[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3137831B2 - Membrane processing equipment - Google Patents

Membrane processing equipment

Info

Publication number
JP3137831B2
JP3137831B2 JP06094993A JP9499394A JP3137831B2 JP 3137831 B2 JP3137831 B2 JP 3137831B2 JP 06094993 A JP06094993 A JP 06094993A JP 9499394 A JP9499394 A JP 9499394A JP 3137831 B2 JP3137831 B2 JP 3137831B2
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
membrane device
concentrated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06094993A
Other languages
Japanese (ja)
Other versions
JPH07299454A (en
Inventor
真紀夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP06094993A priority Critical patent/JP3137831B2/en
Publication of JPH07299454A publication Critical patent/JPH07299454A/en
Application granted granted Critical
Publication of JP3137831B2 publication Critical patent/JP3137831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造業、医薬品
製造業、食品製造業等で用いられる純水、脱塩水等を逆
浸透膜処理によって製造する膜処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane processing apparatus for producing pure water, demineralized water and the like used in semiconductor manufacturing, pharmaceutical manufacturing, food manufacturing and the like by reverse osmosis membrane processing.

【0002】[0002]

【従来の技術】従来の逆浸透膜装置を備えた膜処理装置
は長期間運転をすると、給水中の硬度成分やシリカ、ア
ルミ等が徐々に膜装置内に析出し、膜透過抵抗の増加
や、通水差圧の上昇を招く問題があった。また、バクテ
リア等が発生し、膜透過抵抗の増加や通水差圧の上昇を
招く問題もあった。その場合、例えば塩酸や、苛性ソー
ダ等の化学薬品を用意し、pH2〜4あるいはpH9〜
11の溶液に調整して化学的な膜洗浄を実施することに
より、これらの問題に対処していた。
2. Description of the Related Art When a conventional membrane treatment device equipped with a reverse osmosis membrane device is operated for a long period of time, a hardness component, silica, aluminum, etc. in feed water gradually precipitates in the membrane device, and the membrane permeation resistance increases. However, there is a problem that the differential pressure of water flow increases. In addition, there is also a problem that bacteria and the like are generated, which causes an increase in membrane permeation resistance and an increase in differential pressure of water flow. In this case, for example, a chemical such as hydrochloric acid or caustic soda is prepared, and pH 2 to 4 or pH 9 to
These problems were addressed by adjusting the solution to 11 and performing chemical film cleaning.

【0003】また、硬度成分やシリカ等の析出を防止す
るために、塩酸や苛性ソーダ等の化学薬品を逆浸透膜装
置等の給水に添加することにより、被処理水のpH調整
をすることも行ってきた。
Further, in order to prevent the precipitation of hardness components and silica, etc., the pH of the water to be treated is also adjusted by adding chemicals such as hydrochloric acid and caustic soda to the feed water of a reverse osmosis membrane device or the like. Have been.

【0004】すなわち、膜装置を運転するためには多く
の化学薬品を必要とし、結果として使用済みの化学薬品
の多くが何らかの形で河川等に放流されていた。
That is, many chemicals are required to operate the membrane device, and as a result, many of the used chemicals are discharged into rivers or the like in some form.

【0005】[0005]

【発明が解決しようとする課題】上記問題点を解決する
ために本発明者が提案するものは、給水中に溶解してい
る各種成分の有効利用である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, what the present inventors propose is the effective use of various components dissolved in feed water.

【0006】すなわち、工水や市水に溶存する成分のう
ちには、塩酸や苛性ソーダ等の化学薬品の原料となる食
塩等の中性塩が、かなりの割合で含有されている。これ
らを何等かの方法により塩酸や苛性ソーダ等の化学薬
品、あるいは同等の効果をもつ化学薬品に変換すること
ができれば、外部より化学薬品の補給なしに、あるいは
殆ど不要の状態で膜処理装置の運転を行うことが可能に
なる。本発明者は逆浸透膜装置と電解装置の新規な組み
合わせを発明することにより、前記中性塩を化学薬品に
変換できると共に、逆浸透膜装置の水利用率の高い効率
的運転が可能になることに想到し、本発明を完成するに
至った。
That is, among components dissolved in industrial water and city water, a considerable proportion of neutral salts such as salt, which is a raw material of chemicals such as hydrochloric acid and caustic soda, is contained. If these can be converted into chemicals such as hydrochloric acid and caustic soda by any method, or chemicals having the same effect, the operation of the membrane treatment equipment without external supply of chemicals or in almost no need Can be performed. By inventing a novel combination of a reverse osmosis membrane device and an electrolysis device, the present inventor can convert the neutral salt into a chemical and enable efficient operation of the reverse osmosis membrane device with high water utilization. Thus, the present invention has been completed.

【0007】したがって、本発明の目的とするところ
は、酸やアルカリ等の薬品の補給を殆ど必要とせず、水
利用率の高い膜処理装置を提供することにある。
Accordingly, it is an object of the present invention to provide a membrane treatment apparatus which requires little supply of chemicals such as acids and alkalis and has a high water utilization rate.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、給水を逆浸透膜処理して第1透過水と第1
濃縮水とに分離する第1逆浸透膜装置と、前記第1濃縮
水を逆浸透膜処理して第2透過水と第2濃縮水とに分離
する第2逆浸透膜装置と、前記第2透過水を電解して酸
性液とアルカリ性液とを製造する電解装置と、電解装置
で製造される酸性液および/またはアルカリ性液を第1
逆浸透膜装置および/または第2逆浸透膜装置に供給す
るための酸性液送給手段および/またはアルカリ性液送
給手段とからなることを特徴とする膜処理装置を提案す
るものであり、前記酸性液を第1逆浸透膜装置の給水に
送る酸性液送給手段と、前記アルカリ性液を前記第2濃
縮水に送るアルカリ性液送給手段とを有することを含
む。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a method for treating a feedwater by a reverse osmosis membrane to form a first permeate and a first permeate.
A first reverse osmosis membrane device for separating into a concentrated water, a second reverse osmosis membrane device for performing a reverse osmosis treatment on the first concentrated water to separate into a second permeate and a second concentrated water, Electrolytic apparatus for producing acidic and alkaline liquids by electrolyzing permeated water, and electrolytic apparatus
The acidic solution and / or the alkaline solution produced in
Supply to the reverse osmosis membrane device and / or the second reverse osmosis membrane device
Liquid supply means and / or alkaline liquid supply for
And a supply unit for supplying the acidic liquid to the feed water of the first reverse osmosis membrane device, and a supply unit for supplying the alkaline liquid with the second concentrated water. And an alkaline liquid feeding means for feeding the liquid to the apparatus.

【0009】また、本発明は給水を逆浸透膜処理して第
1透過水と第1濃縮水とに分離する第1逆浸透膜装置
と、前記第1濃縮水を逆浸透膜処理して中間透過水と中
間濃縮水とに分離すると共に前記中間透過水の少なくと
も一部を第1逆浸透膜装置の給水に送る循環手段を備え
た中間逆浸透膜装置と、前記中間濃縮水を逆浸透膜処理
して第2透過水と第2濃縮水とに分離する第2逆浸透膜
装置と、前記第2透過水を電解して酸性液とアルカリ性
液とを製造する電解装置と、前記酸性液を第1濃縮水に
送る酸性液送給手段と、前記アルカリ性液を第2濃縮水
に送るアルカリ性液送給手段とを有することを特徴とす
る膜処理装置である。
[0009] The present invention also provides a first reverse osmosis membrane device for separating feed water into a first permeate and a first concentrated water by reverse osmosis membrane treatment, and an intermediate treatment by subjecting the first concentrated water to reverse osmosis membrane treatment. An intermediate reverse osmosis membrane device comprising a circulating means for separating permeated water and intermediate concentrated water and sending at least a part of the intermediate permeated water to feed water of a first reverse osmosis membrane device; A second reverse osmosis membrane device for treating and separating into a second permeate and a second concentrated water, an electrolyzer for electrolyzing the second permeate to produce an acidic solution and an alkaline solution, A membrane processing apparatus comprising: an acidic liquid feeding means for feeding the first concentrated water; and an alkaline liquid feeding means for sending the alkaline liquid to the second concentrated water.

【0010】更に本発明は、前記の膜処理装置と、前記
膜処理装置の第1透過水を更に処理して高純度の純水を
得る高度処理装置とからなる膜処理装置であり、前記高
度処理装置が逆浸透膜装置、電気式脱イオン水製造装
置、及び非再生型イオン交換装置のいずれか、又はこれ
らを複数組み合わせたものであることを含む。
Further, the present invention is a membrane processing apparatus comprising the above-mentioned membrane processing apparatus and an advanced processing apparatus for further processing the first permeated water of the membrane processing apparatus to obtain high-purity pure water. This includes that the treatment device is any one of a reverse osmosis membrane device, an electric deionized water production device, and a non-regenerative ion exchange device, or a combination thereof.

【0011】以下、本発明を図面を参照して詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the drawings.

【0012】図1は本発明の膜処理装置の一構成例を示
すフロー図である。図1中、11は前処理装置給水で、
具体的には工業用水、市水等が例示できる。前記給水1
1は前処理装置10により前処理が行われ、原水中の微
粒子、有機物、残留塩素、更には溶存炭酸ガス等が除去
され、前処理水12になる。
FIG. 1 is a flowchart showing an example of the configuration of a film processing apparatus according to the present invention. In FIG. 1, reference numeral 11 denotes a pretreatment device water supply,
Specific examples include industrial water and city water. Water supply 1
In 1, pretreatment is performed by a pretreatment device 10, and fine particles, organic matter, residual chlorine, and further dissolved carbon dioxide gas and the like in the raw water are removed, and a pretreatment water 12 is obtained.

【0013】前処理装置10で行われる前処理として
は、凝集濾過や膜濾過、脱炭酸、活性炭処理等が例示で
きる。また、前記給水11には本発明の膜処理装置から
得られる脱塩水を、例えば各種の洗浄用水として使用
し、比較的水質のよい洗浄排水を再使用するために回収
された回収水等が混入されることもある。前記前処理水
12は、次いで安全フィルタ(図示せず)を経て高圧ポ
ンプ(図示せず)で加圧され、第1逆浸透膜装置20の
給水21として第1逆浸透膜装置20に供給され、ここ
で第1透過水22と第1濃縮水23とに分離される。第
1透過水22は脱塩水としてそのまま、あるいは更に高
度処理後、各種用途に供せられる。したがって、逆浸透
膜装置20は阻止率の高い膜、例えば東レSU−72
0、日東電工NTR−759HR、フィルムテックFT
−30等を用いることが望ましい。
Examples of the pretreatment performed by the pretreatment device 10 include coagulation filtration, membrane filtration, decarboxylation, and activated carbon treatment. The feedwater 11 is desalinated water obtained from the membrane treatment apparatus of the present invention, for example, used as various types of cleaning water, and is mixed with recovered water and the like collected for reuse of relatively high-quality cleaning wastewater. It may be done. The pretreatment water 12 is then pressurized by a high-pressure pump (not shown) through a safety filter (not shown), and supplied to the first reverse osmosis membrane device 20 as feed water 21 of the first reverse osmosis membrane device 20. Here, the water is separated into a first permeated water 22 and a first concentrated water 23. The first permeated water 22 is used as it is as demineralized water, or after further advanced treatment, for various uses. Therefore, the reverse osmosis membrane device 20 is a membrane having a high rejection rate, for example, Toray SU-72.
0, Nitto Denko NTR-759HR, Filmtec FT
It is desirable to use -30 or the like.

【0014】第1濃縮水23の一部、あるいは全量は第
2逆浸透膜装置30の給水31として第2逆浸透膜装置
30に供給される。この場合、逆浸透膜処理に必要な逆
浸透圧の付与は新たな高圧ポンプを利用してもよいし、
第1濃縮水23のもつ圧力を利用してもよい。
A part or the whole amount of the first concentrated water 23 is supplied to the second reverse osmosis membrane device 30 as the water supply 31 of the second reverse osmosis membrane device 30. In this case, the application of the reverse osmosis pressure required for the reverse osmosis membrane treatment may use a new high-pressure pump,
The pressure of the first concentrated water 23 may be used.

【0015】なお、第1濃縮水23の一部が第2逆浸透
膜装置30に供給される場合には、第1濃縮水23の他
部は取出水24として分岐される。
When a part of the first concentrated water 23 is supplied to the second reverse osmosis membrane device 30, the other part of the first concentrated water 23 is branched off as extracted water 24.

【0016】第2逆浸透膜装置の給水31は第2逆浸透
膜装置30により第2透過水32と第2濃縮水33に分
離され、第2透過水32は電解装置40に供給される。
また、第2濃縮水33は系外に放出される。
The feed water 31 of the second reverse osmosis membrane device is separated into a second permeate 32 and a second concentrated water 33 by the second reverse osmosis membrane device 30, and the second permeate 32 is supplied to the electrolysis device 40.
Further, the second concentrated water 33 is discharged out of the system.

【0017】第2逆浸透膜装置30に使用される逆浸透
膜は1価イオン阻止率が低く、かつ2価イオン阻止率が
高い、いわゆるルーズRO膜、例えば東レSU−220
S、日東電工NTR−7250、フィルムテックNF−
70等が望ましい。
The reverse osmosis membrane used in the second reverse osmosis membrane device 30 has a low monovalent ion rejection and a high divalent ion rejection, that is, a so-called loose RO membrane, for example, Toray SU-220.
S, Nitto Denko NTR-7250, Filmtec NF-
70 is desirable.

【0018】このような逆浸透膜を用いる第2の逆浸透
膜処理により、給水31に含有される中性塩のうち、電
解により酸やアルカリに変換することに適した1価の中
性塩の一部が逆浸透膜を選択的に透過して電解装置40
に供給され、一方、電解処理においてスケール等の原因
となる硬度成分やシリカ等は、逆浸透膜で阻止されて、
第2濃縮水33側に移行するので電解装置40側には殆
ど供給されない。
As a result of the second reverse osmosis membrane treatment using such a reverse osmosis membrane, among the neutral salts contained in the feed water 31, monovalent neutral salts suitable for being converted into an acid or alkali by electrolysis. Part of the electrolysis device 40 selectively passes through the reverse osmosis membrane.
On the other hand, the hardness component or silica, which causes scale or the like in the electrolytic treatment, is blocked by the reverse osmosis membrane,
Since it shifts to the second concentrated water 33 side, it is hardly supplied to the electrolytic device 40 side.

【0019】なお、第2濃縮水33の一部34を第2逆
浸透膜装置の給水31に循環し、該給水31中の塩濃
度、特に1価の中性塩濃度を高めて、透過水32中の1
価の中性塩の濃度を高めることもできる。
A part 34 of the second concentrated water 33 is circulated to the feedwater 31 of the second reverse osmosis membrane device, and the salt concentration in the feedwater 31, especially the monovalent neutral salt concentration is increased to increase the permeated water. 1 in 32
The concentration of the neutral salt can be increased.

【0020】電解装置40としては、イオン交換膜等を
隔膜に利用した通常の電解装置、あるいはバイポーラー
膜を利用して電解効率を高めた電解装置等が利用でき
る。電解装置の基本構造を図3に示した。電解装置40
は内部が隔膜45,46,47で仕切られている。隔膜
としてはイオン交換膜のほか、精密濾過膜(MF)、限
外濾過膜(UF)、逆浸透膜(RO)、セラミック膜等
が利用できる。
As the electrolysis device 40, a normal electrolysis device using an ion exchange membrane or the like as a diaphragm, an electrolysis device using a bipolar membrane to increase electrolysis efficiency, or the like can be used. FIG. 3 shows the basic structure of the electrolysis apparatus. Electrolysis device 40
Is internally partitioned by diaphragms 45, 46, 47. As the diaphragm, a microfiltration membrane (MF), an ultrafiltration membrane (UF), a reverse osmosis membrane (RO), a ceramic membrane, or the like can be used in addition to the ion exchange membrane.

【0021】第2逆浸透膜装置30の透過水32は電解
装置40の各室に分岐供給されて、ここで電解がなさ
れ、酸性液41及びアルカリ性液42に変換後、タンク
100,110に貯蔵され、必要に応じて利用される。
The permeated water 32 of the second reverse osmosis membrane device 30 is branched and supplied to each chamber of the electrolysis device 40, where it is electrolyzed and converted into an acidic solution 41 and an alkaline solution 42, and stored in tanks 100 and 110. And used as needed.

【0022】なお、図1には示されていないが、更に詳
述すれば、透過水32は図3に示すように、4分割され
て3個の隔膜45,46,47で仕切られた電解装置4
0内の4流路に送られ、電解がなされるものである。そ
して、フッ素系イオン交換膜等で構成された隔膜45,
46で仕切られた電極室より排出される電極液43,4
4は別途利用され、あるいは系外に放出される。
Although not shown in FIG. 1, in more detail, as shown in FIG. 3, the permeated water 32 is divided into four parts and separated by three diaphragms 45, 46, 47 as shown in FIG. Device 4
It is sent to four flow paths within 0, and electrolysis is performed. Then, a diaphragm 45 composed of a fluorine-based ion exchange membrane or the like,
Electrode solution 43, 4 discharged from the electrode chamber partitioned by 46
4 is used separately or released outside the system.

【0023】電解装置としては、図3に示した基本構造
の他、基本構造を多層構造にした電解装置や、隔膜にア
ニオン交換膜とカチオン交換膜を張り合わせた構造のバ
イポーラー膜を利用することにより効率的に電極反応を
行う電解装置、適当な時間間隔で電極の極性を反転し電
極上のスケールを除去する電解装置等が利用できる。
As the electrolysis device, in addition to the basic structure shown in FIG. 3, an electrolysis device having a multi-layered basic structure or a bipolar membrane having a structure in which an anion exchange membrane and a cation exchange membrane are bonded to a diaphragm is used. For example, an electrolyzer for performing an electrode reaction more efficiently, an electrolyzer for inverting the polarity of an electrode at an appropriate time interval, and removing scale on the electrode can be used.

【0024】なお、電解装置40で製造した酸性液41
及びアルカリ性液42は前述のごとく種々の用途に利用
されるが、図1ではその一例として上記酸性液41を第
1逆浸透膜装置20の給水のpH調整に利用する共に、
アルカリ性液42を第2逆浸透膜装置30の第2濃縮水
33の中和に利用する例を示している。
The acidic liquid 41 produced in the electrolytic device 40
And the alkaline liquid 42 is used for various applications as described above. In FIG. 1, for example, the acidic liquid 41 is used for adjusting the pH of the water supplied to the first reverse osmosis membrane device 20 as one example.
An example in which the alkaline liquid 42 is used for neutralizing the second concentrated water 33 of the second reverse osmosis membrane device 30 is shown.

【0025】すなわち、電解装置40で製造した酸性液
41は、タンク100からポンプ等の酸性液送給手段
(不図示)によって配管101を通って第1逆浸透膜装
置20の給水21に送られ、これにより当該給水21の
pHを酸性に制御する。また、このように第1逆浸透膜
装置20の給水21を酸性側に制御した場合は、添加さ
れた酸の大部分が第1逆浸透膜装置20の第1濃縮水側
を経て第2逆浸透膜装置30の第2濃縮水33中に濃縮
され、そのために第2濃縮水33が酸性となるので、こ
れを中和するために前記電解装置40で製造したアルカ
リ性液42を、タンク110からアルカリ性液送給手段
(不図示)によって配管111を介して前記第2濃縮水
33に送給する。この場合、前記酸性液41及びアルカ
リ性液42は、本来電解装置40で各当量づつ製造され
たものであるから、上記中和は自然に過不足なく行わ
れ、第2濃縮水33は自然にほぼ中性となって系外に排
出されるものである。
That is, the acidic solution 41 produced by the electrolytic device 40 is sent from the tank 100 to the water supply 21 of the first reverse osmosis membrane device 20 through the pipe 101 by an acidic solution feeding means (not shown) such as a pump. Thereby, the pH of the water supply 21 is controlled to be acidic. When the feed water 21 of the first reverse osmosis membrane device 20 is controlled to the acidic side in this manner, most of the added acid passes through the first concentrated water side of the first reverse osmosis membrane device 20 to the second reverse osmosis membrane device. Since the second concentrated water 33 of the osmosis membrane device 30 is concentrated in the second concentrated water 33, and the second concentrated water 33 becomes acidic, the alkaline liquid 42 produced in the electrolytic device 40 is neutralized from the tank 110 to neutralize the second concentrated water 33. The alkaline liquid is supplied to the second concentrated water 33 via a pipe 111 by an alkaline liquid supplying means (not shown). In this case, since the acidic liquid 41 and the alkaline liquid 42 are originally produced by the electrolysis apparatus 40 in equivalent amounts, the neutralization is naturally performed without any excess and deficiency, and the second concentrated water 33 is substantially naturally produced. It is neutralized and discharged out of the system.

【0026】なお、上述のごとく第1逆浸透膜装置20
の給水21のpHを酸性に制御するのは、膜処理装置全
体の水利用率の向上に伴って第1逆浸透膜装置20ある
いは第2逆浸透膜装置30の内部で、カルシウム、マグ
ネシウム等の硬度成分、あるいは水酸化アルミニウムや
シリカ等が析出するのを防止するためであり、これにつ
いては以下の構成例において更に詳しく説明する。
As described above, the first reverse osmosis membrane device 20
The pH of the feed water 21 is controlled to be acidic because calcium, magnesium, etc., in the first reverse osmosis membrane device 20 or the second reverse osmosis membrane device 30 is improved with the improvement of the water utilization rate of the whole membrane treatment device. This is for preventing the precipitation of a hardness component, aluminum hydroxide, silica, or the like, which will be described in more detail in the following configuration examples.

【0027】図2は本発明の膜処理装置の他の構成例を
示すフロー図である。この構成例においては、図1に示
した構成に加え、第1逆浸透膜装置20の第1透過水2
2を更に処理する高度処理装置200として、電気式脱
イオン水製造装置60と非再生式イオン交換装置70と
を設けたこと、及び第1と第2の逆浸透膜装置20,3
0の間に中間逆浸透膜装置50を設けたことである。
FIG. 2 is a flowchart showing another example of the configuration of the film processing apparatus of the present invention. In this configuration example, the first permeated water 2 of the first reverse osmosis membrane device 20 is added to the configuration shown in FIG.
As an advanced treatment apparatus 200 for further treating the wastewater treatment apparatus 2, an electric deionized water production apparatus 60 and a non-regenerative ion exchange apparatus 70 are provided, and the first and second reverse osmosis membrane apparatuses 20, 3 are provided.
That is, the intermediate reverse osmosis membrane device 50 is provided between 0.

【0028】すなわち、第1逆浸透膜装置20の第1透
過水22は、まず電気式脱イオン水製造装置60に送ら
れ、ここで電気的にイオンが除去され、脱イオン水61
となる。
That is, the first permeated water 22 of the first reverse osmosis membrane device 20 is first sent to an electric deionized water producing device 60, where the ions are electrically removed, and the deionized water 61
Becomes

【0029】前記電気式脱イオン水製造装置は、基本的
にはアニオン交換膜とカチオン交換膜とで形成される隙
間に、必要により例えばカチオン交換樹脂とアニオン交
換樹脂とを充填して脱塩室とし、当該脱塩室内に被処理
水を通過させると共に、前記両イオン交換膜を介して被
処理水の流れに対して直角方向に直流電流を作用させ
て、両イオン交換膜の外側に流れている濃縮水中に被処
理水中のイオンを電気的に排除しながら脱イオン水を製
造するもので、例え脱塩室内にイオン交換樹脂等のイオ
ン交換体を充填したとしても、酸、アルカリ等の再生薬
品を一切使用せずに脱イオン水を製造することができる
ものである。なお、前記濃縮水が流れる濃縮室17にも
脱塩室と同様にイオン交換体を充填してもよい。
In the above-mentioned electric deionized water producing apparatus, a gap formed by an anion exchange membrane and a cation exchange membrane is basically filled with, for example, a cation exchange resin and an anion exchange resin, if necessary, to form a desalination chamber. And, while passing the water to be treated into the desalting chamber, a DC current is applied in a direction perpendicular to the flow of the water to be treated through the both ion exchange membranes, and flows outside the both ion exchange membranes. Deionized water is produced while electrically removing ions in the water to be treated from the concentrated water.Even if the deionization chamber is filled with an ion exchanger such as an ion exchange resin, regeneration of acids, alkalis, etc. Deionized water can be produced without using any chemicals. The concentration chamber 17 through which the concentrated water flows may be filled with an ion exchanger in the same manner as the desalting chamber.

【0030】当該電気式脱イオン水製造装置としては、
公知(例えば、特開平4−71624号、特開平4−1
66215号)のものがそのまま使用できる。
As the electric deionized water producing apparatus,
Known (for example, JP-A-4-71624, JP-A-4-4-1)
No. 66215) can be used as it is.

【0031】上記脱イオン水製造装置60を用いること
により、第1透過水22中に残存する微量のイオンが除
去される。
The use of the deionized water producing apparatus 60 removes trace amounts of ions remaining in the first permeated water 22.

【0032】前記脱イオン水61は、次いで非再生式イ
オン交換装置70に送られ、ここで更に残存イオンが除
去されて高純度の純水71が製造されるものである。該
非再生式イオン交換装置70としては、例えば予め他所
で再生されたH形のカチオン交換樹脂とOH形のアニオ
ン交換樹脂との混合樹脂を塔内に充填してなる混床式イ
オン交換装置や塔内にOH形のアニオン交換樹脂のみを
充填したアニオン交換装置等を用いることができる。
The deionized water 61 is then sent to a non-regenerative ion exchange device 70 where the remaining ions are further removed to produce pure water 71 of high purity. Examples of the non-regenerating type ion exchange device 70 include a mixed bed type ion exchange device and a column in which a mixed resin of an H type cation exchange resin and an OH type anion exchange resin which has been regenerated in another place is filled in a column. An anion exchange apparatus or the like in which only an OH type anion exchange resin is filled can be used.

【0033】高度処理装置200としては上記構成に限
られず、例えば電気式脱イオン水製造装置60の前段に
紫外線酸化装置(不図示)を設け、第1透過水22を紫
外線酸化装置で処理することによりTOCを低減後、電
気式脱イオン水製造装置や非再生式イオン交換装置に通
水することもでき、この場合には、更にTOCの低い高
純度の純水を得ることができる。また更に、逆浸透膜装
置等を付設することもできる。
The advanced treatment apparatus 200 is not limited to the above configuration. For example, an ultraviolet oxidizing apparatus (not shown) may be provided in front of the electric deionized water producing apparatus 60, and the first permeated water 22 may be treated by the ultraviolet oxidizing apparatus. After reducing the TOC, water can be passed through an electric deionized water producing apparatus or a non-regenerative ion exchange apparatus. In this case, high-purity pure water having a lower TOC can be obtained. Further, a reverse osmosis membrane device or the like can be additionally provided.

【0034】すなわち、第1透過水22の純度を向上さ
せるために、上記各装置のいずれか、またはこれらの複
数の組み合わせからなる高度処理装置200を設けるも
のである。高度処理装置200の具体例としては、 (1)電気式脱イオン水製造装置−非再生式イオン交換
装置、 (2)紫外線酸化装置−電気式脱イオン水製造装置−非
再生式イオン交換装置 (3)逆浸透膜装置−非再生式イオン交換装置 (4)紫外線酸化装置−非再生式イオン交換装置 (5)電気式脱イオン水製造装置−紫外線酸化装置−非
再生式イオン交換装置 等があり、更に上記(1)〜(5)の構成の装置の後段
に精密濾過膜装置や限外濾過膜装置等の膜処理装置を配
置した構成としてもよい。
That is, in order to improve the purity of the first permeated water 22, an advanced treatment apparatus 200 composed of any of the above apparatuses or a combination of a plurality of these apparatuses is provided. Specific examples of the advanced treatment apparatus 200 include: (1) an electric deionized water producing apparatus-a non-regenerative ion exchange apparatus; and (2) an ultraviolet oxidizing apparatus-an electric deionized water producing apparatus-a non-regenerative ion exchange apparatus. 3) Reverse osmosis membrane device-Non-regenerative ion exchange device (4) Ultraviolet oxidizer-Non-regenerative ion exchange device (5) Electric deionized water production device-Ultraviolet oxidizer-Non-regenerative ion exchange device Further, a membrane processing device such as a microfiltration membrane device or an ultrafiltration membrane device may be arranged at a stage subsequent to the device having the above-described configuration (1) to (5).

【0035】更に、本構成においては、第1と第2の逆
浸透膜装置20,30の間に中間逆浸透膜装置50が設
けられ、該中間逆浸透膜装置50の中間透過水52が第
1逆浸透膜装置20の給水に循環されるもので、これに
より本膜処理装置全体の水利用率の向上が図られるもの
である。この場合、水利用率の向上に伴って、前記中間
逆浸透膜装置50や前記第2逆浸透膜装置30の内部で
発生する虞のあるカルシウム、マグネシウム等の硬度成
分の析出、あるいは水酸化アルミニウム、シリカ等の析
出を防止するために、電解装置40で製造した酸性液4
1はタンク100から酸性液送給手段(不図示)によっ
て配管101を通って第1逆浸透膜装置20の第1濃縮
水23に送られ、これにより中間逆浸透膜装置50の中
間給水51のpHを酸性に制御する。なお、この場合の
pH制御は、好ましくは該中間逆浸透膜装置50の中間
濃縮水53のpHが5.5〜4.5に保たれるように制
御するとよい。
Further, in the present configuration, an intermediate reverse osmosis membrane device 50 is provided between the first and second reverse osmosis membrane devices 20 and 30, and the intermediate permeated water 52 of the intermediate reverse osmosis membrane device 50 is supplied to the first reverse osmosis membrane device 50. 1 The water is circulated to the water supply of the reverse osmosis membrane device 20, thereby improving the water utilization rate of the entire membrane treatment device. In this case, precipitation of hardness components such as calcium and magnesium which may be generated inside the intermediate reverse osmosis membrane device 50 or the second reverse osmosis membrane device 30 or aluminum hydroxide with the improvement of the water utilization rate. In order to prevent precipitation of silica, silica, etc., the acid solution 4
1 is sent from the tank 100 to the first concentrated water 23 of the first reverse osmosis membrane device 20 through a pipe 101 by an acidic liquid feeding means (not shown), whereby the intermediate water supply 51 of the intermediate reverse osmosis membrane device 50 is supplied. Control the pH to acidic. In this case, the pH control in this case is preferably performed so that the pH of the intermediate concentrated water 53 of the intermediate reverse osmosis membrane device 50 is maintained at 5.5 to 4.5.

【0036】なお、酸性にすることにより硬度成分によ
るスケールの析出が防止できるのみでなくシリカの析出
も防止できることは、本発明者の発見したことで、その
理由の詳細は解明されていないが、この技術は現在特許
出願中である(特願平5−315708号)。
It has been discovered by the present inventor that the acidification not only prevents the precipitation of scale due to the hardness component but also the precipitation of silica. This technology is currently being patent-pended (Japanese Patent Application No. 5-315708).

【0037】また、必要に応じて少量の有機リン酸塩系
やアクリルポリマー系の分散剤を中間逆浸透膜装置50
の中間給水51に添加することもできる。
If necessary, a small amount of an organic phosphate-based or acrylic polymer-based dispersant may be added to the intermediate reverse osmosis membrane device 50.
Can be added to the intermediate water supply 51.

【0038】なお、上記中間濃縮水53は、第2逆浸透
膜装置30の給水31として第2逆浸透膜装置30に送
られる。
The intermediate concentrated water 53 is sent to the second reverse osmosis membrane device 30 as the water supply 31 of the second reverse osmosis membrane device 30.

【0039】更に、本構成においては、アルカリ性液4
2はアルカリ性液送給手段(不図示)によって配管11
1を通って、第2逆浸透膜装置30の第2濃縮水33に
送られ、これと混合後、排出水35となって系外に排出
される。
Further, in this configuration, the alkaline liquid 4
2 is a pipe 11 by an alkaline liquid supply means (not shown).
After passing through 1, the water is sent to the second concentrated water 33 of the second reverse osmosis membrane device 30, and after mixing with the second concentrated water 33, is discharged to the outside as a discharge water 35.

【0040】中間給水51に酸性液41が混合されてい
るため、中間濃縮水53、ひいては第2濃縮水33は酸
性になっているが、前記混合されるアルカリ性液によっ
て中和され、しかもこれら酸性液、アルカリ性液は、前
述のごとく本来電解装置40で各当量づつ製造されたも
のであるから、上記中和は自然に過不足なく行われ、系
外に排出される排出水35は自然にほぼ中性を保ってい
るものである。
Since the acidic liquid 41 is mixed with the intermediate feed water 51, the intermediate concentrated water 53 and, consequently, the second concentrated water 33 are acidic. However, the intermediate concentrated water 53 is neutralized by the alkaline liquid to be mixed. As described above, the liquid and the alkaline liquid are originally produced by the electrolysis apparatus 40 in an equivalent amount, so that the neutralization is naturally performed without any excess and deficiency, and the discharged water 35 discharged to the outside of the system is naturally almost completely. It is neutral.

【0041】本構成の場合、逆浸透膜装置20及び50
に用いる逆浸透膜は阻止率の高い膜、例えば東レSU−
720、日東電工NTR−759HR、フィルムテック
FT−30等が望ましい。一方逆浸透膜装置30に用い
るものは1価イオン阻止率が低く、かつ2価イオンが阻
止率の高い、いわゆるルーズRO膜、例えば東レSU−
220S、日東電工NTR−7250、フィルムテック
NF−70等が望ましい。
In the case of this configuration, the reverse osmosis membrane devices 20 and 50
The reverse osmosis membrane used in the above is a membrane having a high rejection rate, for example, Toray SU-
720, Nitto Denko NTR-759HR, and Filmtec FT-30 are preferred. On the other hand, what is used for the reverse osmosis membrane device 30 has a low rejection rate of monovalent ions and a high rejection rate of divalent ions, a so-called loose RO membrane, for example, Toray SU-
220S, Nitto Denko NTR-7250, Filmtec NF-70 and the like are desirable.

【0042】なお、前記中間逆浸透膜装置50の中間濃
縮水53のpHを上記の好ましいpH範囲に調整するた
めに必要な濃度の酸性液、及びアルカリ性液を得るため
には、上記構成においては、電解装置40に供給される
第2透過水32中の1価の中性塩の濃度をそれに応じて
高める必要があり、そのため水利用率を80%以上、望
ましくは90%以上にすることが望ましい。ここで水利
用率とは、第1透過水22/給水11×100(%)で
定義される。 <実施例1>図1に示した装置を用いて水の膜処理を行
った。前処理給水11としては、戸田市工業用水を用
い、前処理として凝集濾過と脱炭酸塔による脱炭酸処理
を行った。逆浸透膜は、逆浸透膜装置20には日東電工
NTR759HRを、逆浸透膜装置30には同じくNT
R7250を用いた。電解装置としては、市販のアルカ
リイオン水製造装置(日本インテック社製)の電解部を
用いた。第1逆浸透膜装置20の濃縮水の一部を第2逆
浸透膜装置30に供給し、その透過水32の一定量(5
L/h)を電解処理した。電解処理に要した電流は約
0.5A、20Vであった。その結果、得られた酸性
液、アルカリ性液の性状を表1に示す。ここで言う水利
用率は透過水22/給水11×100(%)である。こ
の値が大きいほど第2逆浸透膜装置30の給水31中の
中性塩の濃度が高く、その結果電解装置40に供給され
る透過水32中の中性塩の濃度も高く、このことが得ら
れる酸性液、アルカリ性液のpHに影響を与えることが
わかった。
In order to obtain an acidic solution and an alkaline solution having the concentrations required for adjusting the pH of the intermediate condensed water 53 of the intermediate reverse osmosis membrane device 50 to the above-mentioned preferable pH range, in the above-mentioned configuration, It is necessary to increase the concentration of the monovalent neutral salt in the second permeated water 32 supplied to the electrolysis device 40 accordingly, so that the water utilization rate should be 80% or more, preferably 90% or more. desirable. Here, the water utilization rate is defined as 22 first permeated water / 11 × 100 (supplied water). <Example 1> Water film treatment was performed using the apparatus shown in FIG. As the pretreatment feedwater 11, Toda City industrial water was used, and as pretreatment, coagulation filtration and decarbonation treatment using a decarbonation tower were performed. For the reverse osmosis membrane, Nitto Denko NTR759HR is used for the reverse osmosis membrane device 20, and NT is also used for the reverse osmosis membrane device 30.
R7250 was used. As the electrolysis device, an electrolysis unit of a commercially available alkaline ionized water production device (manufactured by Nippon Intec Co., Ltd.) was used. A part of the concentrated water of the first reverse osmosis membrane device 20 is supplied to the second reverse osmosis membrane device 30, and a certain amount (5
L / h) was subjected to electrolytic treatment. The current required for the electrolytic treatment was about 0.5 A and 20 V. As a result, the properties of the obtained acidic liquid and alkaline liquid are shown in Table 1. The water utilization rate here is 22 permeate / 11 × 100 (%) feed water. As this value is larger, the concentration of neutral salt in the feed water 31 of the second reverse osmosis membrane device 30 is higher, and as a result, the concentration of neutral salt in the permeated water 32 supplied to the electrolytic device 40 is higher. It was found that the pH of the obtained acidic solution and alkaline solution was affected.

【0043】[0043]

【表1】 給水11:pH6.3、給水21:pH6.6 実用的に、逆浸透膜の化学洗浄を実施するためには、p
H<3、あるいはpH>10の薬液が望ましい。したが
って、原水の水質や膜の分離性能、電解条件にも影響さ
れるが、本実施例の構成の場合の水利用率は80%以上
が望ましいことがわかった。
[Table 1] Water supply 11: pH 6.3, Water supply 21: pH 6.6 Practically, in order to carry out chemical cleaning of the reverse osmosis membrane, p
A chemical solution with H <3 or pH> 10 is desirable. Therefore, although it is affected by the quality of the raw water, the separation performance of the membrane, and the electrolysis conditions, it was found that the water utilization rate in the case of the configuration of this embodiment is desirably 80% or more.

【0044】水利用率80%の実験で得られた酸性液、
アルカリ性液を膜装置の洗浄に利用した。すなわち、得
られた酸性液とアルカリ性液をそれぞれ100L貯蔵
し、1回/週の頻度で膜装置を洗浄した。洗浄方法は、
本膜処理装置の流路内に上記酸性液等を満たす方法によ
り行った。まず酸性液で1時間浸漬洗浄し、脱塩水で洗
浄後、アルカリ性液で同様の処理をし、最後に脱塩水で
洗浄してから通常の運転に復帰した。上記水の膜処理と
洗浄を2カ月継続したが、透過水量の低下や通水差圧の
上昇は観察されなかった。
An acidic liquid obtained in an experiment with a water utilization of 80%,
The alkaline liquid was used for cleaning the membrane device. That is, the obtained acidic solution and alkaline solution were each stored in 100 L, and the membrane device was washed once / weekly. The cleaning method is
The method was performed by a method of filling the above acidic solution or the like in the flow path of the present membrane processing apparatus. First, the substrate was immersed and washed in an acidic solution for 1 hour, washed with deionized water, treated in the same manner with an alkaline solution, and finally washed with demineralized water and then returned to a normal operation. The above-mentioned water membrane treatment and washing were continued for two months, but no decrease in the amount of permeated water and no increase in the pressure difference in water passage were observed.

【0045】一方、洗浄処理を全く実施しなかった場合
は、1.5カ月後から通水差圧の上昇がみられ、透過水
量が低下した。この現象は、苛性ソーダでpH10に調
整した溶液で流路を洗浄すると回復した。したがって、
微生物の発生によるスライムが膜装置内に蓄積し、差圧
上昇を引き起こしたものと思われる。
On the other hand, when the cleaning treatment was not performed at all, the pressure difference in water flow increased after 1.5 months, and the amount of permeated water decreased. This phenomenon was recovered by washing the channel with a solution adjusted to pH 10 with sodium hydroxide. Therefore,
It is considered that the slime due to the generation of microorganisms accumulated in the membrane device, causing an increase in the differential pressure.

【0046】以上のように、本発明によれば、苛性ソー
ダ等の化学薬品を外部から供給することなく、安定運転
ができた。なお、本実施例から考えて、洗浄間隔はより
長くても有効であると推定される。 <実施例2>実施例1では水利用率が高い方が本発明に
おいては有効であり、その洗浄における効果が明らかに
なった。しかし、原水中のシリカや硬度成分が析出する
ために、必ずしも単純に水利用率を高くすることができ
ないことが多い。そこで、実施例2では、本発明を水利
用率を高くする目的に利用した例を示す。図2に示した
装置構成から、非再生式イオン交換装置70を除いた構
成の本発明装置により、水利用率を90%に設定し運転
を行うと共に、電解装置40によって製造したpH2.
6の酸性液を中間逆浸透膜装置50の中間給水51に添
加し、またpH10.4のアルカリ性液を第2逆浸透膜
装置30の第2濃縮水33に添加した。なお、給水11
の前処理として凝集濾過と脱炭酸塔による脱炭酸処理を
行い、また電気式脱イオン水製造装置60(EDI)の
濃縮水(図示せず)は第1逆浸透膜装置20の給水21
に循環して利用した。
As described above, according to the present invention, stable operation was achieved without supplying a chemical such as caustic soda from the outside. In view of the present embodiment, it is estimated that a longer cleaning interval is effective. <Example 2> In Example 1, the higher the water utilization rate was, the more effective in the present invention, and the effect of the washing was clarified. However, since silica and hardness components in raw water precipitate, it is often not always possible to simply increase the water utilization rate. Therefore, in a second embodiment, an example in which the present invention is used for the purpose of increasing the water utilization rate will be described. The apparatus of the present invention having a configuration excluding the non-regenerative ion exchange apparatus 70 from the apparatus configuration shown in FIG.
The acidic solution No. 6 was added to the intermediate feed water 51 of the intermediate reverse osmosis membrane device 50, and the alkaline solution having a pH of 10.4 was added to the second concentrated water 33 of the second reverse osmosis membrane device 30. In addition, water supply 11
As a pre-treatment, a coagulation filtration and a decarbonation treatment by a decarbonation tower are performed, and the concentrated water (not shown) of the electric deionized water producing device 60 (EDI) is supplied to the feed water 21 of the first reverse osmosis membrane device 20.
Used to circulate.

【0047】日本において、水利用率の上限を決定する
のはシリカの析出限界(25℃で100ppm程度)で
あることが一般的である。実験に用いた戸田市の工業用
水も約15ppmのシリカを含有していた。したがっ
て、単純に水利用率を高めても、濃縮水が給水の6.7
倍以上に濃縮されると濃縮水側のシリカ濃度が前記析出
限界を越えてシリカの析出が起き、透過水量の低下を招
く虞があるが、本発明により、外部より薬品の補給を受
けることなく、濃縮率の高い中間逆透過膜装置50及び
第2逆浸透膜装置30の濃縮水側のpHを低く保つこと
ができ、シリカの析出を防止することができた。逆浸透
膜装置20と50の逆浸透膜はNRT759HRを用
い、電解装置40は実施例1で用いた装置を2台並列に
して利用した。
In Japan, the upper limit of the water utilization rate is generally determined by the deposition limit of silica (about 100 ppm at 25 ° C.). The industrial water of Toda used in the experiment also contained about 15 ppm of silica. Therefore, even if the water utilization rate is simply increased, the concentrated water can supply 6.7% of the supply water.
When the concentration is more than twice, the concentration of silica on the concentrated water side exceeds the precipitation limit to cause precipitation of silica, which may cause a decrease in the amount of permeated water.However, according to the present invention, there is no need for external supply of chemicals. The pH of the concentrated water side of the intermediate reverse osmosis membrane device 50 and the second reverse osmosis membrane device 30 having a high concentration rate could be kept low, and the precipitation of silica could be prevented. As the reverse osmosis membranes of the reverse osmosis membrane devices 20 and 50, NRT759HR was used, and as the electrolysis device 40, two devices used in Example 1 were used in parallel.

【0048】各部分の流量とシリカ濃度を表2に示し
た。なお、本実施例においては、中間逆浸透膜装置50
の中間給水51のpHは運転初期は6.9程度であった
が、運転開始後1日後にはpH5程度となり安定し、そ
の結果、中間逆浸透膜装置50の中間濃縮水53及び第
2逆浸透膜装置30の第2濃縮水33のpHを5以下に
安定して維持することができた。また、1回/2週の間
隔で実施例1に示すものと同じ洗浄を実施した。なお、
洗浄のための酸性液、アルカリ性液は徐々にタンク10
0,110にためつつ装置を運転した。2ヵ月にわたり
運転を行ったが、逆浸透膜装置20,30,50のそれ
ぞれの透過水量の低下は認められなかった。
Table 2 shows the flow rate and silica concentration of each part. In the present embodiment, the intermediate reverse osmosis membrane device 50 is used.
The pH of the intermediate feed water 51 was about 6.9 at the beginning of the operation, but became about 5 one day after the start of the operation, and was stabilized. As a result, the intermediate concentrated water 53 and the second reverse water of the intermediate reverse osmosis membrane device 50 were obtained. The pH of the second concentrated water 33 of the osmosis membrane device 30 could be stably maintained at 5 or less. Further, the same washing as that described in Example 1 was performed at an interval of once / two weeks. In addition,
Acidic and alkaline liquids for cleaning are gradually stored in tank 10
The apparatus was operated while accumulating at 0,110. The operation was performed for two months, but no decrease in the amount of permeated water in each of the reverse osmosis membrane devices 20, 30, and 50 was observed.

【0049】一方、実施例1に示した装置で水利用率を
90%に設定し、かつ電解装置40で製造した酸性液で
給水21のpH調整を行わなかった場合は、1ヵ月後に
逆浸透膜装置20の透過水量が初期の85%程度まで、
逆浸透膜装置30の透過水量が70%まで低下した。ま
た、これらの逆浸透膜装置をpH3(塩酸)及びpH1
0(苛性ソーダ)の水溶液で化学洗浄したが透過水量の
回復は少なかった。したがって、透過水量の低下は酸や
アルカリでは洗浄できないシリカ等が原因と推定され
た。
On the other hand, when the water utilization rate was set to 90% in the apparatus shown in Example 1 and the pH of the water supply 21 was not adjusted with the acidic solution produced in the electrolytic apparatus 40, the reverse osmosis was performed after one month. The amount of permeated water of the membrane device 20 is reduced to about 85% of the initial value.
The amount of water permeated through the reverse osmosis membrane device 30 was reduced to 70%. In addition, these reverse osmosis membrane devices are set to pH 3 (hydrochloric acid) and pH 1
Chemical cleaning was performed with an aqueous solution of 0 (caustic soda), but the amount of permeated water recovered little. Therefore, it was presumed that the decrease in the amount of permeated water was caused by silica or the like which could not be washed with an acid or alkali.

【0050】[0050]

【表2】 (*)正確には13μgSiO2 /lである。[Table 2] (*) Exactly 13 μg SiO 2 / l.

【0051】表2から明らかなように、中間濃縮水及び
第2濃縮水のpHを5以下に保つことができたので、中
間濃縮水53中及び第2濃縮水33中のシリカ濃度が1
00ppmを越える高濃度でも中間逆浸透膜装置及び第
2逆浸透膜装置を安定に運転でき、これにより水利用率
90%が達成できた。また、得られた脱イオン水61も
シリカ濃度が13μgSiO2 /lで、抵抗率が16.
7MΩ・cmと高純度のものであった。
As is clear from Table 2, since the pH of the intermediate concentrated water and the second concentrated water could be maintained at 5 or less, the silica concentration in the intermediate concentrated water 53 and the second concentrated water 33 was 1%.
The intermediate reverse osmosis membrane device and the second reverse osmosis membrane device could be operated stably even at a high concentration exceeding 00 ppm, thereby achieving a water utilization of 90%. The obtained deionized water 61 also has a silica concentration of 13 μg SiO 2 / l and a resistivity of 16.
The purity was as high as 7 MΩ · cm.

【0052】以上のように、本実施例により外部から化
学薬品の補給なしで水利用率90%の運転を安定して実
施することができた。 <実施例3、4>図2に示す装置において、非再生式イ
オン交換装置70を取り除くと共に、電気式脱イオン水
製造装置60の前段に紫外線酸化装置(UVOX)を設け
た膜処理装置を用いて、実施例2と同じ操作条件で脱イ
オン水を製造した。
As described above, according to the present embodiment, it was possible to stably perform the operation at a water utilization rate of 90% without externally supplying a chemical. <Embodiments 3 and 4> In the apparatus shown in FIG. 2, a non-regenerative ion exchange device 70 is removed, and a membrane treatment device in which an ultraviolet oxidation device (UV OX ) is provided in front of an electric deionized water production device 60. And deionized water was produced under the same operating conditions as in Example 2.

【0053】紫外線酸化装置は千代田工販(株)製TF
L−1であった。
The ultraviolet oxidation apparatus is TF manufactured by Chiyoda Kohan Co., Ltd.
L-1.

【0054】表3に各流路における水質の測定値を示し
た。
Table 3 shows the measured values of the water quality in each channel.

【0055】[0055]

【表3】 また、参考のために上記構成から紫外線酸化装置を取り
除いた装置を用いて、同様の操作条件で脱イオン水を製
造した場合の各流路における水質の測定値を表4に示し
た。
[Table 3] In addition, for reference, Table 4 shows measured values of water quality in each flow path when deionized water was manufactured under the same operating conditions using an apparatus in which the ultraviolet oxidation apparatus was removed from the above configuration.

【0056】[0056]

【表4】 表3と表4を比較すると、紫外線酸化装置を設けること
により、TOCは49ppbから8ppbに減少してお
り、紫外線酸化装置の効果が確認された。また、シリカ
に関しては、従来のイオン交換法により得られる水質と
同等の水質が得られた。
[Table 4] Comparing Tables 3 and 4, the TOC was reduced from 49 ppb to 8 ppb by providing the ultraviolet oxidizer, and the effect of the ultraviolet oxidizer was confirmed. As for silica, water quality equivalent to that obtained by the conventional ion exchange method was obtained.

【0057】市水や工業用水等の給水をイオン交換装置
で直接処理して脱塩水である純水を得る従来法では、給
水中の塩濃度が高いので、通常再生設備を備えた複床型
や混床型のイオン交換装置が用いられ、当然酸、アルカ
リによる化学再生が必要になり、多くの化学薬品を外部
より供給することとなるが、本発明によれば、以上のよ
うに外部から化学薬品の補給なしで、水利用率90%、
かつ高純度の純水を製造することができた。
In the conventional method of directly supplying water such as city water or industrial water with an ion exchange device to obtain pure water as desalinated water, since the salt concentration in the water supply is high, a double-bed type usually equipped with a regeneration facility is used. And a mixed bed type ion exchange device is used, and naturally, chemical regeneration with acid and alkali is required, and many chemicals will be supplied from the outside, but according to the present invention, as described above, from the outside 90% water utilization without chemical replenishment,
And high-purity pure water could be produced.

【0058】[0058]

【発明の効果】以上のように本発明の膜処理装置は、運
転に必要な化学薬品が非常に少なく、かつ水利用率の高
い、すなわち排水量の少ない、理想的なものである。
As described above, the membrane treatment apparatus of the present invention is an ideal one in which the amount of chemicals required for operation is extremely small and the water utilization rate is high, that is, the amount of drainage is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一構成例を示すフロー図である。FIG. 1 is a flowchart showing one configuration example of the present invention.

【図2】本発明の他の構成例を示すフロー図である。FIG. 2 is a flowchart showing another configuration example of the present invention.

【図3】電解装置の構成を示す概念図である。FIG. 3 is a conceptual diagram illustrating a configuration of an electrolysis device.

【符号の説明】 10 前処理装置 11 前処理給水 20 第1逆浸透膜装置 21 第1逆浸透膜装置の給水 22 第1透過水 23 第1濃縮水 30 第2逆浸透膜装置 31 第2逆浸透膜装置の給水 32 第2透過水 33 第2濃縮水 35 排出水 40 電解装置 41 酸性液 42 アルカリ性液 50 中間逆浸透膜装置 51 中間逆浸透膜装置の中間給水 52 中間透過水 53 中間濃縮水 60 脱イオン水製造装置 70 非再生式イオン交換装置 200 高度処理装置DESCRIPTION OF SYMBOLS 10 Pretreatment device 11 Pretreatment water supply 20 First reverse osmosis membrane device 21 Water supply of first reverse osmosis membrane device 22 First permeate water 23 First concentrated water 30 Second reverse osmosis membrane device 31 Second reverse Water supply to osmosis membrane device 32 Second permeate water 33 Second concentrated water 35 Drainage water 40 Electrolysis device 41 Acidic solution 42 Alkaline liquid 50 Intermediate reverse osmosis membrane device 51 Intermediate water supply to intermediate reverse osmosis membrane device 52 Intermediate permeate 53 Intermediate concentrated water Reference Signs List 60 Deionized water production device 70 Non-regenerative ion exchange device 200 Advanced treatment device

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 給水を逆浸透膜処理して第1透過水と第
1濃縮水とに分離する第1逆浸透膜装置と、前記第1濃
縮水を逆浸透膜処理して第2透過水と第2濃縮水とに分
離する第2逆浸透膜装置と、前記第2透過水を電解して
酸性液とアルカリ性液とを製造する電解装置と、電解装
置で製造される酸性液および/またはアルカリ性液を第
1逆浸透膜装置および/または第2逆浸透膜装置に供給
するための酸性液送給手段および/またはアルカリ性液
送給手段とからなることを特徴とする膜処理装置。
1. A first reverse osmosis membrane device for separating feed water into a first permeated water and a first concentrated water by reverse osmosis membrane treatment, and a second permeated water by subjecting the first concentrated water to reverse osmosis membrane treatment. When a second reverse osmosis membrane apparatus for separating and a second concentrated water, an electrolytic apparatus for producing an acidic solution and an alkaline solution by electrolysis of the second permeate, electrolysis instrumentation
Acid and / or alkaline liquids
Supply to the first reverse osmosis membrane device and / or the second reverse osmosis membrane device
Liquid supply means and / or alkaline liquid
A film processing apparatus comprising: a feeding unit .
【請求項2】 電解装置で製造される酸性液を第1逆浸
透膜装置の給水に送る酸性液送給手段と、前記電解装置
で製造されるアルカリ性液を第2逆浸透膜装置の第2濃
縮水に送るアルカリ性液送給手段とを有する請求項1に
記載の膜処理装置。
2. An acidic solution feeding means for feeding an acidic solution produced by an electrolyzer to water supply of a first reverse osmosis membrane device, and an alkaline solution produced by said electrolyzer by a second reverse osmosis membrane device of a second reverse osmosis membrane device. 2. The membrane processing apparatus according to claim 1, further comprising an alkaline liquid feeding means for feeding the concentrated water.
【請求項3】 給水を逆浸透膜処理して第1透過水と第
1濃縮水とに分離する第1逆浸透膜装置と、前記第1濃
縮水を逆浸透膜処理して中間透過水と中間濃縮水とに分
離すると共に前記中間透過水の少なくとも一部を第1逆
浸透膜装置の給水に送る循環手段を備えた中間逆浸透膜
装置と、前記中間濃縮水を逆浸透膜処理して第2透過水
と第2濃縮水とに分離する第2逆浸透膜装置と、前記第
2透過水を電解して酸性液とアルカリ性液とを製造する
電解装置と、前記酸性液を第1濃縮水に送る酸性液送給
手段と、前記アルカリ性液を第2濃縮水に送るアルカリ
性液送給手段とを有することを特徴とする膜処理装置。
3. A first reverse osmosis membrane apparatus for separating feed water by reverse osmosis membrane treatment into first permeated water and first concentrated water, and an intermediate permeated water by reverse osmosis membrane treatment of the first concentrated water. An intermediate reverse osmosis membrane device provided with a circulating means for separating at least a part of the intermediate permeate into feed water of the first reverse osmosis membrane device while separating the intermediate concentrated water from the intermediate concentrated water; A second reverse osmosis membrane device for separating the second permeated water and a second concentrated water, an electrolysis device for electrolyzing the second permeated water to produce an acidic solution and an alkaline solution, and a first concentration of the acidic solution. A membrane processing apparatus, comprising: an acidic liquid feeding means for feeding water, and an alkaline liquid feeding means for feeding the alkaline liquid to the second concentrated water.
【請求項4】 請求項1ないし3のいずれかに記載の膜
処理装置と、前記膜処理装置の第1透過水を更に処理し
て高純度の純水を得る高度処理装置とからなる膜処理装
置。
4. A membrane processing apparatus comprising: the membrane processing apparatus according to claim 1; and an advanced processing apparatus that further processes first permeated water of the membrane processing apparatus to obtain high-purity pure water. apparatus.
【請求項5】 高度処理装置が逆浸透膜装置、電気式脱
イオン水製造装置、及び非再生型イオン交換装置のいず
れか、又はこれらを複数組み合わせたものである請求項
4に記載の膜処理装置。
5. The membrane treatment according to claim 4, wherein the advanced treatment apparatus is any one of a reverse osmosis membrane apparatus, an electric deionized water production apparatus, and a non-regenerative ion exchange apparatus, or a combination thereof. apparatus.
JP06094993A 1994-05-09 1994-05-09 Membrane processing equipment Expired - Fee Related JP3137831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06094993A JP3137831B2 (en) 1994-05-09 1994-05-09 Membrane processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06094993A JP3137831B2 (en) 1994-05-09 1994-05-09 Membrane processing equipment

Publications (2)

Publication Number Publication Date
JPH07299454A JPH07299454A (en) 1995-11-14
JP3137831B2 true JP3137831B2 (en) 2001-02-26

Family

ID=14125403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06094993A Expired - Fee Related JP3137831B2 (en) 1994-05-09 1994-05-09 Membrane processing equipment

Country Status (1)

Country Link
JP (1) JP3137831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102724750B1 (en) * 2022-11-17 2024-10-31 한민수 Plaque that can hold item

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294977A (en) * 1996-05-02 1997-11-18 Kurita Water Ind Ltd Water purifying apparatus
JP4576760B2 (en) * 2001-06-25 2010-11-10 栗田工業株式会社 Circulating cooling water treatment method
JP2003103259A (en) * 2001-09-28 2003-04-08 Vision:Kk Method for cleaning filter and reverse osmosis membrane
JP5135385B2 (en) * 2010-06-11 2013-02-06 パナソニック株式会社 Electrolyzed water generator
JP2011255347A (en) * 2010-06-11 2011-12-22 Panasonic Electric Works Co Ltd Electrolytic water generator
JP2011255354A (en) * 2010-06-11 2011-12-22 Panasonic Electric Works Co Ltd Electrolytic water generator
CN102432126A (en) * 2010-09-29 2012-05-02 西安邦侬电器有限公司 Production equipment and production process of strong acid electrolyzed water
KR20120114900A (en) * 2011-04-08 2012-10-17 삼성전자주식회사 Apparatus for producing reducing water by electrolysis
JP2013066830A (en) * 2011-09-21 2013-04-18 Panasonic Corp Water treatment apparatus
FR2991979B1 (en) * 2012-06-15 2017-10-20 Osmotech DEVICE AND METHOD FOR THE PRODUCTION OF PURIFIED WATER, IN PARTICULAR FOR THE PHARMACEUTICAL INDUSTRY.
JP2012176410A (en) * 2012-06-21 2012-09-13 Panasonic Corp Electrolytic water generating device
GB201610582D0 (en) * 2016-06-17 2016-08-03 Portsmouth Aviation Ltd Water purification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102724750B1 (en) * 2022-11-17 2024-10-31 한민수 Plaque that can hold item

Also Published As

Publication number Publication date
JPH07299454A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
TWI430965B (en) Method and apparatus for desalination
JP5733351B2 (en) Method and apparatus for treating boron-containing water
KR100874269B1 (en) High efficiency seawater electrolysis apparatus and electrolysis method including pretreatment process
JP2009095821A (en) Method of treating salt water
JP3137831B2 (en) Membrane processing equipment
WO2009122847A1 (en) Method of purifying water containing metallic ingredient and apparatus for purification
JPH11244853A (en) Production of pure water
JPH10272495A (en) Treatment of organic waste water containing salts of high concentration
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP2007307561A (en) High-purity water producing apparatus and method
JP2013063372A (en) Desalination system
JP5238778B2 (en) Desalination system
JP2000015257A (en) Apparatus and method for making high purity water
JP5731262B2 (en) Desalination treatment method and desalination treatment system
JP3656458B2 (en) Pure water production method
JP2001029752A (en) Manufacture of high-purity water and device therefor
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP3081079B2 (en) Decarbonation equipment and pure water production equipment incorporating the equipment
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
JP2020146618A (en) Apparatus for producing pure water, and method for producing pure water
WO2021045191A1 (en) Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution
AU2020341085B2 (en) Wastewater treatment method and wastewater treatment apparatus
JP2012196630A (en) Treatment equipment and treatment method of acid liquid
JP2002045857A (en) Manufacturing method of pure water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees