JP3149716B2 - Solid polymer electrolyte fuel cell - Google Patents
Solid polymer electrolyte fuel cellInfo
- Publication number
- JP3149716B2 JP3149716B2 JP00785995A JP785995A JP3149716B2 JP 3149716 B2 JP3149716 B2 JP 3149716B2 JP 00785995 A JP00785995 A JP 00785995A JP 785995 A JP785995 A JP 785995A JP 3149716 B2 JP3149716 B2 JP 3149716B2
- Authority
- JP
- Japan
- Prior art keywords
- plate
- polymer electrolyte
- solid polymer
- fuel cell
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は固体高分子電解質型燃
料電池の構造に係り、特にスタックの積層および冷却の
構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a solid polymer electrolyte fuel cell, and more particularly to a structure for stacking and cooling a stack.
【0002】[0002]
【従来の技術】固体高分子電解質型燃料電池は固体高分
子電解質膜の二つの主面にそれぞれ電極であるアノード
とカソードを配して形成される。アノードまたはカソー
ドの各電極は電極基材上に電極触媒層を配している。固
体高分子電解質膜(固体高分子膜と略称する)はスルホ
ン酸基を持つポリスチレン系の陽イオン交換膜をカチオ
ン導電性膜として使用したもの、フロロカーボンスルホ
ン酸とポリビニリデンフロライドの混合膜、あるいはフ
ロロカーボンマトリックスにトリフロロエチレンをグラ
フト化したものなどが知られているが最近ではパーフロ
ロカーボンスルホン酸膜を用いて燃料電池の長寿命化を
図ったものが知られるに至った。2. Description of the Related Art A solid polymer electrolyte fuel cell is formed by disposing an anode and a cathode as electrodes on two main surfaces of a solid polymer electrolyte membrane. Each of the anode and cathode electrodes has an electrode catalyst layer on an electrode substrate. Solid polymer electrolyte membranes (abbreviated as solid polymer membranes) use a polystyrene-based cation exchange membrane having sulfonic acid groups as the cation conductive membrane, a mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, or There are known ones obtained by grafting trifluoroethylene onto a fluorocarbon matrix, but recently, those using a perfluorocarbon sulfonic acid membrane to extend the life of a fuel cell have come to be known.
【0003】固体高分子電解質膜は分子中にプロトン
(水素イオン)交換基を有し、飽和に含水させることに
より常温で20Ω・cm以下の比抵抗を示しプロトン導
電性電解質として機能する。飽和含水量は温度によって
可逆的に変化する。電極基材は多孔質体で燃料電池の反
応ガス供給手段または反応ガス排出手段および集電体と
して機能する。アノード(燃料極)またはカソード(空
気極)の電極においては三相界面が形成され電気化学反
応が起こる。[0003] A solid polymer electrolyte membrane has a proton (hydrogen ion) exchange group in the molecule, exhibits a specific resistance of 20 Ω · cm or less at room temperature when saturated with water, and functions as a proton conductive electrolyte. The saturated water content changes reversibly with temperature. The electrode substrate is a porous body and functions as a reactant gas supply unit or a reactant gas discharge unit of the fuel cell and a current collector. At the anode (fuel electrode) or cathode (air electrode), a three-phase interface is formed and an electrochemical reaction occurs.
【0004】アノードでは(1)式の反応が起こる。 H2 =2H+ +2e (1) カソードでは(2)式の反応が起こる。 1/2O2 +2H+ +2e=H2 O (2) つまりアノードにおいては系の外部より供給された水素
がプロトンと電子を生成する。生成したプロトンはイオ
ン交換膜中をカソードに向かって移動し電子は外部回路
を通ってカソードに移動する。一方カソードにおいては
系の外部より供給された酸素とイオン交換膜中をアノー
ドより移動してきたプロトンと外部回路より移動してき
た電子が反応し、水を生成する。At the anode, the reaction of the formula (1) takes place. H 2 = 2H + + 2e (1) At the cathode, the reaction of equation (2) occurs. 1 / 2O 2 + 2H + + 2e = H 2 O (2) That is, at the anode, hydrogen supplied from outside the system generates protons and electrons. The generated protons move toward the cathode in the ion exchange membrane, and the electrons move to the cathode through an external circuit. On the other hand, in the cathode, oxygen supplied from the outside of the system reacts with the protons traveling from the anode through the ion exchange membrane and the electrons traveling from the external circuit to produce water.
【0005】図4は従来の固体高分子電解質型燃料電池
の単セルを示す断面図である。アノード1Bおよびカソ
ード1Cは厚さ100μmの固体高分子電解質膜1Aの
両主面に接して積層され固体高分子膜/電極集合体1を
構成する。電極の厚さは300μmである。電極は前述
のように電極基材上に電極触媒層を配して構成されるが
この電極触媒層は一般に微小な粒子状の白金触媒と水に
対する撥水性を有するフッ素樹脂から構成されており、
三相界面と反応ガスの効率的な拡散を維持するための細
孔が十分形成される。電極基材は前記触媒層を支持す
る。FIG. 4 is a sectional view showing a single cell of a conventional solid polymer electrolyte fuel cell. The anode 1B and the cathode 1C are stacked in contact with both main surfaces of the solid polymer electrolyte membrane 1A having a thickness of 100 μm to form the solid polymer membrane / electrode assembly 1. The thickness of the electrode is 300 μm. The electrode is configured by arranging an electrode catalyst layer on the electrode substrate as described above, but this electrode catalyst layer is generally formed of a fine particulate platinum catalyst and a fluororesin having water repellency to water,
Sufficient pores are formed to maintain the three-phase interface and efficient diffusion of the reaction gas. An electrode substrate supports the catalyst layer.
【0006】電極の配置された固体高分子電解質膜1A
の外側には反応ガスを外部から導いてアノード1Bまた
はカソード1Cに供給する一対の例えばカーボンからな
るセパレータ2A,2Bが設けられる。セパレータ2
A,2Bはその主面に反応ガスを導く燃料ガス室3Aま
たは酸化剤ガス室3Bを備えるガス不透過性板である。
燃料ガス室3Aまたは酸化剤ガス室3Bの寸法は深さ1
mm,幅員1mmである。セパレータ2A,2Bには燃
料ガス供給孔31、酸化剤ガス供給孔32、燃料ガス排
出孔34、酸化剤ガス排出孔35が設けられる。固体高
分子膜/電極集合体1はセパレータ2Aと2Bによりガ
スシール5を介して挟まれ固体高分子膜/電極集合体1
を構成する。ガスシール5は切り込み33を備え、固体
高分子膜/電極集合体1への燃料ガスと酸化剤ガスの選
択的な供給、排出を行う。Solid polymer electrolyte membrane 1A on which electrodes are arranged
A pair of separators 2A and 2B made of, for example, carbon are provided on the outside of the substrate 2 to supply a reaction gas from the outside to the anode 1B or the cathode 1C. Separator 2
Reference numerals A and 2B denote gas impermeable plates provided with a fuel gas chamber 3A or an oxidizing gas chamber 3B for guiding a reaction gas to the main surface.
The dimension of the fuel gas chamber 3A or the oxidizing gas chamber 3B is 1 depth.
mm and a width of 1 mm. The separators 2A and 2B are provided with a fuel gas supply hole 31, an oxidant gas supply hole 32, a fuel gas discharge hole 34, and an oxidant gas discharge hole 35. The solid polymer membrane / electrode assembly 1 is sandwiched between separators 2A and 2B via a gas seal 5.
Is configured. The gas seal 5 has a cut 33 for selectively supplying and discharging a fuel gas and an oxidizing gas to and from the solid polymer membrane / electrode assembly 1.
【0007】図5は従来の締結板を示す斜視図である。
締結板10は金属からなる中実板であり締結ボルトが間
挿する貫通孔16と反応ガス供給孔14と反応ガス排出
孔15を備える。反応ガス供給孔14はシール溝14A
と図示しないガス配管の取り付けネジ14Bを備える。
反応ガス排出孔15はシール溝15Aと図示しないガス
配管の取り付けネジ15Bを備える。FIG. 5 is a perspective view showing a conventional fastening plate.
The fastening plate 10 is a solid plate made of metal and includes a through hole 16 through which a fastening bolt is inserted, a reaction gas supply hole 14, and a reaction gas discharge hole 15. The reaction gas supply hole 14 is a seal groove 14A.
And a mounting screw 14B for a gas pipe (not shown).
The reaction gas discharge hole 15 has a seal groove 15A and a screw 15B for attaching a gas pipe (not shown).
【0008】図6は従来の固体高分子電解質型燃料電池
を示す斜視図である。単セル6は複数個が積層されて単
セル集合体となり、集電板8は上記単セル集合体の電流
を取り出す。電気絶縁板9は単セル集合体と締結板10
を絶縁する。電池集合体は締結板10と締結ボルト1
1,締結具13,皿バネ12を用い組み立てられる。単
セル6内では反応ガスは鉛直方向に流れる。FIG. 6 is a perspective view showing a conventional solid polymer electrolyte fuel cell. A plurality of single cells 6 are stacked to form a single cell aggregate, and a current collector 8 extracts the current of the single cell aggregate. The electric insulating plate 9 is composed of a single cell assembly and a fastening plate 10.
Insulate. The battery assembly includes a fastening plate 10 and a fastening bolt 1
1, the fastener 13 and the disc spring 12 are assembled. The reaction gas flows in the single cell 6 in the vertical direction.
【0009】固体高分子電解質型燃料電池の運転温度は
固体高分子電解質膜の電気抵抗を小さくして発電効率を
高めるために通常50ないし100℃の温度で運転され
る。この単セルの発生する電圧は1V以下であるので、
実用上は電圧を高めるために前記単セルを複数個直列に
積層してスタックとして使用される。燃料電池では、一
般に発生電力にほぼ相当する熱量を熱として発生し、こ
の熱により単セルを多数積層したスタックにおいてはス
タック内に温度の分布が生じる。そこでスタックでは、
冷却板を内蔵してスタックの温度を単セルの面方向,積
層方向にできるだけ均一になるようにする。ここで一般
に冷却媒体としては水、空気等が用いられる。冷却板は
冷却媒体を供給することで余剰熱を除去して冷却をす
る。The operating temperature of the solid polymer electrolyte fuel cell is usually 50 to 100 ° C. in order to reduce the electric resistance of the solid polymer electrolyte membrane and increase the power generation efficiency. Since the voltage generated by this single cell is 1 V or less,
Practically, in order to increase the voltage, a plurality of the single cells are stacked in series and used as a stack. In a fuel cell, generally, a heat amount substantially corresponding to the generated electric power is generated as heat, and this heat causes a temperature distribution in the stack in which many single cells are stacked. So in the stack,
A cooling plate is incorporated to make the temperature of the stack as uniform as possible in the plane direction and the stacking direction of the single cells. Here, water, air or the like is generally used as a cooling medium. The cooling plate cools by removing excess heat by supplying a cooling medium.
【0010】前述のとおり固体高分子電解質型燃料電池
では、固体高分子電解質膜1Aを飽和に含水させること
により膜の比抵抗が小さくなり、膜はプロトン導電性電
解質として機能する。したがって、固体高分子電解質型
燃料電池の発電効率を高く維持するためには、膜の含水
状態を飽和状態に維持することが必要である。膜の乾燥
を防いで発電効率を維持するために、反応ガスには水蒸
気が添加され、膜からガスへの水の蒸発が抑えられる。As described above, in the solid polymer electrolyte fuel cell, the specific resistance of the membrane is reduced by saturating the solid polymer electrolyte membrane 1A with water, and the membrane functions as a proton conductive electrolyte. Therefore, in order to keep the power generation efficiency of the polymer electrolyte fuel cell high, it is necessary to maintain the water-containing state of the membrane in a saturated state. In order to prevent drying of the film and maintain power generation efficiency, steam is added to the reaction gas to suppress evaporation of water from the film into the gas.
【0011】[0011]
【発明が解決しようとする課題】しかしながらこのよう
な従来の固体高分子電解質型燃料電池にあっては締結板
は最も重量の大きな構成部材であり、固体高分子電解質
型燃料電池全体の重量の約30ないし50%を占める。
今後発電面積が拡大し単セル積層枚数が増加するにつれ
て締結板の重量は一層増大することが予想される。締結
板の重量が大きいと固体高分子電解質型燃料電池の組み
立て作業が困難となり、製品輸送の効率も低下する。However, in such a conventional solid polymer electrolyte fuel cell, the fastening plate is the heaviest component, and the weight of the fastening plate is about the total weight of the entire solid polymer electrolyte fuel cell. Accounts for 30-50%.
It is expected that the weight of the fastening plate will further increase in the future as the power generation area increases and the number of stacked single cells increases. If the weight of the fastening plate is large, it is difficult to assemble the solid polymer electrolyte fuel cell, and the efficiency of product transportation is reduced.
【0012】また締結板は固体高分子電解質型燃料電池
の放熱体として作用し、締結板と接する単セルの温度が
低下し締結板と接する単セルの発電効率が低下する。さ
らに従来の締結板にあっては締結板を貫通する反応ガス
供給孔14,反応ガス排出孔15内を反応ガスが通流す
る際に反応ガスが冷却され反応ガス供給孔14,反応ガ
ス排出孔15内に水滴が発生し反応ガスの流れを悪く
し、結果として固体高分子電解質型燃料電池の発電効率
を下げるという問題があった。Further, the fastening plate acts as a radiator of the polymer electrolyte fuel cell, so that the temperature of the single cell in contact with the fastening plate is reduced, and the power generation efficiency of the single cell in contact with the fastening plate is reduced. Further, in the conventional fastening plate, the reaction gas is cooled when the reaction gas flows through the reaction gas supply hole 14 and the reaction gas discharge hole 15 penetrating the fastening plate. There is a problem that water droplets are generated in the liquid crystal 15 and flow of the reaction gas is deteriorated, and as a result, the power generation efficiency of the polymer electrolyte fuel cell is reduced.
【0013】この発明は上述の点に鑑みてなされ、その
目的は締結板の軽量化と放熱性の低下を図ることにより
製造容易で特性に優れる固体高分子電解質型燃料電池を
提供することにある。The present invention has been made in view of the above points, and an object of the present invention is to provide a polymer electrolyte fuel cell which is easy to manufacture and has excellent characteristics by reducing the weight of a fastening plate and reducing heat radiation. .
【0014】[0014]
【課題を解決するための手段】上述の目的はこの発明に
よれば固体高分子電解質膜とその両面に配設された電極
からなる固体高分子膜/電極集合体を反応ガス供給孔と
反応ガス排出孔を備えた二つのセパレータで挟んで単セ
ルを構成し、該単セルの複数個を二つの締結板の間にお
いて積層し締結ボルトを介して締結してスタックを形成
し、前記スタックに締結板を介して燃料ガスと酸化剤ガ
スの反応ガスを供給する固体高分子電解質型燃料電池に
おいて、締結板はハニカム板の両主面に板状パッキング
を介して端板を固定してなり、ここにハニカム板はハニ
カム体をフレームに支持したものであり、板状パッキン
グと端板はそれぞれ相互に連通するガス通流孔と支持孔
を備え、板状パッキングは端板によりハニカム体の主面
に圧接されるとともに板状パッキングのガス通流孔がハ
ニカム体の中空部と連通するとすることにより達成され
る。SUMMARY OF THE INVENTION According to the present invention, there is provided a solid polymer membrane / electrode assembly comprising a solid polymer electrolyte membrane and electrodes disposed on both surfaces thereof, and a reaction gas supply hole and a reaction gas supply hole. A single cell is constituted by sandwiching between two separators having discharge holes, a plurality of the single cells are stacked between two fastening plates and fastened via fastening bolts to form a stack, and a fastening plate is formed on the stack. In a solid polymer electrolyte fuel cell that supplies a reaction gas of a fuel gas and an oxidizing gas through a fuel cell, an end plate is fixed to both main surfaces of the honeycomb plate via plate-like packings, and the honeycomb plate has a honeycomb plate. The plate supports the honeycomb body on the frame, and the plate-shaped packing and the end plate have gas communication holes and support holes communicating with each other, and the plate-shaped packing is pressed against the main surface of the honeycomb body by the end plate. Toto Gas through holes of the plate packing is achieved by a communication with the hollow portion of the honeycomb body.
【0015】上述の発明において、一方端に前記端板に
係止される係止部を有する中空円筒形状のフィッティン
グが一方の端板の支持孔から他方の端板の支持孔へと挿
入され、前記フィッティングの反係止部側の端部にガス
配管が取り付けられる様構成することが有効である。ま
たフィッティングはフッ素樹脂で構成することが有効で
ある。[0015] In the above invention, a hollow cylindrical fitting having a locking portion locked at one end to the end plate is inserted from the support hole of one end plate into the support hole of the other end plate, It is effective that a gas pipe is attached to the end of the fitting on the side opposite to the locking portion. It is effective that the fitting is made of a fluororesin.
【0016】[0016]
【作用】ハニカム体の中空部は締結板の軽量化と機械的
な補強の効果を持つとともにガス通流の働きを持つ。締
結板にハニカム体を使用するとハニカム体は薄肉ででき
ているから熱伝導性が低い上に空気による保温性が加わ
って放熱性の低い締結板が得られる。The hollow portion of the honeycomb body has the effect of reducing the weight of the fastening plate and the effect of mechanical reinforcement, and also has the function of flowing gas. When a honeycomb body is used as the fastening plate, the honeycomb body is made of a thin wall, so that the heat conductivity is low and the heat retaining property by air is added, so that a fastening plate with low heat dissipation can be obtained.
【0017】フィッティングを用いて反応ガスを通流さ
せると、フィッティングは熱伝導率が低いので反応ガス
が直接ハニカム体の内部を通流する場合に比較して締結
板により冷却される度合が一層少なくなる。フッ素樹脂
は熱伝導率が小さくフィッティングに好適に用いられ
る。When the reaction gas flows through the fitting, the fitting has a low thermal conductivity, so that the reaction gas is cooled by the fastening plate to a lesser extent than when the reaction gas flows directly through the inside of the honeycomb body. Become. Fluororesin has low thermal conductivity and is suitably used for fitting.
【0018】[0018]
【実施例】次にこの発明の実施例を図面に基いて説明す
る。 実施例1 図1はこの発明の実施例に係る固体高分子電解質型燃料
電池の締結板を示す分解斜視図である。Next, an embodiment of the present invention will be described with reference to the drawings. Embodiment 1 FIG. 1 is an exploded perspective view showing a fastening plate of a solid polymer electrolyte fuel cell according to an embodiment of the present invention.
【0019】アルミニウム製のハニカム体17Bが同じ
くアルミニウム製のフレーム17Aに溶接により支持さ
れハニカム板17となる。ハニカム体17Bはアルミニ
ウム製の六角パイプを所定の長さに切断し、得られた中
空六角柱を並列的に接着して製造される。接着により得
られたハニカム体17Bの主面はフレーム17Aの開口
面と同一平面上にある。板状パッキング18はエチレン
プロピレン共重合体またはニトリルゴム製の板材であ
り、ガス通流孔18Aが四個と貫通孔18Bが六個穿設
されている。端板19はアルミニウム製であり、貫通孔
19Bが六個と支持孔19Aが四個穿設されている。端
板19の貫通孔19Bと端板20の貫通孔20Bには締
結ボルトが間挿する。支持孔19Aは座ぐり穴である。
端板20はアルミニウム製であり、貫通孔20Bが六個
と支持孔20Aが四個穿設されている。フィッティング
22はその一端に支持孔19Aの座ぐり穴に係止される
係止部を有し、この係止部にシール溝24が形成されて
おり、また他端にはテーパネジが設けてある。フィッテ
ィング22はフッ素樹脂製であり、端板19の支持孔1
9Aから始まり板状パッキング18のガス通流孔18A
と、ハニカム板17のハニカム体17Bを構成する中空
六角柱の中空部を間挿し、端板20の支持孔20Aに終
わる。四個の支持孔19Aはそれぞれ燃料ガス供給孔と
酸化剤ガス供給孔と燃料ガス排出孔と酸化剤ガス排出孔
に対応している。The honeycomb body 17B made of aluminum is supported by welding on a frame 17A also made of aluminum to form a honeycomb plate 17. The honeycomb body 17B is manufactured by cutting a hexagonal pipe made of aluminum into a predetermined length, and bonding the obtained hollow hexagonal columns in parallel. The main surface of the honeycomb body 17B obtained by bonding is on the same plane as the opening surface of the frame 17A. The plate-like packing 18 is a plate made of ethylene propylene copolymer or nitrile rubber, and has four gas flow holes 18A and six through holes 18B. The end plate 19 is made of aluminum, and has six through holes 19B and four support holes 19A. Fastening bolts are inserted into the through holes 19B of the end plate 19 and the through holes 20B of the end plate 20. The support hole 19A is a counterbore.
The end plate 20 is made of aluminum, and has six through holes 20B and four support holes 20A. The fitting 22 has at one end a locking portion to be locked in the counterbore of the support hole 19A, a sealing groove 24 is formed in this locking portion, and a tapered screw is provided at the other end. The fitting 22 is made of fluororesin, and the support hole 1 of the end plate 19 is provided.
Starting from 9A, gas flow holes 18A in plate packing 18
Then, the hollow portion of the hollow hexagonal column constituting the honeycomb body 17B of the honeycomb plate 17 is interposed, and ends at the support hole 20A of the end plate 20. The four support holes 19A correspond to a fuel gas supply hole, an oxidant gas supply hole, a fuel gas discharge hole, and an oxidant gas discharge hole, respectively.
【0020】端板19,20と板状パッキング18とハ
ニカム板17はエチレンプロピレン共重合体系またはニ
トリルゴム系接着剤を介して接合される。テーパネジは
図示しないガス配管を接続する。シール溝24は図示し
ないパッキングがはめ込まれ単セル6に押しつけられ
る。図2はこの発明の実施例に係る固体高分子電解質型
燃料電池を示す斜視図である。The end plates 19 and 20, the plate-like packing 18 and the honeycomb plate 17 are joined via an ethylene-propylene copolymer-based or nitrile rubber-based adhesive. The taper screw connects a gas pipe (not shown). The seal groove 24 is fitted with a packing (not shown) and pressed against the unit cell 6. FIG. 2 is a perspective view showing a solid polymer electrolyte fuel cell according to an embodiment of the present invention.
【0021】単セル6の複数個を積層し、単セル6の積
層方向の両側を集電板8の一対と電気絶縁板9の一対を
用いて順次挟持し、フィッティング22,23を締結板
21の支持孔19Aに装着し、締結板21の一対により
締結ボルト11、締結具13、皿バネ12を介して、単
セル6と集電板8と電気絶縁板9の積層体を締結する。A plurality of unit cells 6 are stacked, and both sides of the unit cells 6 in the stacking direction are sequentially sandwiched between a pair of current collector plates 8 and a pair of electric insulating plates 9, and fittings 22 and 23 are connected to fastening plates 21. Of the unit cell 6, the current collecting plate 8, and the electrical insulating plate 9 are fastened by a pair of the fastening plates 21 via the fastening bolts 11, the fasteners 13, and the disc springs 12.
【0022】集電板8と電気絶縁板9にはそれぞれ締結
板21の四個の支持孔19A,20Aと連通する貫通孔
があり、これらは単セル6の燃料ガス供給孔,酸化剤ガ
ス供給孔,燃料ガス排出孔,酸化剤ガス排出孔にそれぞ
れ連通する。締結板21はハニカム板17を用いている
ために軽量であり、燃料電池組み立てや燃料電池の輸送
の効率を高める。Each of the current collector plate 8 and the electric insulating plate 9 has through holes communicating with the four support holes 19A and 20A of the fastening plate 21. These through holes are provided for the fuel gas supply hole and the oxidant gas supply hole of the unit cell 6. The hole, the fuel gas discharge hole, and the oxidant gas discharge hole communicate with each other. The fastening plate 21 is lightweight because the honeycomb plate 17 is used, and improves the efficiency of fuel cell assembly and fuel cell transportation.
【0023】また締結板21はハニカム板17を用いて
いるために熱伝導率が低いから締結板は放熱体として機
能することがなく、締結板21と接する単セルが締結板
により冷却されることがないので締結板21と接する単
セルは温度低下を起こさず締結板と接する単セルの発電
効率が良好である。反応ガスがフッ素樹脂製のフィッテ
ィング22,23を通流する際に、フッ素樹脂は熱伝導
率が低いために、反応ガスは締結板により冷却すること
が少なく、従って締結板に水滴が溜まって締結板21と
接する単セルが水滴により閉塞するということがない。
これは締結板21と接する単セルに反応ガスが充分に供
給されることを意味する。 実施例2 図3はこの発明の異なる実施例に係る固体高分子電解質
型燃料電池の締結板を示す斜視図である。Since the fastening plate 21 uses the honeycomb plate 17 and has a low thermal conductivity, the fastening plate does not function as a radiator, and a single cell in contact with the fastening plate 21 is cooled by the fastening plate. Since there is no single cell, the single cell in contact with the fastening plate 21 does not cause a temperature drop and the power generation efficiency of the single cell in contact with the fastening plate is good. When the reactant gas flows through the fittings 22 and 23 made of the fluororesin, the reactant gas is less likely to be cooled by the fastening plate because the fluorine resin has a low thermal conductivity. A single cell in contact with the plate 21 is not blocked by water droplets.
This means that the reaction gas is sufficiently supplied to the single cell in contact with the fastening plate 21. Embodiment 2 FIG. 3 is a perspective view showing a fastening plate of a solid polymer electrolyte fuel cell according to another embodiment of the present invention.
【0024】締結板21にはフィッティングは装着され
ない。反応ガスは直接的にハニカム体17Bの中空六角
柱と端板19,20の支持孔19A,20Bの内部を流
れる。端板19にはシール溝24Aが設けられており、
シール溝24Aが単セル6に圧接される。端板20の支
持孔20Aには図示しないガス配管取り付けネジが設け
られる。No fitting is attached to the fastening plate 21. The reaction gas flows directly through the hollow hexagonal column of the honeycomb body 17B and the support holes 19A, 20B of the end plates 19, 20. The end plate 19 is provided with a seal groove 24A,
The seal groove 24A is pressed against the unit cell 6. A not-shown gas pipe mounting screw is provided in the support hole 20A of the end plate 20.
【0025】上述の実施例においてはハニカム体の中空
部は六角柱型としたが、これに限定されるものではなく
八角柱型等の中空の孔部を有していれば良い。In the above-described embodiment, the hollow portion of the honeycomb body has a hexagonal prism shape. However, the present invention is not limited to this, and it is sufficient if the honeycomb body has a hollow hole such as an octagonal prism shape.
【0026】[0026]
【発明の効果】この発明によれば締結板の内部がハニカ
ム構造となっているので、締結板の軽量化が達成され固
体高分子電解質型燃料電池の製造や運搬が容易になる。
また締結板の放熱性が低下するために締結板に接する単
セルに水滴が流れたり締結板に接する単セル温度が低下
するようなことがなく特性に優れる固体高分子電解質型
燃料電池が得られる。According to the present invention, since the inside of the fastening plate has a honeycomb structure, the weight of the fastening plate is reduced, and the manufacture and transportation of the polymer electrolyte fuel cell are facilitated.
In addition, a solid polymer electrolyte fuel cell having excellent characteristics can be obtained without water droplets flowing into the single cell in contact with the fastening plate or the temperature of the single cell in contact with the fastening plate being reduced because the heat dissipation of the fastening plate is reduced. .
【0027】さらに締結板にフッ素樹脂製のフィッティ
ングを装着すると反応ガスの締結板による冷却が一層低
減する効果が得られる。Further, when a fitting made of a fluororesin is attached to the fastening plate, an effect of further reducing the cooling of the reaction gas by the fastening plate can be obtained.
【図1】この発明の実施例に係る固体高分子電解質型燃
料電池の締結板を示す分解斜視図FIG. 1 is an exploded perspective view showing a fastening plate of a polymer electrolyte fuel cell according to an embodiment of the present invention.
【図2】この発明の実施例に係る固体高分子電解質型燃
料電池を示す斜視図FIG. 2 is a perspective view showing a solid polymer electrolyte fuel cell according to an embodiment of the present invention.
【図3】この発明の異なる実施例に係る固体高分子電解
質型燃料電池の締結板を示す斜視図FIG. 3 is a perspective view showing a fastening plate of a polymer electrolyte fuel cell according to another embodiment of the present invention.
【図4】従来の固体高分子電解質型燃料電池の単セルを
示す断面図FIG. 4 is a cross-sectional view showing a single cell of a conventional solid polymer electrolyte fuel cell.
【図5】従来の締結板を示す斜視図FIG. 5 is a perspective view showing a conventional fastening plate.
【図6】従来の固体高分子電解質型燃料電池を示す斜視
図FIG. 6 is a perspective view showing a conventional solid polymer electrolyte fuel cell.
1 固体高分子膜/電極集合体 1A 固体高分子膜 1B アノード 1C カソード 2A セパレータ 2B セパレータ 3A 燃料ガス室 3B 酸化剤ガス室 6 単セル 8 集電板 9 電気絶縁板 10 締結板 11 締結ボルト 12 皿バネ 13 締結具 14 反応ガス供給孔 14A シール溝 14B 取り付けネジ 15 反応ガス排出孔 15A シール溝 15B 取り付けネジ 16 貫通孔 17 ハニカム板 17A フレーム 17B ハニカム体 18 状板パッキング 18B ガス通流孔 19 端板 19A 支持孔 19B 貫通孔 20 端板 20A 支持孔 20B 貫通孔 21 締結板 22 フィッティング 23 フィッティング 24 シール溝 24A シール溝 DESCRIPTION OF SYMBOLS 1 Solid polymer membrane / electrode assembly 1A Solid polymer membrane 1B Anode 1C Cathode 2A Separator 2B Separator 3A Fuel gas chamber 3B Oxidant gas chamber 6 Single cell 8 Current collecting plate 9 Electrical insulating plate 10 Fastening plate 11 Fastening bolt 12 Plate Spring 13 Fastener 14 Reaction gas supply hole 14A Seal groove 14B Mounting screw 15 Reaction gas discharge hole 15A Seal groove 15B Mounting screw 16 Through hole 17 Honeycomb plate 17A Frame 17B Honeycomb body 18 plate packing 18B Gas flow hole 19 End plate 19A Support hole 19B Through hole 20 End plate 20A Support hole 20B Through hole 21 Fastening plate 22 Fitting 23 Fitting 24 Seal groove 24A Seal groove
Claims (3)
た電極からなる固体高分子膜/電極集合体を反応ガス供
給孔と反応ガス排出孔を備えた二つのセパレータで挟ん
で単セルを構成し、該単セルの複数個を二つの締結板の
間において積層し締結ボルトを介して締結してスタック
を形成し、前記スタックに締結板を介して燃料ガスと酸
化剤ガスの反応ガスを供給する固体高分子電解質型燃料
電池において、締結板はハニカム板の両主面に板状パッ
キングを介して端板を固定してなり、ここにハニカム板
はハニカム体をフレームに支持したものであり、板状パ
ッキングと端板はそれぞれ相互に連通するガス通流孔と
支持孔を備え、板状パッキングは端板によりハニカム体
の主面に圧接されるとともに板状パッキングのガス通流
孔がハニカム体の中空部と連通するものであることを特
徴とする固体高分子電解質型燃料電池。1. A single cell comprising a solid polymer electrolyte membrane / electrode assembly comprising a solid polymer electrolyte membrane and electrodes disposed on both surfaces thereof, sandwiched between two separators having a reaction gas supply hole and a reaction gas discharge hole. A plurality of the single cells are stacked between two fastening plates and fastened via fastening bolts to form a stack, and a reactant gas of a fuel gas and an oxidizing gas is supplied to the stack via the fastening plates. In the solid polymer electrolyte fuel cell, the fastening plate is formed by fixing end plates to both main surfaces of the honeycomb plate via plate-like packing, and the honeycomb plate here supports the honeycomb body on a frame, The plate-like packing and the end plate are provided with a gas flow hole and a support hole communicating with each other, and the plate-like packing is pressed against the main surface of the honeycomb body by the end plate and the gas flow hole of the plate-like packing is formed in the honeycomb body. of Solid polymer electrolyte fuel cell characterized in that communicating with the hollow portion.
端に前記端板に係止される係止部を有する中空円筒形状
のフィッティングが一方の端板の支持孔から他方の端板
の支持孔へと挿入され、前記フィッティングの反係止部
側の端部にガス配管が取り付けられることを特徴とする
固体高分子電解質形燃料電池。2. The fuel cell according to claim 1, wherein a hollow cylindrical fitting having a locking portion locked at one end to the end plate is provided from a support hole of one end plate to the other end plate. A solid polymer electrolyte fuel cell, wherein the fuel cell is inserted into a support hole, and a gas pipe is attached to an end of the fitting on the side opposite to the locking portion.
ッティングはフッ素樹脂であることを特徴とする固体高
分子電解質型燃料電池。3. The solid polymer electrolyte fuel cell according to claim 2, wherein the fitting is made of a fluororesin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00785995A JP3149716B2 (en) | 1995-01-23 | 1995-01-23 | Solid polymer electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00785995A JP3149716B2 (en) | 1995-01-23 | 1995-01-23 | Solid polymer electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08203553A JPH08203553A (en) | 1996-08-09 |
JP3149716B2 true JP3149716B2 (en) | 2001-03-26 |
Family
ID=11677383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00785995A Expired - Fee Related JP3149716B2 (en) | 1995-01-23 | 1995-01-23 | Solid polymer electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3149716B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9269969B2 (en) | 2011-12-21 | 2016-02-23 | Honda Motor Co., Ltd. | Fuel cell stack |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6159629A (en) * | 1998-12-17 | 2000-12-12 | Ballard Power Systems Inc. | Volume effecient layered manifold assembly for electrochemical fuel cell stacks |
CN1312796C (en) * | 2002-04-17 | 2007-04-25 | 松下电器产业株式会社 | Polymeric electrolyte type fuel cell |
AU2003223519A1 (en) * | 2002-04-30 | 2003-11-17 | General Motors Corporation | End plates for a fuel cell stack structure |
WO2006049018A1 (en) * | 2004-11-01 | 2006-05-11 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
WO2006049019A1 (en) * | 2004-11-01 | 2006-05-11 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
JP4727972B2 (en) * | 2004-11-25 | 2011-07-20 | 本田技研工業株式会社 | Fuel cell stack |
JP5177964B2 (en) * | 2006-05-31 | 2013-04-10 | 三洋電機株式会社 | Fuel cell stack |
CN101990720B (en) | 2009-03-17 | 2013-05-08 | 松下电器产业株式会社 | Fuel cell stack |
JP6008202B2 (en) * | 2013-05-29 | 2016-10-19 | トヨタ自動車株式会社 | Fuel cell stack |
KR101870508B1 (en) * | 2016-06-03 | 2018-07-24 | (주) 세라컴 | Battery pack |
CN109419194A (en) * | 2017-08-16 | 2019-03-05 | 张跃 | A kind of furniture material |
CN110380096B (en) * | 2018-04-12 | 2024-03-19 | 武汉众宇动力系统科技有限公司 | Fuel cell stack device and arrangement method |
-
1995
- 1995-01-23 JP JP00785995A patent/JP3149716B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9269969B2 (en) | 2011-12-21 | 2016-02-23 | Honda Motor Co., Ltd. | Fuel cell stack |
Also Published As
Publication number | Publication date |
---|---|
JPH08203553A (en) | 1996-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU672958B2 (en) | Lightweight fuel cell membrane electrode assembly with integral reactant flow passages | |
US6946212B2 (en) | Electrochemical fuel cell stack with improved reactant manifolding and sealing | |
JP3465379B2 (en) | Solid polymer electrolyte fuel cell | |
US6858338B2 (en) | Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell | |
US5922485A (en) | Solid polymer electrolyte fuel cell | |
JP3052536B2 (en) | Solid polymer electrolyte fuel cell | |
JP3149716B2 (en) | Solid polymer electrolyte fuel cell | |
JP2000357531A (en) | Solid polymer electrolyte fuel cell | |
US7232582B2 (en) | Fuel cell | |
JPH06338338A (en) | Humidification of high polymer ion exchange film of fuel cell | |
US20050186462A1 (en) | PEM fuel cell stack with floating current collector plates | |
JP3448550B2 (en) | Polymer electrolyte fuel cell stack | |
KR101119479B1 (en) | Bipolar separator for fuel cell stack | |
JPH10308229A (en) | Solid high polymer electrolyte type fuel cell | |
JP3111682B2 (en) | Solid polymer electrolyte fuel cell system | |
JP2000294257A (en) | Solid high polymer electrolyte fuel cell | |
JPH05251097A (en) | Solid high polymer electrolyte type fuel cell | |
JPH05144451A (en) | Reaction gas/cooling medium flowing structure of fuel cell with solid highpolymer electrolyte | |
JP4828841B2 (en) | Fuel cell | |
JP3146758B2 (en) | Solid polymer electrolyte fuel cell | |
JPH1012262A (en) | Solid high polymer electrolyte fuel cell | |
US20080014486A1 (en) | Fuel Cell | |
JP4726186B2 (en) | Fuel cell stack | |
JP3350260B2 (en) | Solid polymer electrolyte fuel cell | |
JP2001068141A (en) | Fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080119 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090119 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100119 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |