JP3175189B2 - Low pressure CVD equipment - Google Patents
Low pressure CVD equipmentInfo
- Publication number
- JP3175189B2 JP3175189B2 JP10763591A JP10763591A JP3175189B2 JP 3175189 B2 JP3175189 B2 JP 3175189B2 JP 10763591 A JP10763591 A JP 10763591A JP 10763591 A JP10763591 A JP 10763591A JP 3175189 B2 JP3175189 B2 JP 3175189B2
- Authority
- JP
- Japan
- Prior art keywords
- cvd
- source gas
- substrate
- pressure cvd
- passages
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004518 low pressure chemical vapour deposition Methods 0.000 title description 15
- 239000000758 substrate Substances 0.000 claims description 17
- 239000010410 layer Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 239000010937 tungsten Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Classifications
-
- H01L21/203—
Landscapes
- Electrodes Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、減圧CVD装置、特に
ステップカバレージが向上するブランケットタングステ
ン(W)用の減圧CVD装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-pressure CVD apparatus, and more particularly to a low-pressure CVD apparatus for blanket tungsten (W) having improved step coverage.
【0002】[0002]
【従来の技術】次世代以降の超々LSIにおいて、0.
4μm□以下の微細コンタクトホールやビアホールを埋
め込む技術としてカバレージが良く、しかも従来のポリ
シリコン(poly−Si)を埋め込むポリプラグ等と
比較してコンタクト抵抗が低い非選択的ないわゆるブラ
ンケットタングステン(W)CVD法が注目を集めてい
る。2. Description of the Related Art In the next-generation super-ultra LSI, 0.
Non-selective so-called blanket tungsten (W) CVD which has good coverage as a technique for embedding fine contact holes and via holes of 4 μm □ or less and has lower contact resistance than conventional poly plugs embedding polysilicon (poly-Si). Law attracts attention.
【0003】従来、このブランケットWを形成するため
の減圧CVD(LP−CVD)装置は、図7に概略的に
示すように、原料ガス4を導入する原料ガス導入口5を
有するCVD反応室6を設け、支持台としてのサセプタ
1上に載置された被処理基板のウエハー2表面にCVD
原料ガス分配手段のシャワーヘッド3を介して原料ガス
4を供給するように構成されている。Conventionally, a low pressure CVD (LP-CVD) apparatus for forming this blanket W has a CVD reaction chamber 6 having a source gas inlet 5 for introducing a source gas 4 as schematically shown in FIG. Is provided on the surface of the wafer 2 of the substrate to be processed mounted on the susceptor 1 as a support base.
It is configured to supply the source gas 4 via the shower head 3 of the source gas distribution means.
【0004】上記枚葉式(一枚一枚処理する)の従来装
置のシャワーヘッド3は約1〜2mm程度の厚さのセラ
ミック板に直径約2.0mmの穴をランダムに設けたも
のであり、原料ガス4を均一にウエハー2表面に供給す
るように配設されている。[0004] The shower head 3 of the conventional single-wafer type (one-by-one processing) apparatus has a ceramic plate having a thickness of about 1 to 2 mm and holes of about 2.0 mm in diameter provided at random. The source gas 4 is disposed so as to uniformly supply the source gas 4 to the surface of the wafer 2.
【0005】[0005]
【発明が解決しようとする課題】上記図7に示した従来
の減圧CVD装置では、原料ガス4のガス分子の方向性
の制御は行なわれていないので、図8に示すように、ほ
とんど等方的にガス分子がコンタクトホール(あるいは
トレンチ)13内に入り込む。このW−CVD工程時、
図8に示したようにコンタクトホール13内にボイドを
有するシーム部14が発生する。この理由は、CVD法
によるブランケットタングステン層12は、バリアメタ
ル層11上の縦(垂直)方向でも横(水平)方向でも、
ほぼ同一速度(A≒B)で成長するので、埋め込みが進
むにつれてアスペクト比が大きくなり、Wのブランケッ
トCVD形成ではボイドを発生することなく、コンタク
トホール13内を完全に埋め込むことは不可能であっ
た。従って、例えばWプラグを形成するために、ブラン
ケットWの上部をエッチバックする際、シーム部が上方
から拡大し、後に上層配線(図示せず)を形成すると、
図9に示すようにそのシーム部がボイド14aとなって
残存してしまい、配線の信頼性を損ねる問題があった。In the conventional low-pressure CVD apparatus shown in FIG. 7, since the directionality of the gas molecules of the raw material gas 4 is not controlled, as shown in FIG. As a result, gas molecules enter the contact holes (or trenches) 13. During this W-CVD process,
As shown in FIG. 8, a seam portion 14 having a void is generated in the contact hole 13. The reason for this is that the blanket tungsten layer 12 formed by the CVD method has a vertical (vertical) direction and a horizontal (horizontal) direction on the barrier metal layer 11.
Since the growth is performed at substantially the same rate (A ≒ B), the aspect ratio increases as the filling proceeds, and it is impossible to completely fill the contact hole 13 without generating voids by blanket CVD of W. Was. Therefore, when the upper portion of the blanket W is etched back to form, for example, a W plug, the seam portion expands from above and an upper layer wiring (not shown) is formed later.
As shown in FIG. 9, the seam portion remains as a void 14a, and there is a problem that the reliability of the wiring is impaired.
【0006】本発明は、ステップカバレージ(段差被覆
性)が向上し、コンタクトホール等の埋め込みでシーム
部(ボイド)のない埋め込み層を形成し得る減圧CVD
装置を提供することを目的とする。SUMMARY OF THE INVENTION The present invention provides a low-pressure CVD method capable of forming a buried layer having no seam (void) by burying a contact hole or the like by improving step coverage (step coverage).
It is intended to provide a device.
【0007】[0007]
【課題を解決するための手段】上記課題は本発明によれ
ば、CVD原料ガス導入口を有するCVD反応室と、被
処理基板を載置する支持台と、前記CVD原料ガス導入
口と前記被処理基板間に配置される該原料ガスを均一に
分配するためのガス分配手段を具備する減圧CVD装置
において、前記ガス分配手段に、前記被処理基板面に対
しほぼ垂直方向に沿った複数の通路を設け、この複数の
通路の長さが各々前記CVD原料ガスの平均自由行程以
上であり、かつ複数の通路の下面と前記被処理基板の上
面との間の距離より大きいことを特徴とする減圧CVD
装置によって解決される。According to the present invention, there is provided a CVD reaction chamber having a CVD material gas inlet, a support for mounting a substrate to be processed, a CVD source gas inlet and the substrate. In a reduced pressure CVD apparatus provided with a gas distribution means for uniformly distributing the source gas disposed between processing substrates, a plurality of passages extending in a direction substantially perpendicular to the surface of the substrate to be processed are provided to the gas distribution means. And this multiple
The length of each passage is equal to or less than the mean free path of the CVD source gas.
And the lower surface of the plurality of passages and the upper surface of the substrate to be processed.
Reduced pressure CVD characterized by being greater than the distance between the surfaces
Solved by the device.
【0008】[0008]
【0009】[0009]
【作用】本発明によれば、CVD原料ガス分配手段3
に、シリコン基板等の被処理基板2面に対し、ほぼ垂直
方向に沿った複数の通路10aが設けられているため、
CVD原料ガス分子流が基板面に垂直な速度分布を増大
でき、コンタクトホール等での被着においてステップカ
バレージ(段差被覆性)を向上させることができる。According to the present invention, the CVD source gas distribution means 3
Since a plurality of passages 10a are provided along a direction substantially perpendicular to the surface of the substrate 2 to be processed such as a silicon substrate,
The velocity distribution of the CVD source gas molecular flow perpendicular to the substrate surface can be increased, and the step coverage (step coverage) can be improved in the deposition at a contact hole or the like.
【0010】[0010]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、本発明に係るCVD装置の一実施例を示
す概略図である。図1に示すように、本発明の減圧CV
D装置は、図7に示した従来の枚葉式減圧CVD装置に
おいて、原料ガス4のガス分子の速度分布が垂直方向に
偏らせるようにガス分配手段であるシャワーヘッドの代
わりにコリメータを付けたコリメータ付シャワーヘッド
10が配設されている。このコリメータ付シャワーヘッ
ド10は、例えばアルミニウム(Al)から作られ、図
2(a)、(b)にその一部断面側面図、平面図として
示されているように、多数の細孔(通路)16を有する
円盤状をなしている。このシャワーヘッド10の長さ
(高さ)L1 は約2cmとした。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing one embodiment of a CVD apparatus according to the present invention. As shown in FIG. 1, the reduced pressure CV of the present invention
The D apparatus is different from the conventional single-wafer type reduced-pressure CVD apparatus shown in FIG. A shower head 10 with a collimator is provided. The shower head 10 with a collimator is made of, for example, aluminum (Al), and has a large number of pores (passages) as shown in the partial cross-sectional side view and the plan view in FIGS. 2 (a) and 2 (b). ) 16 has a disk shape. The length (height) L1 of the shower head 10 was about 2 cm.
【0011】この長さL1 は数1で求められる平均自由
行程λ(cm)より大きな値をとった。The length L1 has a value larger than the mean free path λ (cm) obtained by the equation (1).
【0012】[0012]
【数1】 (Equation 1)
【0013】本実施例ではWをCVD成長させるための
原料ガスをWF6とした場合、且つそのガス分子の大き
さを約4オングストロームとし、温度を470℃、圧力
を1mTorr(低圧)とした場合、上記数1でλは約
1.1cmとなる。層流形成部の長さL1 は上記λの長
さより大きくし、且つコリメータ付シャワーヘッド10
下端からウエハー2表面までの距離L2 (図1)よりも
大きくする方がガス流を安定して層流(平行流)を維持
するために好ましい。In this embodiment, when the source gas for growing W by CVD is WF 6 , the size of the gas molecules is about 4 Å, the temperature is 470 ° C., and the pressure is 1 mTorr (low pressure). Λ is about 1.1 cm in the above equation (1). The length L1 of the laminar flow forming portion is larger than the length of λ, and
It is preferable that the distance be longer than the distance L2 (FIG. 1) from the lower end to the surface of the wafer 2 in order to stabilize the gas flow and maintain the laminar flow (parallel flow).
【0014】図1に示した本発明の減圧CVD装置を用
いて、ブランケットWをコンタクトホール内を含む全面
に成長させた。その結果、図3に示すように、シーム部
17は短く、シーム部17の位置が基板から離れるた
め、コンタクトホール13内にはシーム部17を有さな
いタングステン層12を得ることができた。この減圧C
VD装置はコリメータ付シャワーヘッド10を設けてい
るため、ウエハー2上のガスの速度分布においてウエハ
ーに垂直な方向の速度成分が増大し、デポレート(堆積
速度)が側壁より底面の方が速いため、図4に示すよう
にW層12a,12b,12cで、A>Bなる厚さの関
係を示す。また、底部での厚さA′もAにほぼ近似(A
≒A′)してくる。なお、図3および図4に示した符号
で図8に示した符号と同一のものは、図8の要素と同一
要素である。図5および図6は、それぞれ入射分子が方
向性を有する場合、等方的な場合のLP−CVD膜の吸
着脱離によるシミュレーション結果(LP−CVDの場
合)を示す図である。スティッキング係数(被着率)は
いずれも0.1とした。Using the low pressure CVD apparatus of the present invention shown in FIG. 1, a blanket W was grown on the entire surface including the inside of the contact hole. As a result, as shown in FIG. 3, since the seam portion 17 was short and the position of the seam portion 17 was separated from the substrate, the tungsten layer 12 having no seam portion 17 in the contact hole 13 could be obtained. This decompression C
Since the VD apparatus is provided with the shower head 10 with the collimator, the velocity component in the direction perpendicular to the wafer in the velocity distribution of the gas on the wafer 2 increases, and the deposition (deposition rate) is faster on the bottom surface than on the side wall. As shown in FIG. 4, a relationship of A> B in the W layers 12a, 12b, and 12c is shown. Also, the thickness A 'at the bottom is almost similar to A (A
≒ A '). The same reference numerals shown in FIGS. 3 and 4 as those shown in FIG. 8 are the same as those in FIG. 5 and 6 are diagrams showing simulation results (in the case of LP-CVD) by adsorption and desorption of the LP-CVD film when the incident molecule has directionality and in the isotropic case, respectively. The sticking coefficient (adherence rate) was set to 0.1 in all cases.
【0015】このシミュレーション法は、1990年、
DRY PROCESS シンポジウムで発表されたス
タンフォード大学J.P.McVittieらによるS
PEEDIE:A PROFILE SIMURATO
R FOR ETCHINGAND DEPOSITI
ONに開示されたメカニズムを用いて行なったものであ
る。図5は本発明、図6は従来例である。This simulation method was used in 1990.
Dr. Stanford University presented at the DRY PROCESS Symposium. P. S by McVittie et al.
PEDIE: A PROFILE SIMURATO
R FOR ETCHINGAND DEPOSITI
This is performed using the mechanism disclosed in ON. FIG. 5 shows the present invention, and FIG. 6 shows a conventional example.
【0016】図5、図6に示されたLP−CVD膜20
からも明らかなように、本発明ではステップカバレージ
が向上し、コンタクトホール13上部のCVD膜厚とコ
ンタクトホール下部の膜厚の差が小さくなる。[0016] Figure 5, L P-CVD film 20 shown in FIG. 6
As is clear from the above, according to the present invention, the step coverage is improved, and the difference between the CVD film thickness above the contact hole 13 and the film thickness below the contact hole is reduced.
【0017】なお、本減圧CVD装置は、O3/TEO
S系のCVD(O3ガスとTEOSガスの混合によりS
iO2を得る方法)等の他のLP−CVDにも有効に用
いられる。The present low pressure CVD apparatus uses O 3 / TEO
S-based CVD (S / O by mixing O 3 gas and TEOS gas
also advantageously employed in other LP-CVD method) or the like to obtain the iO 2.
【0018】[0018]
【発明の効果】以上説明したように、本発明によれば、
コンタクトホール等の開口部へのCVD膜成長でステッ
プカバレージが向上し、例えばブランケットタングステ
ン等をコンタクトホールの埋め込みに用いた場合に、コ
ンタクトホール側壁からのデポレート(堆積率)より底
面からのデポレートの方が大きいため、コンタクトホー
ル内でのシーム部の発生を防止することができる。ま
た、複数の通路の長さが各々CVD原料ガスの平均自由
行程以上であり、かつ複数の通路の下面と被処理基板の
上面との間の距離より大きくしたので、CVD原料ガス
分子流を安定して層流(平行流)を維持して基板面に対
して垂直に流し、CVD原料ガス分子流の基板面に垂直
な速度分布を増大でき、堆積率を増大させることがで
き、コンタクトホール等での被着においてステップカバ
レージ(段差被覆性)を向上させることができる。 As described above, according to the present invention,
The step coverage is improved by growing a CVD film in the opening of the contact hole or the like. Therefore, it is possible to prevent the occurrence of a seam portion in the contact hole. Ma
In addition, the length of each of the plurality of passages is the mean freedom of the CVD source gas.
Process and the lower surface of the plurality of passages and the substrate to be processed
Because the distance from the upper surface was larger, the CVD source gas
Stable molecular flow and maintaining laminar flow (parallel flow)
Flow perpendicular to the substrate surface of the molecular gas flow of the CVD source gas.
Speed distribution can be increased, and the deposition rate can be increased.
Cover in contact holes, etc.
The laser (step coverage) can be improved.
【図1】本発明に係る減圧CVD装置の一実施例を示す
概略図である。FIG. 1 is a schematic view showing one embodiment of a low pressure CVD apparatus according to the present invention.
【図2】本発明に係るコリメータ付シャワーヘッドを示
す概略図である。FIG. 2 is a schematic view showing a shower head with a collimator according to the present invention.
【図3】本発明に係る装置を用いて、ブランケットタン
グステン層を形成した断面図である。FIG. 3 is a cross-sectional view showing a blanket tungsten layer formed using the apparatus according to the present invention.
【図4】本発明に係る装置を用いてW層の形成過程を示
した図である。FIG. 4 is a diagram showing a process of forming a W layer using the device according to the present invention.
【図5】入射分子が方向性を持つ場合(本発明)の吸着
脱離モデルによるシミュレーション結果を示す図であ
る。FIG. 5 is a diagram showing a simulation result by an adsorption-desorption model when an incident molecule has directionality (the present invention).
【図6】入射分子が等方的な場合(従来例)の吸着脱離
モデルによるシミュレーション結果を示す図である。FIG. 6 is a diagram showing a simulation result by an adsorption / desorption model when an incident molecule is isotropic (conventional example).
【図7】従来の減圧CVD装置を示す概略図である。FIG. 7 is a schematic view showing a conventional reduced pressure CVD apparatus.
【図8】従来の減圧CVD装置を用いてブランケットタ
ングステン層を形成した断面図である。FIG. 8 is a cross-sectional view in which a blanket tungsten layer is formed using a conventional low-pressure CVD apparatus.
【図9】図8の状態からエッチバックした状態を示す断
面図である。FIG. 9 is a cross-sectional view showing a state where etch back is performed from the state of FIG. 8;
1 サセプタ 2 ウエハー 3 シャワーヘッド(原料ガス分配手段) 4 原料ガス 5 原料ガス導入口 6 CVD反応室 7 シリコン基板 8 拡散層 9 層間絶縁膜 10 コリメータ付シャワーヘッド 10a 通路 11 バリアメタル 12 タングステン(W)層 13 コンタクトホール 14 ボイドを有するシーム部 16 細孔 17 シーム部 20 LP−CVD膜 Reference Signs List 1 susceptor 2 wafer 3 shower head (source gas distribution means) 4 source gas 5 source gas inlet 6 CVD reaction chamber 7 silicon substrate 8 diffusion layer 9 interlayer insulating film 10 shower head with collimator 10a passage 11 barrier metal 12 tungsten (W) Layer 13 Contact hole 14 Seam portion having void 16 Micropore 17 Seam portion 20 LP-CVD film
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 16/56 H01L 21/00 - 21/98 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C23C 14/00-16/56 H01L 21/00-21/98
Claims (1)
応室と、被処理基板を載置する支持台と、前記CVD原
料ガス導入口と前記被処理基板間に配置される該原料ガ
スを均一に分配するためのガス分配手段を具備する減圧
CVD装置において、 前記ガス分配手段に、前記被処理基板面に対しほぼ垂直
方向に沿った複数の通路を設け、この複数の通路の長さ
が各々前記CVD原料ガスの平均自由行程以上であり、
かつ複数の通路の下面と前記被処理基板の上面との間の
距離より大きいことを特徴とする減圧CVD装置。1. A CVD reaction chamber having a CVD source gas inlet, a support for mounting a substrate to be processed, and a source gas uniformly disposed between the CVD source gas inlet and the substrate. In a reduced pressure CVD apparatus provided with a gas distribution unit for distributing, a plurality of passages are provided in the gas distribution unit along a direction substantially perpendicular to the surface of the substrate to be processed , and the length of the plurality of passages
Are each not less than the mean free path of the CVD source gas,
And between the lower surface of the plurality of passages and the upper surface of the substrate to be processed
A reduced pressure CVD apparatus characterized by being larger than the distance .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10763591A JP3175189B2 (en) | 1991-05-13 | 1991-05-13 | Low pressure CVD equipment |
KR1019920007913A KR100266840B1 (en) | 1991-05-13 | 1992-05-11 | Low press cvd apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10763591A JP3175189B2 (en) | 1991-05-13 | 1991-05-13 | Low pressure CVD equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06220639A JPH06220639A (en) | 1994-08-09 |
JP3175189B2 true JP3175189B2 (en) | 2001-06-11 |
Family
ID=14464191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10763591A Expired - Lifetime JP3175189B2 (en) | 1991-05-13 | 1991-05-13 | Low pressure CVD equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3175189B2 (en) |
KR (1) | KR100266840B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010062209A (en) | 1999-12-10 | 2001-07-07 | 히가시 데쓰로 | Processing apparatus with a chamber having therein a high-etching resistant sprayed film |
US7137353B2 (en) | 2002-09-30 | 2006-11-21 | Tokyo Electron Limited | Method and apparatus for an improved deposition shield in a plasma processing system |
US7204912B2 (en) | 2002-09-30 | 2007-04-17 | Tokyo Electron Limited | Method and apparatus for an improved bellows shield in a plasma processing system |
US6837966B2 (en) | 2002-09-30 | 2005-01-04 | Tokyo Electron Limeted | Method and apparatus for an improved baffle plate in a plasma processing system |
WO2004111297A1 (en) * | 2003-06-10 | 2004-12-23 | Tokyo Electron Limited | Treatment gas supply mechanism, film-forming device, and film-forming method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2602298B2 (en) * | 1988-01-30 | 1997-04-23 | 日本電気株式会社 | Vapor phase growth equipment |
JPH0266174A (en) * | 1988-08-30 | 1990-03-06 | Matsushita Electric Ind Co Ltd | Photo-cvd device |
-
1991
- 1991-05-13 JP JP10763591A patent/JP3175189B2/en not_active Expired - Lifetime
-
1992
- 1992-05-11 KR KR1019920007913A patent/KR100266840B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR920022388A (en) | 1992-12-19 |
JPH06220639A (en) | 1994-08-09 |
KR100266840B1 (en) | 2000-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0591082A2 (en) | System and method for directional low pressure chemical vapor deposition | |
JPH11204645A (en) | Interlayer insulating film of semiconductor device and manufacture thereof | |
JP3175189B2 (en) | Low pressure CVD equipment | |
JPH0969522A (en) | Formation of buried conductive layer | |
JP3408463B2 (en) | Manufacturing method of semiconductor device | |
JP3391933B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH07130682A (en) | Method of manufacturing semiconductor device | |
JPH10335459A (en) | Semiconductor device and its manufacture | |
JPH11176767A (en) | Manufacture of semiconductor device | |
JPS61214449A (en) | Manufacture of semiconductor element | |
JP2867468B2 (en) | Method for manufacturing semiconductor device | |
JP2946555B2 (en) | CVD apparatus and CVD method | |
JP3036499B2 (en) | Method for forming aluminum film for wiring and semiconductor device having aluminum wiring | |
JP2729769B2 (en) | Method for manufacturing semiconductor device | |
JP2911171B2 (en) | Method for forming contact plug of semiconductor device | |
JPH067576B2 (en) | Method of manufacturing semiconductor device having multilayer wiring structure | |
JP2606080B2 (en) | Method for manufacturing semiconductor device | |
JP2663833B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH05182966A (en) | Multilayer-interconnection formation method | |
JPH02151034A (en) | Manufacture of semiconductor device | |
JP2782912B2 (en) | Method for manufacturing semiconductor device | |
JPH0590203A (en) | Manufacture of semiconductor device | |
JP2985218B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2820023B2 (en) | Method for manufacturing semiconductor device | |
JPH05304150A (en) | Fabrication of semiconductor integrated circuit device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080406 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090406 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090406 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100406 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100406 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110406 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120406 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120406 Year of fee payment: 11 |