JP3106609B2 - Manufacturing method of electrode material - Google Patents
Manufacturing method of electrode materialInfo
- Publication number
- JP3106609B2 JP3106609B2 JP03279994A JP27999491A JP3106609B2 JP 3106609 B2 JP3106609 B2 JP 3106609B2 JP 03279994 A JP03279994 A JP 03279994A JP 27999491 A JP27999491 A JP 27999491A JP 3106609 B2 JP3106609 B2 JP 3106609B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- chromium
- powder
- electrode material
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007772 electrode material Substances 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 37
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 33
- 239000010949 copper Substances 0.000 claims description 30
- 239000011651 chromium Substances 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 29
- 229910052804 chromium Inorganic materials 0.000 claims description 28
- 239000000843 powder Substances 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 22
- 238000002844 melting Methods 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 12
- 238000005245 sintering Methods 0.000 claims description 8
- 229910052797 bismuth Inorganic materials 0.000 claims description 6
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 239000011669 selenium Substances 0.000 claims description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052711 selenium Inorganic materials 0.000 claims description 3
- 229910052714 tellurium Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 17
- 239000000788 chromium alloy Substances 0.000 description 17
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 description 16
- 239000002245 particle Substances 0.000 description 16
- 238000003466 welding Methods 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 238000010298 pulverizing process Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Switches (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、アトマイズ法による銅
−クロム合金の微粉末を主原料とする電極材料の製造方
法に関し、特に真空インタラプタの電極に用いて好適で
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode material using a fine powder of a copper-chromium alloy as a main raw material by an atomizing method, and is particularly suitable for use as an electrode of a vacuum interrupter.
【0002】[0002]
【従来の技術】真空インタラプタの電極材料として要求
される重要な性能の一つに電流しゃ断性能の高いことが
挙げられる。2. Description of the Related Art One of the important performances required as an electrode material of a vacuum interrupter is a high current breaking performance.
【0003】銅(Cu)−クロム(Cr)合金は、この電流しゃ
断性能が非常に優れている電極材料として知られてお
り、従来では電解法等により製造された銅の粉体と、粉
砕法等により製造されたクロムの粉体とを混合したもの
を圧縮加圧成形し、これを高温で焼結する粉末冶金法に
よる製造方法が一般的である。[0003] A copper (Cu) -chromium (Cr) alloy is known as an electrode material having a very excellent current breaking performance. Conventionally, a copper powder produced by an electrolytic method or the like and a pulverization method are used. In general, a powder metallurgy method is used in which a mixture of chromium powder produced by the above method and the like is compression-pressed and sintered at a high temperature.
【0004】この他、圧縮加圧成形した銅の粉体の空隙
部分にクロムを溶浸させる溶浸法や、或いは銅とクロム
との混合粉体を圧縮加圧成形し、これを低温で焼結した
後、その空隙部分に銅を溶浸させるようにした方法、或
いは鋳造による方法等も試みられている。[0004] In addition, an infiltration method in which chromium is infiltrated into voids of the compression-pressed copper powder, or a mixed powder of copper and chromium is compression-pressed and fired at a low temperature. After sintering, a method of infiltrating copper into the voids or a method of casting has been attempted.
【0005】[0005]
【発明が解決しようとする課題】この銅−クロム合金
は、銅のマトリックス中にクロムが分散したものである
が、電極材料としての電気的特性に着目した場合、微細
なクロムが銅マトリックス中に均一に分散している方が
好ましい。This copper-chromium alloy has chromium dispersed in a copper matrix. However, when attention is paid to the electrical characteristics as an electrode material, fine chromium is contained in the copper matrix. It is preferable that they are uniformly dispersed.
【0006】ところが、粉末冶金法により製造される従
来の銅−クロム合金の場合、粉砕法により機械的に粉砕
して得られるクロム粉末の粒度分布の幅が非常に大き
く、しかもその平均粒径が40μm程度にも達するた
め、銅の粉体とクロムの粉体とを混合する際にこれらの
比重差や粉体の粒度、或いは粒度分布の相違により、均
一に混合され難い欠点を有する。この結果、焼結後にお
ける銅マトリックス中のクロムが微細且つ均一に分散せ
ず、その電気的特性が期待できるほど良好ではなかっ
た。However, in the case of a conventional copper-chromium alloy produced by powder metallurgy, the width of the particle size distribution of chromium powder obtained by mechanical pulverization by a pulverization method is very large, and the average particle diameter is large. Since it reaches about 40 μm, there is a drawback that when mixing the copper powder and the chromium powder, uniform mixing is difficult due to the difference in specific gravity, the particle size of the powder, or the difference in particle size distribution. As a result, chromium in the copper matrix after sintering was not finely and uniformly dispersed, and the electrical characteristics were not as good as expected.
【0007】そこで、クロム粉末を更に機械的に粉砕し
てその粒径を小さくすることが考えられるが、この場合
には粉砕の過程及び保管時にクロム粉体の表面が酸化が
進行し、酸素含有量の増加に伴って焼結性が低下してし
まう問題も生ずる。又、粉砕法により得られるクロム粉
末をふるいで分級し、微細径のクロム粉末のみを使用す
ることも考えられるが、この方法では歩留りが極めて悪
くなってしまい、製造コストが嵩む原因となる。[0007] Therefore, it is conceivable to further mechanically pulverize the chromium powder to reduce its particle size. In this case, the surface of the chromium powder is oxidized during the pulverization process and during storage, and oxygen-containing powder is contained. There is also a problem that the sinterability is reduced as the amount increases. It is also conceivable to classify the chromium powder obtained by the pulverization method by sieving and use only the chromium powder having a fine diameter. However, in this method, the yield is extremely deteriorated and the production cost is increased.
【0008】一方、溶浸法により製造される従来の銅−
クロム合金の場合、クロム粉体は酸化し易いため、その
品質管理を徹底する必要がある上、表面が酸化したクロ
ムの粉末は銅との濡れ性が悪く、溶浸ができなくなる欠
点を有する。[0008] On the other hand, conventional copper produced by the infiltration method
In the case of a chromium alloy, chromium powder is easily oxidized, so it is necessary to thoroughly control its quality, and chromium powder having an oxidized surface has poor wettability with copper and has a disadvantage that it cannot be infiltrated.
【0009】又、鋳造法により製造される従来の銅−ク
ロム合金の場合、凝固時の冷却速度が遅いため、銅のマ
トリックス中のクロム粒子が成長してしまい、均一で微
細なクロムの分散が困難となる上、凝固偏析が生じ易い
ことから得られる銅−クロム合金の品質にばらつきが生
じ易い欠点を有する。In the case of a conventional copper-chromium alloy produced by a casting method, chromium particles in a copper matrix grow due to a low cooling rate during solidification, and uniform and fine chromium is dispersed. In addition to the difficulty, there is a disadvantage that the quality of the obtained copper-chromium alloy is apt to vary due to the tendency of solidification segregation.
【0010】しかも、上述した銅−クロム合金は電流し
ゃ断性能が優れているものの、他の周知の電極材料と比
較すると、接触抵抗値や耐溶着性能の点で充分な満足が
得られるものとは言えなかった。[0010] Moreover, although the above-mentioned copper-chromium alloy is excellent in current breaking performance, it cannot be said that compared with other well-known electrode materials, sufficient satisfaction is obtained in terms of contact resistance value and welding resistance. I could not say it.
【0011】[0011]
【発明の目的】本発明は、微細なクロムが銅マトリック
ス中に均一に分散した高品質な銅−クロム合金をベース
として接触抵抗値や耐溶着性能が良好な電極材料を製造
し得る方法を提供することを目的とする。An object of the present invention is to provide a method for producing an electrode material having good contact resistance and good welding resistance based on a high quality copper-chromium alloy in which fine chromium is uniformly dispersed in a copper matrix. The purpose is to do.
【0012】[0012]
【課題を解決するための手段】本発明者らは、微細化が
困難で表面酸化の問題を抱えたクロムの機械的粉砕法を
採用せず、アトマイズ法により銅−クロム合金の微粉末
を製造し、これをベースとして電極材料の製造が可能で
あるか否かを調べた。SUMMARY OF THE INVENTION The present inventors have manufactured a fine powder of a copper-chromium alloy by an atomizing method without using a mechanical pulverizing method of chromium, which is difficult to miniaturize and has a problem of surface oxidation. Then, it was examined whether or not it was possible to manufacture an electrode material based on this.
【0013】そこで、銅とクロムとの混合物を真空等の
非酸化性雰囲気にて溶融させ、その溶湯を5〜8MPa
(メガパスカル)の圧力のアルゴン(Ar)ガスを用いたガ
スアトマイズ法により急冷凝固させて微粉末化し、銅マ
トリックス中にクロムが分散した銅−クロム合金の微粉
末を得るようにした。Therefore, a mixture of copper and chromium is melted in a non-oxidizing atmosphere such as a vacuum, and the molten metal is melted at 5 to 8 MPa.
The powder was rapidly solidified by a gas atomizing method using an argon (Ar) gas at a pressure of (megapascal) to obtain a fine powder of a copper-chromium alloy in which chromium was dispersed in a copper matrix.
【0014】上記方法を実施するに際し、溶融前の銅と
クロムとの混合物における銅とクロムとの重量割合を
4:1に設定した。なお、クロムの重量割合がこれより
も多くなると、クロムのマトリックス中に銅が分散した
ものが生成してしまい、目標とする銅−クロム合金粉末
が得られない。In carrying out the above method, the weight ratio of copper and chromium in the mixture of copper and chromium before melting was set to 4: 1. If the weight ratio of chromium is larger than this, copper dispersed in a chromium matrix is generated, and a target copper-chromium alloy powder cannot be obtained.
【0015】又、銅とクロムとの混合物を溶融する際に
は、溶湯の酸素含有量を低減するために酸素含有量の低
い銅及びクロムを選定する一方、上述した非酸化性雰囲
気にて溶融するか或いは脱酸処理を施し、酸素含有量を
1000ppm以下に抑えた。この場合、原料等に混入し
ている不可避の不純物、例えば鉄(Fe)やニッケル(Ni)等
の存在は許容した。When the mixture of copper and chromium is melted, copper and chromium having a low oxygen content are selected in order to reduce the oxygen content of the molten metal. Alternatively, deoxidation treatment was performed to reduce the oxygen content to 1000 ppm or less. In this case, the presence of unavoidable impurities, such as iron (Fe) and nickel (Ni), mixed in the raw materials and the like was allowed.
【0016】これにより得られた銅−クロム合金微粉末
の粒径は150μm以下であり、その成分割合も元の銅
とクロムとの混合物の割合と同等であった。又、この銅
−クロム合金微粉末を電子顕微鏡にて観察した結果、5
μm以下のクロム粒子が銅マトリックス中に均一に分散
していることを確認できた。The particle size of the copper-chromium alloy fine powder obtained as described above was 150 μm or less, and its component ratio was equivalent to that of the original mixture of copper and chromium. Also, as a result of observing this copper-chromium alloy fine powder with an electron microscope, 5
It was confirmed that the chromium particles having a size of μm or less were uniformly dispersed in the copper matrix.
【0017】次に、この銅−クロム合金微粉末を内径が
70mmのアルミナセラミックス容器内に300g充填し
た後、5×10-5Torrの真空中にて1080℃前後に加
熱した結果、焼結が充分可能であることが判明した。Next, 300 g of the copper-chromium alloy fine powder was charged into an alumina ceramic container having an inner diameter of 70 mm, and heated to about 1080 ° C. in a vacuum of 5 × 10 −5 Torr. It turned out to be possible enough.
【0018】本発明による電極材料の製造方法は、かか
る知見に鑑みてなされたものであり、アトマイズ法によ
り得られた銅とクロムとの合金微粉末と、前記銅よりも
低融点の金属の粉末とを混合し、これらを非酸化性雰囲
気にて加熱して焼結させるようにしたことを特徴とす
る。The method for producing an electrode material according to the present invention has been made in view of the above-mentioned knowledge, and it has been found that an alloy fine powder of copper and chromium obtained by an atomizing method and a powder of a metal having a lower melting point than the copper are used. And sintering them by heating them in a non-oxidizing atmosphere.
【0019】ここで、銅よりも低融点で電極材料の接触
抵抗値を下げて耐溶着性能を向上させ得る金属(以下、
これを低融点金属と呼称する)としては、ビスマス(B
i),アンチモン(Sb),テルル(Te),セレン(Se),鉛(Pb)のう
ちの1種類以上を採用することが可能であり、アトマイ
ズ法により得られる銅とクロムとの合金微粉末に対する
これらの割合は、0.02〜3.0重量%の範囲に収める
ことが望ましい。Here, a metal having a lower melting point than copper and capable of lowering the contact resistance value of the electrode material and improving the welding resistance (hereinafter, referred to as a metal).
Bismuth (B
i), antimony (Sb), tellurium (Te), selenium (Se), and lead (Pb) can be used. It is desirable that these ratios be within the range of 0.02 to 3.0% by weight.
【0020】なお、これら低融点金属の割合が0.02
%未満では、これら低融点金属を添加したことによる接
触抵抗値の低下や耐溶着性能の向上を期待することがほ
とんどできない。又、3.0重量%を越えた量の低融点
金属を添加すると、電流しゃ断性能が急激に悪化するこ
ととなる。The ratio of these low melting point metals is 0.02.
%, It is almost impossible to expect a decrease in contact resistance and an improvement in welding resistance due to the addition of these low-melting metals. Also, when the amount of the low-melting-point metal exceeds 3.0% by weight, the current breaking performance is rapidly deteriorated.
【0021】[0021]
【作用】アトマイズ法によって得られる銅−クロム合金
微粉末は、銅マトリックス中に微小な粒径のクロムが均
一に分散している。これを低融点金属の粉末と混合して
加熱することにより、これら金属結晶粒子が粗大化する
ことなく緻密に焼結して一体化される。In the copper-chromium alloy fine powder obtained by the atomization method, chromium having a small particle diameter is uniformly dispersed in a copper matrix. By mixing this with a low melting point metal powder and heating, these metal crystal particles are densely sintered and integrated without becoming coarse.
【0022】[0022]
【実施例】真空インタラプタは、その概略構造の一例を
表す図1に示すようなものであり、相互に一直線状をな
す一対のリード棒11,12の対向端面には、それぞれ
電極13,14が図示しないろう材を介して一体的に接
合されている。これら電極13,14を囲む筒状のシー
ルド15の外周中央部は、このシールド15を囲む一対
の絶縁筒16,17の間に挟まれた状態で保持されてい
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS A vacuum interrupter is shown in FIG. 1 which shows an example of a schematic structure of the vacuum interrupter. Electrodes 13 and 14 are respectively provided on opposing end surfaces of a pair of lead rods 11 and 12 which are linear with each other. They are integrally joined via a brazing material (not shown). A central portion of the outer periphery of a cylindrical shield 15 surrounding the electrodes 13 and 14 is held in a state sandwiched between a pair of insulating cylinders 16 and 17 surrounding the shield 15.
【0023】そして、一方の前記リード棒11は、一方
の絶縁筒16の一端に接合された金属端板18を気密に
貫通した状態で、この金属端板18に一体的に固定され
ている。又、図示しない駆動装置に連結される他方のリ
ード棒12は、他方の絶縁筒17の他端に気密に接合さ
れた他方の金属端板19にベローズ20を介して連結さ
れ、駆動装置の作動に伴って電極13,14の対向方向
に往復動可能に可動側の電極14が固定側の電極13に
対して開閉動作するようになっている。The one lead rod 11 is integrally fixed to the metal end plate 18 in a state where it penetrates the metal end plate 18 joined to one end of the one insulating cylinder 16 in an airtight manner. Further, the other lead rod 12 connected to a driving device (not shown) is connected via a bellows 20 to the other metal end plate 19 air-tightly connected to the other end of the other insulating cylinder 17 to operate the driving device. Accordingly, the movable-side electrode 14 opens and closes with respect to the fixed-side electrode 13 so as to reciprocate in the direction in which the electrodes 13 and 14 face each other.
【0024】本実施例における前記電極13,14は、
アトマイズ法による原料に低融点金属を混合したものを
焼結してなる銅−クロム合金をベースとするもので主要
部が構成される。The electrodes 13 and 14 in this embodiment are:
The main part is made of a copper-chromium alloy obtained by sintering a mixture of a low melting point metal and a raw material by an atomizing method.
【0025】本発明によるこの電極13,14の製造方
法の一例を以下に記すと、銅に対して20重量%の割合
のクロムを有するアトマイズ粉末(粒径が150μm以
下でクロムの平均粒径が3.5μm)に対して0.5重量
%の割合で粒径が−275メッシュのビスマス粉末を均
一に混合した。そして、この混合粉末を直径が50mmの
金型に充填し、3.5トン/cm2の圧力にて円盤状に加圧
成形した後、これを5×10-5Torrの真空炉中において
1080℃で30分間加熱し、焼結させた。An example of the method for producing the electrodes 13 and 14 according to the present invention is as follows. Bismuth powder having a particle size of -275 mesh was uniformly mixed at a ratio of 0.5% by weight to 3.5 µm). Then, the mixed powder was filled in a mold having a diameter of 50 mm, and pressed into a disk at a pressure of 3.5 ton / cm 2 , and then pressed in a vacuum furnace of 5 × 10 −5 Torr for 1080. C. for 30 minutes to sinter.
【0026】このようにして得られた焼結体は、焼結の
際に起こる低融点金属であるビスマスの蒸発により、こ
のビスマスが0.19重量%含まれたものとなり、これ
を試料Aとして直径が40mmのスパイラル状電極に機械
加工し、図1に示す真空インタラプタに組み込んでその
しゃ断電流値や接触抵抗値及び溶着力をそれぞれ測定し
た結果、表1の試料Aに示すような結果が得られた。The thus obtained sintered body contains 0.19% by weight of bismuth, which is a low-melting-point metal, which evaporates during sintering. A spiral electrode having a diameter of 40 mm was machined and assembled into the vacuum interrupter shown in FIG. 1 to measure the breaking current value, contact resistance value, and welding force. As a result, the results shown in Sample A in Table 1 were obtained. Was done.
【0027】又、先の試料Aにて用いたものと同一の銅
とクロムとからなるアトマイズ粉末に対して0.5重量
%の割合で粒径が−275メッシュの鉛粉末を均一に混
合し、この混合粉末を直径が50mmの金型に充填し、
3.5トン/cm2の圧力にて円盤状に加圧成形した後、こ
れを5×10-5Torrの真空炉中において1080℃で3
0分間加熱し、焼結させた。A lead powder having a particle size of -275 mesh and a particle size of -275 mesh were uniformly mixed with the same atomized powder of copper and chromium as used in the sample A. , This mixed powder is filled in a mold having a diameter of 50 mm,
After being press-formed into a disk at a pressure of 3.5 ton / cm 2 , this was pressed at 1080 ° C. in a vacuum furnace of 5 × 10 -5 Torr for 3 hours.
Heated for 0 minutes and sintered.
【0028】このようにして得られた焼結体は、焼結の
際に起こる鉛の蒸発により、この鉛が0.45重量%含
まれたものとなり、これを試料Bとして直径が40mmの
スパイラル状電極に機械加工し、図1に示す真空インタ
ラプタに組み込んでそのしゃ断電流値や接触抵抗値及び
溶着力をそれぞれ測定した結果、表1の試料Bに示すよ
うな結果が得られた。The sintered body thus obtained contains 0.45% by weight of lead due to the evaporation of lead occurring during sintering, and this is used as a sample B as a spiral having a diameter of 40 mm. The electrode was machined and assembled into the vacuum interrupter shown in FIG. 1 to measure the breaking current value, the contact resistance value, and the welding force. As a result, the results shown in Sample B of Table 1 were obtained.
【0029】同様に、先の試料A及び試料Bにて用いた
ものと同一の銅とクロムとからなるアトマイズ粉末に対
して0.5重量%の割合で粒径が−275メッシュのテ
ルル粉末を均一に混合し、この混合粉末を直径が50mm
の金型に充填し、3.5トン/cm2の圧力にて円盤状に加
圧成形した後、これを5×10-5Torrの真空炉中におい
て1080℃で30分間加熱し、焼結させた。Similarly, tellurium powder having a particle size of -275 mesh at a ratio of 0.5% by weight with respect to the same atomized powder composed of copper and chromium as used in Samples A and B was used. Mix evenly and mix this powder with 50mm diameter
And press-molded into a disk at a pressure of 3.5 ton / cm 2 , and then heated at 1080 ° C. for 30 minutes in a 5 × 10 −5 Torr vacuum furnace, and sintered. I let it.
【0030】このようにして得られた焼結体は、焼結の
際に起こる鉛の蒸発により、この鉛が0.45重量%含
まれたものとなり、これを試料Cとして直径が40mmの
スパイラル状電極に機械加工し、図1に示す真空インタ
ラプタに組み込んでそのしゃ断電流値や接触抵抗値及び
溶着力をそれぞれ測定した結果、表1の試料Cに示すよ
うな結果が得られた。The sintered body thus obtained contained 0.45% by weight of lead due to the evaporation of lead generated during sintering, and this was used as a sample C to form a spiral having a diameter of 40 mm. The electrode was machined and assembled into the vacuum interrupter shown in FIG. 1 to measure the breaking current value, the contact resistance value, and the welding force. As a result, the results shown in Sample C of Table 1 were obtained.
【0031】一方、比較例として粒径が100μmの銅
粉末と、粒径が80μmのクロム粉末と、粒径が−27
5メッシュのビスマス粉末とを重量比で79.75:19.75:
0.5の割合で均一に混合し、この混合粉末を直径が50m
mの金型に充填して3.5トン/cm2の圧力にて円盤状に
加圧成形した後、これを5×10-5Torrの真空炉中にお
いて1080℃で30分間加熱し、焼結させた。On the other hand, as comparative examples, copper powder having a particle size of 100 μm, chromium powder having a particle size of 80 μm, and
79.75: 19.75 by weight ratio with 5 mesh bismuth powder
Mix uniformly at a ratio of 0.5.
m, and press-molded into a disk at a pressure of 3.5 tons / cm 2 , and then heated at 1080 ° C. for 30 minutes in a 5 × 10 −5 Torr vacuum furnace, and fired. Tied.
【0032】このようにして得られた焼結体を比較例と
して直径が40mmのスパイラル状電極に機械加工し、図
1に示す真空インタラプタに組み込んでそのしゃ断電流
値や接触抵抗値及び溶着力をそれぞれ測定した結果、表
1の比較例に示すような結果が得られた。The sintered body thus obtained was machined into a spiral electrode having a diameter of 40 mm as a comparative example, and was incorporated into a vacuum interrupter shown in FIG. 1 to measure the breaking current value, contact resistance value and welding force. As a result of each measurement, the results as shown in Comparative Examples in Table 1 were obtained.
【0033】[0033]
【表1】 [Table 1]
【0034】なお、これらの試験におけるしゃ断電流値
は7.2kVの交流電圧でアークの発生時間を0.4サイ
クルに設定した場合の値であり、接触抵抗値は電極1
3,14を500N(ニュートン)の力で圧接させた場
合の値であり、溶着力は電極13,14を500Nの力
で圧接させた状態でピーク電流が35kAの交流を2サ
イクル通電した後の静的な値である。The breaking current value in these tests is a value obtained when an arc generation time is set to 0.4 cycle with an AC voltage of 7.2 kV, and
The welding force is a value obtained when two cycles of an alternating current having a peak current of 35 kA were performed while the electrodes 13 and 14 were pressed against each other with a force of 500 N. It is a static value.
【0035】表1から明らかなように、本発明による電
極材料では銅のマトリックス中に低融点金属及び微小な
粒径のクロムが均一に分散された状態となっていること
により、発生したアークの拡散がスムーズに行われ、電
流しゃ断性能が従来の製造方法によるものよりも向上し
ていることが判った。又、低融点金属を添加したことに
より、接触抵抗及び耐溶着力を低下させることができ
た。As is clear from Table 1, in the electrode material according to the present invention, the low melting point metal and the chromium having a fine particle diameter are uniformly dispersed in the copper matrix. It was found that the diffusion was performed smoothly and the current interruption performance was improved as compared with the conventional manufacturing method. Further, by adding the low melting point metal, the contact resistance and the welding resistance could be reduced.
【0036】上述した実施例では、低融点金属としてビ
スマス及び鉛及びテルルを単独で採用したが、この他に
アンチモンやセレンを単独で採用したり、これらを2種
類以上混合しても上述した場合と同様な性能の電極材料
を得ることができる。In the above-described embodiment, bismuth, lead and tellurium are used alone as the low-melting-point metal. In addition, antimony or selenium may be used alone, or when two or more of these are mixed, the above-mentioned case may be used. It is possible to obtain an electrode material having the same performance as described above.
【0037】[0037]
【発明の効果】本発明の電極材料の製造方法によると、
アトマイズ法により得られた銅とクロムとの合金微粉末
と、低融点金属の粉末とを混合し、これらを非酸化性雰
囲気にて加熱して焼結させるようにしたので、銅マトリ
ックス中に低融点金属と微細な粒径のクロムとが均一に
分散した銅−クロム合金系の電極材料を得ることがで
き、従来の焼結冶金法等によるものと比べて、しゃ断電
流値が大きくて接触抵抗値が低く、しかも耐溶着力等の
優れた電極材料を提供することができる。According to the method for producing an electrode material of the present invention,
The alloy fine powder of copper and chromium obtained by the atomization method and the powder of the low melting point metal were mixed and heated and sintered in a non-oxidizing atmosphere. A copper-chromium alloy electrode material in which the melting point metal and chromium with a fine particle size are uniformly dispersed can be obtained. Compared with the conventional sinter metallurgy method, the breaking current value is larger and the contact resistance is higher. An electrode material having a low value and excellent in welding resistance and the like can be provided.
【図1】真空インタラプタの一例を表す断面図である。FIG. 1 is a cross-sectional view illustrating an example of a vacuum interrupter.
11,12はリード棒、13,14は電極である。 11 and 12 are lead rods, and 13 and 14 are electrodes.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 伸尚 東京都品川区大崎二丁目1番17号 株式 会社 明電舍内 (56)参考文献 特開 平3−47931(JP,A) 特開 昭57−67141(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01H 11/04 H01H 33/66 C22C 9/00 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Nobuhisa Suzuki 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Inside Meidensha Co., Ltd. (56) References JP-A-3-47931 (JP, A) JP 57-67141 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01H 11/04 H01H 33/66 C22C 9/00
Claims (2)
との合金微粉末と、前記銅よりも低融点の金属の粉末
を、前記銅とクロムの合金微粉末に対し0.02〜3.
0重量%の割合で混合し、これらを非酸化性雰囲気にて
加熱して焼結させるようにしたことを特徴とする電極材
料の製造方法。An alloy fine powder of copper and chromium obtained by an atomizing method, and a powder of a metal having a lower melting point than said copper.
From 0.02 to 3.
A method for producing an electrode material , comprising mixing at a ratio of 0% by weight and heating them in a non-oxidizing atmosphere for sintering.
テルル,セレン,鉛のうちの1種類以上であることを特
徴とする請求項1に記載した電極材料の製造方法。2. The low melting point metal is bismuth, antimony,
2. The method according to claim 1, wherein the material is at least one of tellurium, selenium, and lead.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03279994A JP3106609B2 (en) | 1991-10-25 | 1991-10-25 | Manufacturing method of electrode material |
EP19920118218 EP0538896A3 (en) | 1991-10-25 | 1992-10-23 | Process for forming contact material |
US07/965,203 US5352404A (en) | 1991-10-25 | 1992-10-23 | Process for forming contact material including the step of preparing chromium with an oxygen content substantially reduced to less than 0.1 wt. % |
KR1019920019655A KR950008375B1 (en) | 1991-10-25 | 1992-10-24 | Process for forming contact material |
TW081108517A TW240184B (en) | 1991-10-25 | 1992-10-24 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03279994A JP3106609B2 (en) | 1991-10-25 | 1991-10-25 | Manufacturing method of electrode material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05120948A JPH05120948A (en) | 1993-05-18 |
JP3106609B2 true JP3106609B2 (en) | 2000-11-06 |
Family
ID=17618830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03279994A Expired - Fee Related JP3106609B2 (en) | 1991-10-25 | 1991-10-25 | Manufacturing method of electrode material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3106609B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6437275B1 (en) | 1998-11-10 | 2002-08-20 | Hitachi, Ltd. | Vacuum circuit-breaker, vacuum bulb for use therein, and electrodes thereof |
-
1991
- 1991-10-25 JP JP03279994A patent/JP3106609B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05120948A (en) | 1993-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2705998B2 (en) | Manufacturing method of electrical contact material | |
US4743718A (en) | Electrical contacts for vacuum interrupter devices | |
JP5614708B2 (en) | Manufacturing method of electrode material for vacuum circuit breaker and electrode material for vacuum circuit breaker | |
JPH0925526A (en) | Production of oxide grain dispersed metal matrix composite | |
US5352404A (en) | Process for forming contact material including the step of preparing chromium with an oxygen content substantially reduced to less than 0.1 wt. % | |
JP3168630B2 (en) | Manufacturing method of electrode material | |
JP3067318B2 (en) | Manufacturing method of electrode material | |
JP3106609B2 (en) | Manufacturing method of electrode material | |
JP3067317B2 (en) | Manufacturing method of electrode material | |
US5246512A (en) | Contact for a vacuum interrupter | |
JP3106610B2 (en) | Manufacturing method of electrode material | |
JPH05217473A (en) | Manufacture of electrode material | |
JP3106605B2 (en) | Manufacturing method of electrode material | |
JP3168635B2 (en) | Manufacturing method of electrode material | |
JP3106598B2 (en) | Manufacturing method of electrode material | |
JP2653461B2 (en) | Manufacturing method of contact material for vacuum valve | |
JPH05198230A (en) | Manufacture of electrode material | |
JP2853308B2 (en) | Manufacturing method of electrode material | |
JPS6141091B2 (en) | ||
JPH0813065A (en) | Sintered material for electrical contact and production thereof | |
KR0171607B1 (en) | Vacuum circuit breaker and contact | |
JPH08143989A (en) | Production of electrical contact material | |
JPH0472896B2 (en) | ||
JPH04141924A (en) | Manufacture of electrode material | |
JPH09190730A (en) | Manufacture of contact member for vacuum circuit breaker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000808 |
|
LAPS | Cancellation because of no payment of annual fees |