cycle of the vehicle air conditioner according to claim 1.
【請求項3】 前記第1及び第2の凝縮器は前記冷却風
の送風通路に送風方向と交差する方向に並べて配置さ
れ、前記第2の凝縮器の冷媒通路管のうち、過冷却域の
少なくとも一部が前記第1の凝縮器の風上側に配置され
ていることを特徴とする請求項1または2記載の車両用
空調装置の冷凍サイクル。
3. The first and second condensers are arranged side by side in a blowing air passage of the cooling air in a direction intersecting a blowing direction, and in a refrigerant passage pipe of the second condenser, a cooling air passage At least one copy is arrange | positioned in the windward of the said 1st condenser, The refrigerating cycle of the vehicle air conditioner of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 前記受液器に受けられた冷媒が前記第2
の凝縮器の過冷却域に供給されるように管路構成されて
いることを特徴とする請求項1ないし3のいずれかに記
載の車両用空調装置の冷凍サイクル。
4. The refrigerant received by the liquid receiver is the second refrigerant.
The refrigeration cycle of the vehicle air conditioner according to any one of claims 1 to 3, wherein the pipeline is configured so as to be supplied to the supercooled region of the condenser.
【請求項5】 前記蒸発器は、空調対象空気の送風通路
の風下側に配置された第1の蒸発器と、風上側に配置さ
れた第2の蒸発器とから構成され、前記第1の蒸発器に
は前記第1の凝縮器により凝縮された冷媒が供給され、
前記第2の蒸発器には前記第2の凝縮器により凝縮され
た冷媒が供給されることを特徴とする請求項1ないし4
のいずれかに記載の車両用空調装置の冷凍サイクル。
5. The evaporator comprises a first evaporator arranged on the leeward side of a ventilation passage for air to be air-conditioned and a second evaporator arranged on the windward side, and the first evaporator is provided. The refrigerant condensed by the first condenser is supplied to the evaporator,
5. The refrigerant condensed by the second condenser is supplied to the second evaporator.
A refrigeration cycle for the vehicle air conditioner according to any one of 1.
JP27741194A 1994-11-11 1994-11-11 Refrigeration cycle of vehicle air conditioner Expired - Fee Related JP3367235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27741194A JP3367235B2 (en) 1994-11-11 1994-11-11 Refrigeration cycle of vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27741194A JP3367235B2 (en) 1994-11-11 1994-11-11 Refrigeration cycle of vehicle air conditioner

Publications (2)

Publication Number Publication Date
JPH08132857A JPH08132857A (en) 1996-05-28
JP3367235B2 true JP3367235B2 (en) 2003-01-14

Family

ID=17583179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27741194A Expired - Fee Related JP3367235B2 (en) 1994-11-11 1994-11-11 Refrigeration cycle of vehicle air conditioner

Country Status (1)

Country Link
JP (1) JP3367235B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2802291B1 (en) * 1999-12-09 2002-05-31 Valeo Climatisation AIR CONDITIONING CIRCUIT, ESPECIALLY FOR A MOTOR VEHICLE
DE10049256A1 (en) * 2000-10-05 2002-04-11 Behr Gmbh & Co Serpentine heat exchanger e.g. evaporator or condenser/gas cooler for automobile air-conditioning, has link sections between corresponding pipe sections of different serpentine pipe blocks
MXPA04006151A (en) 2001-12-21 2004-11-01 Behr Gmbh & Co Kg Device for exchanging heat.
JP5417961B2 (en) * 2009-04-17 2014-02-19 富士電機株式会社 Refrigerant circuit device
JP2012136159A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Air conditioner for rolling stock and rolling stock
CN109000389B (en) * 2017-11-03 2021-07-27 株式会社电装 Condenser and refrigeration system provided with same

Also Published As

Publication number Publication date
JPH08132857A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
US8099978B2 (en) Evaporator unit
JP4692295B2 (en) Evaporator unit and ejector refrigeration cycle
US5592830A (en) Refrigerant condenser with integral receiver
JPH109713A (en) Refrigerant condensing device and refrigerant condenser
JP3941555B2 (en) Refrigeration cycle apparatus and condenser
JP4069804B2 (en) Condenser with integrated heat exchanger and receiver
JP5812997B2 (en) Condenser with refrigeration cycle and supercooling section
CN107003073A (en) The micro channel heat exchanger of resistance to frost
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
JP2008138895A (en) Evaporator unit
JP6533257B2 (en) Air conditioner
JPS6214751B2 (en)
CN110651162B (en) Refrigerant evaporator and method for manufacturing same
JP2001221535A (en) Refrigerant evaporator
AU2017444848B2 (en) Heat exchanger and refrigeration cycle device
JP3158509B2 (en) Refrigerant condenser
JPH06341736A (en) Refrigerant condenser
JP4106718B2 (en) Heat exchanger
KR100243246B1 (en) Heat exchanger of air-conditioner in car
JP2003170734A (en) Refrigeration cycle device and condenser
CN221005577U (en) Condenser and refrigerant circulation system
JPH06129732A (en) Refrigerant condenser
KR100393564B1 (en) Condenser for air-conditioner
JPH07103609A (en) Heat exchanger for freezing cycle
JPH0953866A (en) Condenser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees