[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3106610B2 - Manufacturing method of electrode material - Google Patents

Manufacturing method of electrode material

Info

Publication number
JP3106610B2
JP3106610B2 JP03282715A JP28271591A JP3106610B2 JP 3106610 B2 JP3106610 B2 JP 3106610B2 JP 03282715 A JP03282715 A JP 03282715A JP 28271591 A JP28271591 A JP 28271591A JP 3106610 B2 JP3106610 B2 JP 3106610B2
Authority
JP
Japan
Prior art keywords
chromium
copper
powder
alloy
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03282715A
Other languages
Japanese (ja)
Other versions
JPH05120949A (en
Inventor
信行 吉岡
泰司 野田
利真 深井
伸尚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP03282715A priority Critical patent/JP3106610B2/en
Priority to EP19920118218 priority patent/EP0538896A3/en
Priority to US07/965,203 priority patent/US5352404A/en
Priority to KR1019920019655A priority patent/KR950008375B1/en
Priority to TW081108517A priority patent/TW240184B/zh
Publication of JPH05120949A publication Critical patent/JPH05120949A/en
Application granted granted Critical
Publication of JP3106610B2 publication Critical patent/JP3106610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、銅−クロム系の合金に
銅よりも低融点の金属を添加したアトマイズ法による金
属微粉末を原料とする電極材料の製造方法に関し、特に
真空インタラプタの電極に用いて好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode material using fine metal powder as a raw material by an atomizing method in which a metal having a lower melting point than copper is added to a copper-chromium alloy, and more particularly to an electrode for a vacuum interrupter. It is suitable for use.

【0002】[0002]

【従来の技術】真空インタラプタの電極材料として要求
される重要な性能の一つに電流しゃ断性能の高いことが
挙げられる。
2. Description of the Related Art One of the important performances required as an electrode material of a vacuum interrupter is a high current breaking performance.

【0003】銅(Cu)−クロム(Cr)合金は、この電流しゃ
断性能が非常に優れた電極材料として知られており、従
来では電解法等により製造された銅の粉体と、粉砕法等
により製造されたクロムの粉体とを混合したものを圧縮
加圧成形し、これを高温で焼結する粉末冶金法による製
造方法が一般的である。
[0003] A copper (Cu) -chromium (Cr) alloy is known as an electrode material having a very excellent current breaking performance. Conventionally, a copper powder produced by an electrolytic method or the like and a pulverization method or the like are used. A method of powder metallurgy in which a mixture of chromium powder produced by the above method and a mixture thereof is compression-pressed and sintered at a high temperature is generally used.

【0004】この銅−クロム合金は、銅のマトリックス
中にクロムが分散したものであるが、電極材料としての
電気的特性に着目した場合、微細なクロムが銅マトリッ
クス中に均一に分散している方が好ましい。
In this copper-chromium alloy, chromium is dispersed in a copper matrix. When attention is paid to the electrical characteristics as an electrode material, fine chromium is uniformly dispersed in the copper matrix. Is more preferred.

【0005】ところが、粉末冶金法により製造される従
来の銅−クロム合金の場合、粉砕法により機械的に粉砕
して得られるクロム粉末の粒度分布の幅が非常に大き
く、しかもその平均粒径が40μm程度にも達するた
め、銅の粉体とクロムの粉体とを混合する際にこれらの
比重差や粉体の粒度、或いは粒度分布の相違により、均
一に混合され難い欠点を有する。この結果、焼結後にお
ける銅マトリックス中のクロムが微細且つ均一に分散せ
ず、その電気的特性が期待できるほど良好ではなかっ
た。
However, in the case of a conventional copper-chromium alloy produced by powder metallurgy, the width of the particle size distribution of chromium powder obtained by mechanical pulverization by a pulverization method is very large, and the average particle diameter is large. Since it reaches about 40 μm, there is a drawback that when mixing the copper powder and the chromium powder, uniform mixing is difficult due to the difference in specific gravity, the particle size of the powder, or the difference in particle size distribution. As a result, chromium in the copper matrix after sintering was not finely and uniformly dispersed, and the electrical characteristics were not as good as expected.

【0006】そこで、クロム粉末を更に機械的に粉砕し
てその粒径を小さくすることが考えられるが、この場合
には粉砕の過程及び保管時にクロム粉体の表面が酸化が
進行し、酸素含有量の増加に伴って焼結性が低下してし
まう問題も生ずる。又、粉砕法により得られるクロム粉
末をふるいで分級し、微細径のクロム粉末のみを使用す
ることも考えられるが、この方法では歩留りが極めて悪
くなってしまい、製造コストが嵩む原因となる。
Therefore, it is conceivable to further mechanically pulverize the chromium powder to reduce its particle size. In this case, the surface of the chromium powder is oxidized during the pulverization process and during storage, and contains oxygen. There is also a problem that the sinterability is reduced as the amount increases. It is also conceivable to classify the chromium powder obtained by the pulverization method by sieving and use only the chromium powder having a fine diameter. However, in this method, the yield is extremely deteriorated and the production cost is increased.

【0007】このようなことから、本発明者らは微細化
が困難で表面酸化の問題を抱えたクロムの機械的粉砕法
を採用せず、アトマイズ法により銅−クロム合金の微粉
末を製造し、これを焼結して電極材料を製造する方法を
提案し、銅マトリックス中に微細な粒径のクロムが均一
に分散した銅−クロムを得ることによって、従来の焼結
冶金法等による銅−クロム合金と比べ、しゃ断電流値が
大きく改善された電極材料を提供できるようになった。
For these reasons, the present inventors have manufactured a fine powder of a copper-chromium alloy by an atomizing method without using a mechanical pulverization method of chromium, which is difficult to make fine and has a problem of surface oxidation. , A method for producing an electrode material by sintering the same, by obtaining copper-chromium in which chromium having a fine particle diameter is uniformly dispersed in a copper matrix, can obtain copper-chromium by a conventional sintering metallurgy method or the like. It has become possible to provide an electrode material having a significantly improved breaking current value as compared with a chromium alloy.

【0008】[0008]

【発明が解決しようとする課題】アトマイズ法による原
料を用い、焼結法にて製造することにより、電流しゃ断
性能を優れたものにすることができる銅−クロム合金で
あっても、他の電極材料と比較すると接触抵抗値や耐溶
着性能の点では未だ充分とは言えない。
Even when a copper-chromium alloy whose current breaking performance can be improved by using a raw material obtained by the atomizing method and manufacturing it by a sintering method, other electrodes can be used. Compared with the material, it cannot be said that it is still sufficient in terms of contact resistance value and welding resistance.

【0009】そこで、このアトマイズ法により製造され
た銅−クロム合金の微粉末に接触抵抗値を低下させて耐
溶着性能を向上させ得るビスマス(Bi)等の低融点金属の
粉末を混合し、これらを加熱して焼結させることによ
り、しゃ断電流値が大きくて接触抵抗値が低く、しかも
耐溶着力等の優れた電極材料を得ることを試みた。
Therefore, a powder of a low melting point metal such as bismuth (Bi), which can lower the contact resistance and improve the welding resistance, is mixed with the fine powder of the copper-chromium alloy produced by the atomizing method. By heating and sintering, an attempt was made to obtain an electrode material having a large breaking current value, a low contact resistance value, and an excellent welding resistance.

【0010】ところが、この方法では焼結の際の加熱工
程中に低融点金属の蒸発飛散が激しく、アトマイズ法に
よる銅−クロム合金の微粉末と低融点金属の粉末とを混
合する際、この低融点金属の飛散を見越してこれらの割
合を設定する必要がある。しかも、銅−クロム合金の微
粉末に対する低融点金属の混合割合が数パーセント以下
となるため、これらを均一にばらつきなく混合すること
は非常に難しく、製造工程が煩雑となってしまう。更
に、これによって得られる電極材料中に占める低融点金
属の割合に再現性が乏しく、品質を一定に保持すること
が困難であることが判明した。
However, according to this method, the low melting point metal evaporates and scatters during the heating step during sintering. When mixing the fine powder of the copper-chromium alloy and the powder of the low melting point metal by the atomization method, the low melting point metal is used. It is necessary to set these ratios in anticipation of scattering of the melting point metal. In addition, since the mixing ratio of the low melting point metal to the fine powder of the copper-chromium alloy is several percent or less, it is very difficult to mix them uniformly without variation, and the manufacturing process becomes complicated. Further, it has been found that the reproducibility of the ratio of the low melting point metal in the electrode material obtained by this method is poor, and it is difficult to keep the quality constant.

【0011】[0011]

【発明の目的】本発明は、銅−クロム合金に低融点金属
を添加することにより、接触抵抗値が低くしかも耐溶着
性能が良好な電極材料を容易且つ再現性良く製造し得る
方法を提供することを目的とする。
An object of the present invention is to provide a method for easily and reproducibly producing an electrode material having a low contact resistance value and a good welding resistance by adding a low melting point metal to a copper-chromium alloy. The purpose is to:

【0012】[0012]

【課題を解決するための手段】本発明者らは、銅とクロ
ムとをアトマイズ法により合金微粉末化し、これを非酸
化性雰囲気にて加熱して焼結させることにより、電極材
料の製造が可能であることに着目し、銅とクロムと銅よ
りも低融点の金属とをアトマイズ法により合金微粉末化
し、これを非酸化性雰囲気にて加熱して焼結させること
により、電極材料の製造が可能であるか否かを調べた。
Means for Solving the Problems The present inventors made an alloy material fine powder of copper and chromium by an atomizing method, and then heated and sintered in a non-oxidizing atmosphere to produce an electrode material. Focusing on the feasibility, manufacturing of electrode materials by atomizing copper, chromium, and a metal with a lower melting point than copper by alloying and heating and sintering this in a non-oxidizing atmosphere. It was investigated whether or not it was possible.

【0013】そこで、銅のインゴットが投入された耐火
るつぼをアルゴン(Ar)ガスや窒素(N 2)ガス或いは真空等
の非酸化性雰囲気にて1200℃に加熱し、これによっ
て耐火るつぼ内の銅を溶解させた。次に、極く小さなブ
リック状のクロムをこの耐火るつぼ内に投入し、これら
を非酸化性雰囲気にて1700℃まで加熱する。このよ
うにしてクロムを完全に溶解させた後、更にビスマスを
前記耐火るつぼ内に投入し、銅−クロム−ビスマス合金
の溶湯を得た。
[0013] Therefore, the refractory copper ingot is charged.
Put the crucible in argon (Ar) gas or nitrogen (N Two) Gas or vacuum
Heated to 1200 ° C in a non-oxidizing atmosphere of
To dissolve the copper in the refractory crucible. Next, a very small
Rick chrome is poured into this refractory crucible and
Is heated to 1700 ° C. in a non-oxidizing atmosphere. This
After completely dissolving the chromium,
Put into the refractory crucible, copper-chromium-bismuth alloy
Of molten metal was obtained.

【0014】そして、この溶湯を5〜8MPa(メガパス
カル)の圧力のアルゴンガスを用いたガスアトマイズ法
により急冷凝固させて微粉末化し、銅マトリックス中に
クロムが分散した銅−クロム−ビスマス合金の微粉末を
得るようにした。
The molten metal is rapidly cooled and solidified by a gas atomizing method using argon gas at a pressure of 5 to 8 MPa (megapascals) to form a fine powder, and a fine powder of a copper-chromium-bismuth alloy in which chromium is dispersed in a copper matrix. A powder was obtained.

【0015】上記方法を実施するに際し、溶融前の銅と
クロムとビスマスとの重量割合を80:20:1に設定
した。なお、クロムの割合が20重量%よりも多くなる
と、クロムのマトリックス中に銅が分散したものが生成
してしまい、目標とする銅−クロム−ビスマス合金粉末
が得られず、逆にクロムの割合が5重量%未満の場合に
は、クロムを添加したことによる電流しゃ断性能の向上
をほとんど期待できなくなる。
In carrying out the above method, the weight ratio of copper, chromium and bismuth before melting was set to 80: 20: 1. If the proportion of chromium is more than 20% by weight, copper dispersed in a chromium matrix is formed, and a target copper-chromium-bismuth alloy powder cannot be obtained. Is less than 5% by weight, it is hardly expected to improve current breaking performance due to the addition of chromium.

【0016】又、銅とクロムとビスマスとを溶融する際
には、溶湯の酸素含有量を低減するために酸素含有量の
低い銅及びクロム及びビスマスを選定する一方、上述し
た非酸化性雰囲気にて溶融するか或いは脱酸処理を施
し、酸素含有量を1000ppm以下に抑えた。この場
合、原料等に混入している不可避の不純物、例えば鉄(F
e)やニッケル(Ni)等の存在は許容した。
When copper, chromium and bismuth are melted, copper, chromium and bismuth having a low oxygen content are selected in order to reduce the oxygen content of the molten metal. To reduce the oxygen content to 1000 ppm or less. In this case, unavoidable impurities such as iron (F
e) and the presence of nickel (Ni) were allowed.

【0017】これにより得られた銅−クロム−ビスマス
合金微粉末の粒径は150μm以下であり、化学分析に
よるビスマスの割合は0.5重量%となっていることが
判明した。又、この銅−クロム−ビスマス合金微粉末を
電子顕微鏡にて観察した結果、5μm以下のクロム粒子
が銅マトリックス中に均一に分散していることを確認で
きた。
The particle size of the copper-chromium-bismuth alloy fine powder thus obtained was found to be 150 μm or less, and it was found by chemical analysis that the proportion of bismuth was 0.5% by weight. In addition, as a result of observing the copper-chromium-bismuth alloy fine powder with an electron microscope, it was confirmed that chromium particles of 5 μm or less were uniformly dispersed in the copper matrix.

【0018】次に、この銅−クロム−ビスマス合金微粉
末を直径が50mmの金型に充填し、3.5トン/cm2の加
圧力にて円盤状に加圧成形した後、これを5×10-5To
rrの真空中にて30分間1080℃に加熱し、円盤状を
なす焼結体を得た。そして、この焼結体に含まれるビス
マスの含有量を10の試料についてそれぞれ測定した結
果を本発明方法として表1に示す。
Next, this copper-chromium-bismuth alloy fine powder was filled in a mold having a diameter of 50 mm, and pressed into a disk with a pressing force of 3.5 ton / cm 2 , and this was pressed into a mold. × 10 -5 To
It was heated to 1080 ° C. for 30 minutes in a vacuum of rr to obtain a disc-shaped sintered body. Table 1 shows the results of measuring the content of bismuth contained in this sintered body for each of the 10 samples as the method of the present invention.

【0019】比較として、上述したアトマイズ法と同様
な方法により得られる銅−クロム合金微粉末と、この銅
−クロム合金微粉末に対して0.5重量%の割合のビス
マスの粉末とを混合し、これを直径が50mmの金型に充
填し、3.5トン/cm2の加圧力にて円盤状に加圧成形し
た後、これを5×10-5Torrの真空中にて30分間10
80℃に加熱焼結させた場合(以下、この製造方法を粉
末添加法と呼称する)におけるこの焼結体に含まれるビ
スマスの含有量を10の試料についてそれぞれ測定した
結果を表1に併せて示す。
As a comparison, a copper-chromium alloy fine powder obtained by the same method as the above-mentioned atomizing method and a bismuth powder in a ratio of 0.5% by weight with respect to the copper-chromium alloy fine powder were mixed. This was filled into a mold having a diameter of 50 mm, and pressed into a disk with a pressing force of 3.5 ton / cm 2 , and then pressed in a vacuum of 5 × 10 −5 Torr for 30 minutes.
Table 1 shows the results obtained by measuring the content of bismuth contained in the sintered body of each of the 10 samples in the case of heating and sintering at 80 ° C (hereinafter, this manufacturing method is referred to as a powder addition method) for each of the 10 samples. Show.

【0020】更に、銅の粉末とクロムの粉末とこれらに
対して0.5重量%の割合のビスマスの粉末とを混合
し、これによって得られる銅とクロムとビスマスとの混
合粉末を直径が50mmの金型に充填し、3.5トン/cm2
の加圧力にて円盤状に加圧成形した後、これを5×10
-5Torrの真空中にて30分間1080℃に加熱焼結させ
た場合(以下、この製造方法を従来方法と呼称する)に
おけるこの焼結体に含まれるビスマスの含有量を10の
試料についてそれぞれ測定した結果を表1に併せて示
す。
Further, a copper powder, a chromium powder and a bismuth powder in a ratio of 0.5% by weight thereof are mixed, and the resulting mixed powder of copper, chromium and bismuth has a diameter of 50 mm. 3.5 tons / cm 2
After being press-formed into a disk with a pressing force of
In the case of sintering at 1080 ° C. for 30 minutes in a vacuum of -5 Torr (hereinafter, this manufacturing method is referred to as a conventional method), the content of bismuth contained in the sintered body was set to 10 for each of the samples Table 1 also shows the measurement results.

【0021】[0021]

【表1】 [Table 1]

【0022】以上の結果から明らかなように、本発明方
法は粉末添加法及び従来方法よりもビスマスが飛散し難
く、しかもビスマスの割合のばらつきが少ないことが判
明した。
As is evident from the above results, it was found that the method of the present invention was less likely to scatter bismuth than the powder addition method and the conventional method, and the variation in the bismuth ratio was smaller.

【0023】本発明による電極材料の製造方法は、以上
のような考察に基づいてなされたものであり、銅とクロ
ムと前記銅よりも低融点の金属とをアトマイズ法により
合金微粉末化し、これを非酸化性雰囲気にて加熱して焼
結させるようにしたことを特徴とする。
The method for producing an electrode material according to the present invention is based on the above considerations. Copper, chromium, and a metal having a lower melting point than copper are alloyed into fine powder by an atomizing method. Is heated and sintered in a non-oxidizing atmosphere.

【0024】ここで、銅よりも低融点で電極材料の接触
抵抗値を下げて耐溶着性能を向上させ得る金属(以下、
これを低融点金属と呼称する)としては、前述したビス
マスの他、アンチモン(Sb),テルル(Te),セレン(Se),鉛
(Pb)のうちの1種類以上を採用することが可能であり、
銅及びクロムに対するこれら低融点金属の割合は、0.
02〜3.0重量%の範囲に収めることが望ましい。
Here, a metal having a lower melting point than copper and capable of lowering the contact resistance value of the electrode material and improving the welding resistance (hereinafter, referred to as a metal).
This is referred to as a low melting point metal). In addition to the aforementioned bismuth, antimony (Sb), tellurium (Te), selenium (Se), lead
It is possible to employ one or more of (Pb)
The ratio of these low melting metals to copper and chromium is 0.1.
It is desirable to be within the range of 02 to 3.0% by weight.

【0025】なお、これら低融点金属の割合が0.02
%未満では、これら低融点金属を添加したことによる接
触抵抗値の低下や耐溶着性能の向上を期待することがほ
とんどできない。又、3.0重量%を越えた量の低融点
金属を添加すると、電流しゃ断性能が急激に悪化するこ
ととなる。
The ratio of the low melting point metal is 0.02.
%, It is almost impossible to expect a decrease in contact resistance and an improvement in welding resistance due to the addition of these low-melting metals. Also, when the amount of the low-melting-point metal exceeds 3.0% by weight, the current breaking performance is rapidly deteriorated.

【0026】[0026]

【作用】アトマイズ法によって得られる銅−クロム−低
融点金属の合金微粉末は、銅マトリックス中に微小な粒
径のクロムが均一に分散している。これを所定の形状に
加圧成形して加熱することにより、低融点金属の蒸発飛
散が抑制された状態で金属結晶粒子が粗大化することな
く、緻密に焼結して一体化される。
The alloy fine powder of copper-chromium-low-melting-point metal obtained by the atomizing method has chromium having a fine particle diameter uniformly dispersed in a copper matrix. By pressing this into a predetermined shape and heating it, the metal crystal particles are densely sintered and integrated without coarsening in a state where evaporation of the low melting point metal is suppressed.

【0027】[0027]

【実施例】真空インタラプタは、その概略構造の一例を
表す図1に示すようなものであり、相互に一直線状をな
す一対のリード棒11,12の対向端面には、それぞれ
電極13,14が図示しないろう材を介して一体的に設
けてある。これら電極13,14を囲む筒状のシールド
15の外周中央部は、このシールド15を囲む一対の絶
縁筒16,17の間に挟まれた状態で保持されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A vacuum interrupter is shown in FIG. 1 which shows an example of a schematic structure of the vacuum interrupter. Electrodes 13 and 14 are respectively provided on opposing end surfaces of a pair of lead rods 11 and 12 which form a straight line. It is provided integrally via a brazing material (not shown). A central portion of the outer periphery of a cylindrical shield 15 surrounding the electrodes 13 and 14 is held in a state sandwiched between a pair of insulating cylinders 16 and 17 surrounding the shield 15.

【0028】一方の前記リード棒11は、一方の絶縁筒
16の一端に接合された金属端板18を気密に貫通した
状態で、この金属端板18に一体的に固定されている。
図示しない駆動装置に連結される他方のリード棒12
は、他方の絶縁筒17の他端に気密に接合された他方の
金属端板19にベローズ20を介して連結され、駆動装
置の作動に伴って電極13,14の対向方向に往復動可
能に可動側の電極14が固定側の電極13に対して開閉
動作するようになっている。
The one lead rod 11 is integrally fixed to the metal end plate 18 in a state where it penetrates the metal end plate 18 joined to one end of the one insulating cylinder 16 in an airtight manner.
The other lead rod 12 connected to a driving device (not shown)
Is connected via a bellows 20 to the other metal end plate 19 hermetically joined to the other end of the other insulating cylinder 17 so as to be able to reciprocate in a direction facing the electrodes 13 and 14 with the operation of the driving device. The movable electrode 14 opens and closes with respect to the fixed electrode 13.

【0029】本実施例における前記電極13,14は、
アトマイズ法による原料を焼結してなる銅−クロム−鉛
合金で構成される。
The electrodes 13 and 14 in this embodiment are:
It is composed of a copper-chromium-lead alloy obtained by sintering a raw material by an atomizing method.

【0030】本発明によるこの電極13,14の製造方
法の一例を以下に記すと、銅のインゴットが投入された
耐火るつぼを真空等の非酸化性雰囲気にて1200℃に
加熱し、これによって耐火るつぼ内の銅を溶解させた。
次に、極く小さなブリック状のクロムをこの耐火るつぼ
内に投入し、これらを真空等の非酸化性雰囲気にて17
00℃まで加熱する。このようにしてクロムを完全に溶
解させた後、更にこれらに対して0.7重量%の割合の
鉛を前記耐火るつぼ内に投入し、銅−クロム−鉛合金の
溶湯を得た。
An example of a method of manufacturing the electrodes 13 and 14 according to the present invention will be described below. A refractory crucible into which a copper ingot has been charged is heated to 1200 ° C. in a non-oxidizing atmosphere such as a vacuum, thereby producing a refractory crucible. The copper in the crucible was dissolved.
Next, very small brick-like chromium is charged into the refractory crucible, and these are placed in a non-oxidizing atmosphere such as vacuum for 17 hours.
Heat to 00 ° C. After the chromium was completely dissolved in this way, 0.7% by weight of lead was further charged into the refractory crucible to obtain a molten copper-chromium-lead alloy.

【0031】そして、この溶湯を5〜8MPaの圧力のア
ルゴンガスを用いたガスアトマイズ法により急冷凝固さ
せて微粉末化し、銅マトリックス中にクロムが分散した
銅−クロム−鉛合金の微粉末を得るようにした。
Then, the molten metal is rapidly cooled and solidified by a gas atomizing method using argon gas at a pressure of 5 to 8 MPa to obtain fine powder of a copper-chromium-lead alloy in which chromium is dispersed in a copper matrix. I made it.

【0032】これにより得られた銅−クロム−鉛合金微
粉末の粒径は150μm以下であり、化学分析による鉛
の割合は0.5重量%となっていることが判明した。
又、この銅−クロム−鉛合金微粉末を電子顕微鏡にて観
察した結果、5μm以下のクロム粒子が銅マトリックス
中に均一に分散していることを確認できた。
The particle diameter of the copper-chromium-lead alloy fine powder thus obtained was found to be 150 μm or less, and it was found by chemical analysis that the proportion of lead was 0.5% by weight.
In addition, as a result of observing the copper-chromium-lead alloy fine powder with an electron microscope, it was confirmed that chromium particles of 5 μm or less were uniformly dispersed in the copper matrix.

【0033】次に、この銅−クロム−鉛合金微粉末を直
径が50mmの金型に充填し、3.5トン/cm2の加圧力に
て円盤状に加圧成形した後、これを5×10-5Torrの真
空中にて30分間1080℃に加熱し、円盤状をなす焼
結体を得た。そして、この焼結体に含まれる鉛の含有量
を10の試料についてそれぞれ測定した結果を本発明方
法として表2に示す。
Next, this copper-chromium-lead alloy fine powder was filled in a mold having a diameter of 50 mm, and pressed into a disk with a pressing force of 3.5 ton / cm 2 , and this was pressed into a disk. It was heated to 1080 ° C. for 30 minutes in a vacuum of × 10 −5 Torr to obtain a disc-shaped sintered body. Table 2 shows the results of measuring the content of lead contained in this sintered body for each of the 10 samples as the method of the present invention.

【0034】比較として、アトマイズ法により得られる
銅−クロム合金微粉末と、この銅−クロム合金微粉末に
対して0.5重量%の割合の鉛の粉末とを混合し、前述
した粉末添加法により銅−クロム−鉛合金の焼結体を
得、この焼結体に含まれる鉛の含有量を10の試料につ
いてそれぞれ測定した結果を表2に併せて示す。
As a comparison, a copper-chromium alloy fine powder obtained by the atomizing method and a lead powder having a ratio of 0.5% by weight with respect to the copper-chromium alloy fine powder were mixed, and the powder addition method described above was used. As a result, a sintered body of a copper-chromium-lead alloy was obtained, and the results of measurement of the content of lead contained in the sintered body for 10 samples are also shown in Table 2.

【0035】更に、銅の粉末とクロムの粉末とこれらに
対して0.5重量%の割合の鉛の粉末とを混合し、これ
によって得られる銅とクロムと鉛の混合粉末を前述した
従来法により銅−クロム−鉛合金の焼結体を得、この焼
結体に含まれる鉛の含有量を10の試料についてそれぞ
れ測定した結果を表2に併せて示す。
Further, copper powder, chromium powder and 0.5% by weight of lead powder are mixed with each other, and the resulting mixed powder of copper, chromium and lead is mixed with the above-mentioned conventional method. As a result, a sintered body of a copper-chromium-lead alloy was obtained, and the results of measurement of the content of lead contained in the sintered body for 10 samples are also shown in Table 2.

【0036】[0036]

【表2】 [Table 2]

【0037】以上の結果から明らかなように、低融点金
属として鉛を採用した本実施例においては、粉末添加法
及び従来方法よりも鉛の飛散量が非常に少なく、しかも
鉛の割合にばらつきの少ないことが判明した。
As is clear from the above results, in the present embodiment employing lead as the low melting point metal, the amount of scattered lead is much smaller than in the case of the powder addition method and the conventional method, and the lead ratio is not uniform. It turned out to be less.

【0038】上述した実施例では低融点金属として鉛を
採用したが、この低融点金属としてテルルを用いた本発
明によるこの電極13,14の製造方法の他の一例を以
下に記すと、前述した方法と全く同様な方法で銅−クロ
ム−テルル合金の溶湯を得、この溶湯を5〜8MPaの圧
力のアルゴンガスを用いたガスアトマイズ法により急冷
凝固させて微粉末化し、銅マトリックス中にクロムが分
散した銅−クロム−テルル合金の微粉末を得るようにし
た。
In the above-described embodiment, lead was used as the low-melting metal. However, another example of the method of manufacturing the electrodes 13 and 14 according to the present invention using tellurium as the low-melting metal will be described below. A melt of a copper-chromium-tellurium alloy is obtained in exactly the same manner as described above, and this melt is rapidly solidified by a gas atomizing method using argon gas at a pressure of 5 to 8 MPa to fine powder, and chromium is dispersed in a copper matrix. Thus, a fine powder of a copper-chromium-tellurium alloy was obtained.

【0039】これにより得られた銅−クロム−テルル合
金微粉末の粒径は150μm以下であり、化学分析によ
るテルルの割合は0.5重量%となっていることが判明
した。又、この銅−クロム−テルル合金微粉末を電子顕
微鏡にて観察した結果、5μm以下のクロム粒子が銅マ
トリックス中に均一に分散していることを確認できた。
The copper-chromium-tellurium alloy fine powder thus obtained had a particle size of 150 μm or less, and the chemical analysis revealed that the proportion of tellurium was 0.5% by weight. Further, as a result of observing the copper-chromium-tellurium alloy fine powder with an electron microscope, it was confirmed that chromium particles of 5 μm or less were uniformly dispersed in the copper matrix.

【0040】次に、この銅−クロム−テルル合金微粉末
を直径が50mmの金型に充填し、3.5トン/cm2の加圧
力にて円盤状に加圧成形した後、これを5×10-5Torr
の真空中にて30分間1080℃に加熱し、円盤状をな
す焼結体を得た。そして、この焼結体に含まれるテルル
の含有量を10の試料についてそれぞれ測定した結果を
本発明方法として表3に示す。
Next, this copper-chromium-tellurium alloy fine powder was filled in a mold having a diameter of 50 mm, and pressed into a disk with a pressing force of 3.5 ton / cm 2. × 10 -5 Torr
Was heated at 1080 ° C. for 30 minutes in a vacuum of to obtain a disc-shaped sintered body. Table 3 shows the results of measuring the tellurium content of the sintered body for each of the 10 samples as the method of the present invention.

【0041】比較として、アトマイズ法により得られる
銅−クロム合金微粉末と、この銅−クロム合金微粉末に
対して0.5重量%の割合のテルルの粉末とを混合し、
前述した粉末添加法により銅−クロム−テルル合金の焼
結体を得、この焼結体に含まれるテルルの含有量を10
の試料についてそれぞれ測定した結果を表3に併せて示
す。
For comparison, a copper-chromium alloy fine powder obtained by the atomizing method and a tellurium powder having a ratio of 0.5% by weight with respect to the copper-chromium alloy fine powder were mixed.
A sintered body of a copper-chromium-tellurium alloy was obtained by the powder addition method described above, and the content of tellurium contained in the sintered body was reduced to 10%.
Table 3 also shows the results of the measurements for each sample.

【0042】更に、銅の粉末とクロムの粉末とこれらに
対して0.5重量%の割合のテルルの粉末とを混合し、
これによって得られる銅とクロムとテルルの混合粉末を
前述した従来法により銅−クロム−テルル合金の焼結体
を得、この焼結体に含まれるテルルの含有量を10の試
料についてそれぞれ測定した結果を表3に併せて示す。
Further, copper powder, chromium powder and tellurium powder in a ratio of 0.5% by weight thereof were mixed,
The mixed powder of copper, chromium, and tellurium thus obtained was obtained as a sintered body of a copper-chromium-tellurium alloy by the above-described conventional method, and the content of tellurium contained in the sintered body was measured for each of 10 samples. The results are shown in Table 3.

【0043】[0043]

【表3】 [Table 3]

【0044】以上の結果から明らかなように、低融点金
属としてテルルを採用した場合においても、本発明方法
は粉末添加法及び従来方法よりテルルの飛散量が非常に
少なく、しかもテルルの割合にばらつきの少ないことが
判明した。
As is clear from the above results, even when tellurium is used as the low melting point metal, the method of the present invention has a much smaller amount of tellurium scattered than the powder addition method and the conventional method, and has a variation in tellurium ratio. Turned out to be less.

【0045】次に、上述した各試料を直径が40mmのス
パイラル状電極として機械加工し、図1に示す真空イン
タラプタに組み込んで従来のものと比較しつつ、これら
の耐電圧特性及び耐溶着力について更に試験した。この
場合、接触抵抗値は電極13,14を500N(ニュー
トン)の力で圧接させた場合の値であり、溶着力は電極
13,14を500Nの力で圧接させた状態でピーク電
流が35kAの交流を2サイクル通電した後の静的な値
である。
Next, each of the above-mentioned samples was machined as a spiral electrode having a diameter of 40 mm, and incorporated into the vacuum interrupter shown in FIG. Tested. In this case, the contact resistance value is a value when the electrodes 13 and 14 are pressed with a force of 500 N (Newton), and the welding force is a peak current of 35 kA when the electrodes 13 and 14 are pressed with a force of 500 N. This is a static value after two cycles of alternating current.

【0046】前記表1の試料に対応する接触抵抗値を表
4に示すと共に溶着力を表5に示す。又、前記表2の試
料に対応する接触抵抗値を表6に示すと共に溶着力を表
7に示す。更に、前記表3の試料に対応する接触抵抗値
を表8に示すと共に溶着力を表9に示す。
Table 4 shows the contact resistance values corresponding to the samples shown in Table 1, and Table 5 shows the welding force. Table 6 shows the contact resistance values corresponding to the samples in Table 2 and Table 7 shows the welding force. Further, Table 8 shows the contact resistance values corresponding to the samples in Table 3 and Table 9 shows the welding force.

【0047】[0047]

【表4】 [Table 4]

【0048】以上の結果から明らかなように、低融点金
属としてビスマスを採用した場合において、本発明方法
は粉末添加法及び従来方法よりも接触抵抗値を少なくで
きることが判明した。
As is clear from the above results, it was found that when bismuth was used as the low melting point metal, the method of the present invention could reduce the contact resistance value as compared with the powder addition method and the conventional method.

【0049】[0049]

【表5】 [Table 5]

【0050】以上の結果から明らかなように、低融点金
属としてビスマスを採用した場合において、本発明方法
は粉末添加法及び従来方法よりも溶着力を少なくできる
ことが判明した。
As is clear from the above results, it was found that when bismuth was used as the low melting point metal, the method of the present invention can reduce the welding force as compared with the powder addition method and the conventional method.

【0051】[0051]

【表6】 [Table 6]

【0052】以上の結果から明らかなように、低融点金
属として鉛を採用した場合において、本発明方法は粉末
添加法及び従来方法よりも接触抵抗値を少なくできるこ
とが判明した。
As is clear from the above results, it was found that when lead was used as the low melting point metal, the method of the present invention can reduce the contact resistance value as compared with the powder addition method and the conventional method.

【0053】[0053]

【表7】 [Table 7]

【0054】以上の結果から明らかなように、低融点金
属として鉛を採用した場合において、本発明方法は粉末
添加法及び従来方法よりも溶着力を少なくできることが
判明した。
As is evident from the above results, it has been found that when lead is used as the low melting point metal, the method of the present invention can reduce the welding force as compared with the powder addition method and the conventional method.

【0055】[0055]

【表8】 [Table 8]

【0056】以上の結果から明らかなように、低融点金
属としてテルルを採用した場合において、本発明方法は
粉末添加法及び従来方法よりも接触抵抗値を少なくでき
ることが判明した。
As is apparent from the above results, when tellurium is used as the low melting point metal, it was found that the method of the present invention can reduce the contact resistance value as compared with the powder addition method and the conventional method.

【0057】[0057]

【表9】 [Table 9]

【0058】以上の結果から明らかなように、低融点金
属としてテルルを採用した場合において、本発明方法は
粉末添加法及び従来方法よりも溶着力を少なくできるこ
とが判明した。
As is clear from the above results, it has been found that when tellurium is used as the low melting point metal, the method of the present invention can reduce the welding force as compared with the powder addition method and the conventional method.

【0059】[0059]

【発明の効果】本発明の電極材料の製造方法によると、
銅とクロムと銅よりも低融点のビスマス,アンチモン,テ
ルル,セレン,鉛のうちの1種類以上とをアトマイズ法に
より合金微粉末化し、これを非酸化性雰囲気にて加熱し
て焼結させるようにしたので、従来の方法よりも低融点
金属の飛散量が抑制される結果、この低融点金属の割合
を比較的高精度に制御することが可能となり、粉末添加
法や従来方法による製造方法と比べて、しゃ断電流値を
高くできると共に接触抵抗値が低く、しかも耐溶着力の
優れた電極材料を提供することができる。
According to the method for producing an electrode material of the present invention,
Copper, chromium, and at least one of bismuth, antimony, tellurium, selenium, and lead having a lower melting point than copper are alloyed into fine powders by the atomizing method, and then heated and sintered in a non-oxidizing atmosphere. As a result, the scattering amount of the low melting point metal is suppressed as compared with the conventional method, so that the ratio of the low melting point metal can be controlled with relatively high accuracy. In comparison, it is possible to provide an electrode material having a higher breaking current value, a lower contact resistance value, and an excellent welding resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】真空インタラプタの一例を表す断面図である。FIG. 1 is a cross-sectional view illustrating an example of a vacuum interrupter.

【符号の説明】[Explanation of symbols]

11,12はリード棒、13,14は電極である。 11 and 12 are lead rods, and 13 and 14 are electrodes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 伸尚 東京都品川区大崎二丁目1番17号 株式 会社 明電舍内 (56)参考文献 特開 平3−47931(JP,A) 特開 昭57−67141(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01H 11/00 C22C 9/00 H01H 33/66 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Nobuhisa Suzuki 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Inside Meidensha Co., Ltd. (56) References JP-A-3-47931 (JP, A) JP 57-67141 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01H 11/00 C22C 9/00 H01H 33/66

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅とクロムと前記銅よりも低融点の金属
とをアトマイズ法により合金微粉末化し、これを非酸化
性雰囲気にて加熱して焼結させるようにしたことを特徴
とする電極材料の製造方法。
An electrode characterized in that copper, chromium, and a metal having a lower melting point than copper are atomized by an atomizing method and are heated and sintered in a non-oxidizing atmosphere. Material manufacturing method.
【請求項2】 低融点の金属がビスマス,アンチモン,テ
ルル,セレン,鉛のうちの1種類以上であることを特徴と
する請求項1に記載した電極材料の製造方法。
2. The method according to claim 1, wherein the low melting point metal is at least one of bismuth, antimony, tellurium, selenium, and lead.
JP03282715A 1991-10-25 1991-10-29 Manufacturing method of electrode material Expired - Fee Related JP3106610B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP03282715A JP3106610B2 (en) 1991-10-29 1991-10-29 Manufacturing method of electrode material
EP19920118218 EP0538896A3 (en) 1991-10-25 1992-10-23 Process for forming contact material
US07/965,203 US5352404A (en) 1991-10-25 1992-10-23 Process for forming contact material including the step of preparing chromium with an oxygen content substantially reduced to less than 0.1 wt. %
KR1019920019655A KR950008375B1 (en) 1991-10-25 1992-10-24 Process for forming contact material
TW081108517A TW240184B (en) 1991-10-25 1992-10-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03282715A JP3106610B2 (en) 1991-10-29 1991-10-29 Manufacturing method of electrode material

Publications (2)

Publication Number Publication Date
JPH05120949A JPH05120949A (en) 1993-05-18
JP3106610B2 true JP3106610B2 (en) 2000-11-06

Family

ID=17656102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03282715A Expired - Fee Related JP3106610B2 (en) 1991-10-25 1991-10-29 Manufacturing method of electrode material

Country Status (1)

Country Link
JP (1) JP3106610B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979993B2 (en) * 2006-06-16 2012-07-18 三菱電機株式会社 Contact material and manufacturing method thereof

Also Published As

Publication number Publication date
JPH05120949A (en) 1993-05-18

Similar Documents

Publication Publication Date Title
JP2705998B2 (en) Manufacturing method of electrical contact material
JPH0925526A (en) Production of oxide grain dispersed metal matrix composite
US4537743A (en) Electrode composition for vacuum switch
US3382066A (en) Method of making tungsten-copper composites
US5236523A (en) Silver- or silver-copper alloy-metal oxide composite material
US5352404A (en) Process for forming contact material including the step of preparing chromium with an oxygen content substantially reduced to less than 0.1 wt. %
JP3106610B2 (en) Manufacturing method of electrode material
US3438753A (en) Tungsten-copper composites
US3278280A (en) Workable ruthenium alloy and process for producing the same
JP3067318B2 (en) Manufacturing method of electrode material
JP3168630B2 (en) Manufacturing method of electrode material
JP3106609B2 (en) Manufacturing method of electrode material
JPH05198230A (en) Manufacture of electrode material
JP3067317B2 (en) Manufacturing method of electrode material
EP0460680B1 (en) Contact for a vacuum interrupter
JPH05217473A (en) Manufacture of electrode material
JP3106598B2 (en) Manufacturing method of electrode material
JP3106605B2 (en) Manufacturing method of electrode material
JP3168635B2 (en) Manufacturing method of electrode material
JPH01258330A (en) Manufacture of contact material for vacuum bulb
WO2023238285A1 (en) Powder, metal component, electrical contact, and method for producing powder
JPS6141091B2 (en)
JPS61288032A (en) Silver-nickel electrical contact point material
JP2853308B2 (en) Manufacturing method of electrode material
JPS60197840A (en) Sintered alloy for contact point of vacuum circuit breaker

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000808

LAPS Cancellation because of no payment of annual fees