[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10308229A - Solid high polymer electrolyte type fuel cell - Google Patents

Solid high polymer electrolyte type fuel cell

Info

Publication number
JPH10308229A
JPH10308229A JP9116595A JP11659597A JPH10308229A JP H10308229 A JPH10308229 A JP H10308229A JP 9116595 A JP9116595 A JP 9116595A JP 11659597 A JP11659597 A JP 11659597A JP H10308229 A JPH10308229 A JP H10308229A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
polymer electrolyte
solid polymer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9116595A
Other languages
Japanese (ja)
Inventor
Yasuhito Tanaka
泰仁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9116595A priority Critical patent/JPH10308229A/en
Publication of JPH10308229A publication Critical patent/JPH10308229A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stable battery characteristic by holding single batteries located at both ends of a fuel cell layered product the same in temperature as single batteries located at the center side. SOLUTION: A fuel cell layered product comprising by layering a plurality of single batteries and arranging collector plates, electrical insulating plates, and tightening plates at its both ends controls a temperature drop of the single batteries at the both ends by providing a cooling water passage consisting of a plurality of flow grooves 22 separated with a partition 21 at the side of an electrical insulating plate 11A, guiding a cooling water that cools the single battery and is discharged to an inlet opening 19 located on bottom to be circulated in the cooling water passage, and discharging from a cooling water discharge passage 18A located on top.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、固体高分子電解
質膜を電解質層として用い、燃料ガスおよび酸化剤ガス
を供給して電気化学反応により電気エネルギを得る固体
高分子電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell which uses a solid polymer electrolyte membrane as an electrolyte layer, supplies fuel gas and oxidizing gas, and obtains electric energy by an electrochemical reaction.

【0002】[0002]

【従来の技術】燃料電池には使用される電解質の種類に
より、固体高分子電解質型、りん酸型、溶融炭酸型、固
体酸化物電解質型などがあり、固体高分子電解質型燃料
電池は、分子中にプロトン(水素イオン)交換基を有す
る高分子樹脂膜を飽和に含水させると、低い抵抗率を示
してプロトン導電性電解質として機能することを利用し
た燃料電池である。
2. Description of the Related Art A fuel cell includes a solid polymer electrolyte type, a phosphoric acid type, a molten carbonate type, a solid oxide electrolyte type, and the like, depending on the type of electrolyte used. This fuel cell utilizes the fact that when a polymer resin membrane having a proton (hydrogen ion) exchange group therein is saturated with water, it exhibits low resistivity and functions as a proton conductive electrolyte.

【0003】図3は、従来の固体高分子電解質型燃料電
池の単電池の構成を模式的に示した分解断面図である。
図において、膜電極接合体1は、薄い矩形平板状の固体
高分子電解質膜からなる電解質層1Aと、これに接合さ
れた燃料電極層1Bと酸化剤電極層1Cより構成されて
いる。燃料ガスの供給を受ける燃料電極層1Bと酸化剤
ガスの供給を受ける酸化剤電極層1Cは、いずれも、触
媒活物質を含む触媒層と、これを支持し、燃料ガスある
いは酸化剤ガスを透過して触媒層へ供給、排出する機能
を果たし、かつ集電体としての機能を有する多孔質の電
極基材とからなり、触媒層を膜電極接合体1の両主面に
ホットプレスにより密着させて接合されている。
FIG. 3 is an exploded sectional view schematically showing a configuration of a unit cell of a conventional solid polymer electrolyte fuel cell.
In the figure, a membrane electrode assembly 1 is composed of an electrolyte layer 1A made of a thin rectangular plate-shaped solid polymer electrolyte membrane, and a fuel electrode layer 1B and an oxidant electrode layer 1C joined thereto. Each of the fuel electrode layer 1B receiving the supply of the fuel gas and the oxidant electrode layer 1C receiving the supply of the oxidant gas supports the catalyst layer containing the catalyst active material and supports the catalyst layer, and transmits the fuel gas or the oxidant gas. A porous electrode substrate having a function of supplying and discharging to and from the catalyst layer and having a function as a current collector. The catalyst layer is brought into close contact with both main surfaces of the membrane electrode assembly 1 by hot pressing. Are joined.

【0004】セパレータ2Aは、ガス不透過性の材料を
用いて製作されており、一方の側面に隔壁4Aで分離さ
れた複数のガス流通用溝3Aが、もう一方の側面に隔壁
7Aで分離された複数の冷却水流通用溝6Aが備えられ
ている。また、セパレータ2Bも同様にガス不透過性の
材料を用いて製作されており、一方の側面に隔壁4Bで
分離された複数のガス流通用溝3Bが、もう一方の側面
に隔壁7Bで分離された複数の冷却水流通用溝6Bが備
えられている。単電池は、セパレータ2Aのガス流通用
溝3Aを備えた側面を、膜電極接合体1の燃料電極層1
Bに対向させて密着し、セパレータ2Bのガス流通用溝
3Bを備えた側面を、膜電極接合体1の酸化剤電極層1
Cに対向させて密着して構成されており、ガスシ─ル材
5により周縁部の気密を保持し、冷却水シ─ル材8によ
って冷却水の周縁への漏出を防止するよう構成されてい
る。本構成では、ガス流通用溝3Aに燃料ガスを、ま
た、ガス流通用溝3Bに酸化剤ガスを通流させることに
より、膜電極接合体1において電気化学反応が生じ、二
つのセパレータ2A,2Bの間に電気エネルギが得られ
ることとなる。また、冷却水流通用溝6A、6Bに冷却
水を通流させることにより、電気化学反応に伴う発熱が
除去され、温度が一定に保持される。
The separator 2A is made of a gas-impermeable material, and has a plurality of gas flow grooves 3A separated on one side by a partition 4A and separated by a partition 7A on the other side. A plurality of cooling water circulation grooves 6A are provided. Similarly, the separator 2B is also manufactured using a gas-impermeable material, and a plurality of gas distribution grooves 3B separated on one side by a partition 4B, and separated by a partition 7B on the other side. A plurality of cooling water circulation grooves 6B are provided. In the unit cell, the side surface of the separator 2A provided with the gas circulation groove 3A is connected to the fuel electrode layer 1
B, the side surface of the separator 2B provided with the gas circulation groove 3B is placed on the oxidant electrode layer 1 of the membrane electrode assembly 1.
The gas sealing material 5 keeps the periphery airtight, and the cooling water sealing material 8 prevents the cooling water from leaking to the periphery. . In this configuration, the fuel gas flows through the gas flow groove 3A, and the oxidant gas flows through the gas flow groove 3B, whereby an electrochemical reaction occurs in the membrane electrode assembly 1 and the two separators 2A, 2B During this time, electric energy is obtained. Further, by causing the cooling water to flow through the cooling water circulation grooves 6A and 6B, heat generated due to the electrochemical reaction is removed, and the temperature is kept constant.

【0005】1個の単電池が発生する電圧は、1〔V〕
程度以下と低い値であるので、前記の構成の単電池を多
数個直列に接続して燃料電池積層体を構成し、発生電圧
を高めて実用に供するのが一般的である。また、固体高
分子電解質膜の比抵抗を小さくして発電効率を高く維持
するために、通常50℃〜100℃の運転温度で用いら
れる。
[0005] The voltage generated by one cell is 1 [V].
Since the value is as low as about or less, it is common to form a fuel cell stack by connecting a plurality of cells having the above-described configuration in series, and to increase the generated voltage for practical use. Further, in order to keep the specific resistance of the solid polymer electrolyte membrane small and to maintain the power generation efficiency high, it is usually used at an operating temperature of 50 ° C to 100 ° C.

【0006】図4は、従来の固体高分子電解質型燃料電
池の燃料電池積層体の構成を模式的に示した側面図であ
る。本構成の燃料電池積層体は、複数個の単電池9を積
層し、その両端にこれらの単電池9で発生した直流電気
を取り出すための集電板10を配設し、さらにその両端
に単電池9および集電板10を構造体から電気的に絶縁
するための電気絶縁板11を介装して締付板12を配
し、締付ボルト13と締付用皿バネ14と締付具15に
より両側端の締付板12の間を締め付けることにより適
度な加圧力を加えて構成されている。固体高分子電解質
型燃料電池においては、膜電極接合体は含水状態に保持
することによって初めてイオン伝導性を発揮するため、
燃料ガスおよび酸化剤ガスは加湿して一定の水分を含ま
せたのち膜電極接合体へと供給されている。したがっ
て、燃料ガスや酸化剤ガスに含まれる水分が結露して流
路を閉塞することのないように、本構成の燃料電池積層
体の単電池9においては、図3に示したセパレータ2
A,2Bのガス流通用溝3A,3B中を流通する燃料ガ
ス、酸化剤ガスが、重力方向の上側から下側へと流れる
ように配置されている。
FIG. 4 is a side view schematically showing the structure of a fuel cell stack of a conventional solid polymer electrolyte fuel cell. In the fuel cell stack of this configuration, a plurality of unit cells 9 are stacked, and a current collecting plate 10 for taking out DC power generated by the unit cells 9 is disposed at both ends thereof. A tightening plate 12 is provided with an electric insulating plate 11 for electrically insulating the battery 9 and the current collecting plate 10 from the structure, a tightening bolt 13, a tightening disc spring 14, and a tightening tool. A suitable pressing force is applied by tightening between the tightening plates 12 on both side ends by 15. In a solid polymer electrolyte fuel cell, the membrane electrode assembly exhibits ionic conductivity for the first time by maintaining it in a water-containing state.
The fuel gas and the oxidizing gas are supplied to the membrane electrode assembly after being humidified and containing a certain amount of moisture. Therefore, in order to prevent the water contained in the fuel gas or the oxidizing gas from dew condensation and blocking the flow path, the separator 9 shown in FIG.
Fuel gas and oxidizing gas flowing through the gas flow grooves 3A and 3B of A and 2B are arranged so as to flow from the upper side to the lower side in the direction of gravity.

【0007】図5は、従来の固体高分子電解質型燃料電
池の燃料電池積層体の冷却水流通経路の構成例を示す模
式図である。冷却水は、両端の締付板12の端面上部に
設けられた図示されていない冷却水供給口より供給さ
れ、電気絶縁板11および集電板10に設けられた連通
孔を通流したのち、積層された複数個の単電池9のセパ
レータ2A,2Bの重力方向の上端へと導かれ、冷却水
流通用溝6A,6Bを重力方向の下方へと通流し、集電
板10および電気絶縁板11に設けられた連通孔を通流
したのち、締付板12の端面下部に設けられた冷却水排
出口より外部へ排出される構成である。
FIG. 5 is a schematic diagram showing a configuration example of a cooling water flow path of a fuel cell stack of a conventional solid polymer electrolyte fuel cell. The cooling water is supplied from a cooling water supply port (not shown) provided above the end surface of the clamping plate 12 at both ends, and after flowing through communication holes provided in the electric insulating plate 11 and the current collecting plate 10, The separators 2A and 2B of the plurality of unit cells 9 stacked are guided to the upper ends in the direction of gravity, flow through the cooling water circulation grooves 6A and 6B downward in the direction of gravity, and collect the current collector plate 10 and the electrical insulating plate 11. After passing through the communication holes provided in the clamping plate 12, the cooling water is discharged to the outside from a cooling water discharge port provided in a lower portion of the end face of the fastening plate 12.

【0008】図6は、従来の固体高分子電解質型燃料電
池の燃料電池積層体に用いられている電気絶縁板11の
構成を示す斜視図である。図に見られるように、電気絶
縁板11上のガス流路16は、燃料ガスおよび酸化剤ガ
スの供給側を重力方向の上部に、排出側を重力方向の下
部に配置して構成されており、ガス中の水分の結露によ
る流路の閉塞を防止している。また、冷却水供給流路1
7が重力方向の上部に、冷却水排水流路18が重力方向
の下部に配置されている。
FIG. 6 is a perspective view showing the structure of an electric insulating plate 11 used in a fuel cell stack of a conventional solid polymer electrolyte fuel cell. As shown in the figure, the gas flow path 16 on the electric insulating plate 11 is configured such that the supply side of the fuel gas and the oxidizing gas is arranged at the upper part in the direction of gravity, and the discharge side is arranged at the lower part in the direction of gravity. In addition, blockage of the flow path due to dew condensation of moisture in the gas is prevented. Also, the cooling water supply passage 1
7 is arranged at the upper part in the direction of gravity, and the cooling water drainage channel 18 is arranged at the lower part in the direction of gravity.

【0009】[0009]

【発明が解決しようとする課題】上記のごとく構成され
た固体高分子電解質型燃料電池においては、前述のごと
く、燃料ガスおよび酸化剤ガスは加湿して一定の水分を
含ませたのち膜電極接合体へと供給されている。また、
固体高分子電解質膜の比抵抗を小さくして発電効率を高
く維持し、かつ上記のごとく加湿された燃料ガスおよび
酸化剤ガスの温度低下による結露を防止するために、こ
れらのガスのガス流通路を備えたセパレータに通流する
冷却水を制御して、発電反応に伴って各単電池で生じる
発熱を除去し、各単電池の温度を50℃〜100℃の均
一な温度に保持するよう運転されている。
In the solid polymer electrolyte fuel cell constructed as described above, as described above, the fuel gas and the oxidizing gas are humidified to contain a certain amount of water, and then the membrane electrode is joined. It is supplied to the body. Also,
In order to reduce the specific resistance of the solid polymer electrolyte membrane to maintain high power generation efficiency, and to prevent dew condensation due to the temperature decrease of the humidified fuel gas and oxidizing gas as described above, the gas flow paths of these gases The cooling water flowing through the separator provided with is controlled to remove heat generated in each unit cell due to the power generation reaction, and to maintain the temperature of each unit cell at a uniform temperature of 50 ° C to 100 ° C. Have been.

【0010】しかしながら、複数の単電池を積層し、そ
の両端に集電板、電気絶縁板および締付板を配して構成
した上記のごとき構成の燃料電池積層体においては、両
端に位置する単電池は片側端面を集電板に接触させた状
態で保持されているため、両側に単電池を備えて積層さ
れた単電池に比較して、側面より熱伝導により放熱され
る割合が大きく、このため、積層した単電池の両端に位
置する単電池の温度が中央部に位置する単電池の温度よ
り低くなる傾向がある。この結果、積層した単電池の両
端末に位置する単電池は、固体高分子電解質膜の比抵抗
が大きくなることによって電池特性が低下し、また加湿
された燃料ガスおよび酸化剤ガスが結露し、ガス流通路
が閉塞しやすくなるので、燃料ガスおよび酸化剤ガスの
ガス拡散が阻害され、電池特性が低下するという難点が
ある。
However, in a fuel cell stack having the above-described configuration in which a plurality of cells are stacked and a current collecting plate, an electric insulating plate, and a clamping plate are disposed at both ends thereof, the unit cells located at both ends are arranged. Since the battery is held in a state where one end face is in contact with the current collector plate, the rate of heat dissipation from the side surface is larger than that of the unit cells provided with unit cells on both sides and stacked. Therefore, the temperature of the unit cells located at both ends of the stacked unit cells tends to be lower than the temperature of the unit cells located at the center. As a result, the unit cells located at both ends of the stacked unit cells have a reduced cell characteristic due to an increase in the specific resistance of the solid polymer electrolyte membrane, and humidified fuel gas and oxidizing gas are condensed, Since the gas flow passage is likely to be closed, gas diffusion of the fuel gas and the oxidizing gas is hindered, and there is a problem that the battery characteristics are deteriorated.

【0011】本発明の目的は、複数の単電池を積層して
なる燃料電池積層体の両端に位置する単電池の温度が他
の中央側に位置する単電池の温度とほぼ同等に維持さ
れ、温度低下に伴う電池特性の低下を引き起こすことな
く安定して効率的に運転できる固体高分子電解質型燃料
電池を提供することにある。
An object of the present invention is to maintain the temperature of a unit cell located at both ends of a fuel cell stack formed by stacking a plurality of unit cells substantially equal to the temperature of another unit cell located at the center. An object of the present invention is to provide a solid polymer electrolyte fuel cell that can operate stably and efficiently without causing a decrease in cell characteristics due to a decrease in temperature.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、固体高分子電解質膜よりなる
電解質層の両主面にそれぞれ電極層を密着して膜電極接
合体を形成し、さらにその両外面にガス流通溝および冷
却水流通溝を備えたセパレータを配して単電池を構成
し、複数の単電池を積層方向を水平方向に配して積層
し、その両端に、発生した直流電気を取り出すための集
電板と、電気的な絶縁を保持するための電気絶縁板を順
次配したのち、締付板により締め付けて加圧保持し、冷
却水流通溝に冷却水を通流して膜電極接合体を好ましい
温度に保持し、ガス流通溝に燃料ガスおよび酸化剤ガス
を通流して膜電極接合体の電極層へと供給して集電板よ
り発生した直流電気を取り出す固体高分子電解質型燃料
電池において、 (1)電気絶縁板に、両端末に位置する単電池の温度を
制御する冷却水を通流する冷却水流路、例えば、電気絶
縁板の側面に形成した複数の凹状溝よりなる冷却水流路
を備えて冷却水を通流することとする。
In order to achieve the above object, in the present invention, a membrane electrode assembly is formed by adhering electrode layers to both main surfaces of an electrolyte layer comprising a solid polymer electrolyte membrane. And further, a separator having a gas circulation groove and a cooling water circulation groove on both outer surfaces thereof is arranged to form a unit cell, and a plurality of cells are stacked with the stacking direction arranged in a horizontal direction, and at both ends thereof, A current collecting plate for taking out the generated DC electricity and an electric insulating plate for maintaining electrical insulation are sequentially arranged, then tightened by a tightening plate and held under pressure, and cooling water is supplied to the cooling water circulation groove. The membrane electrode assembly is maintained at a preferable temperature by flowing the fuel gas and the oxidizing gas through the gas flow grooves to supply the membrane electrode assembly with the electrode layer to take out the DC electricity generated from the current collector plate. In a solid polymer electrolyte fuel cell, (1) The electric insulating plate is provided with a cooling water passage through which cooling water for controlling the temperature of the unit cells located at both terminals flows, for example, a cooling water passage comprising a plurality of concave grooves formed on the side surface of the electric insulating plate for cooling. We let water flow.

【0013】(2)また、セパレータの冷却水流通溝を
通流して排出された冷却水を、電気絶縁板に備えた上記
の冷却水流路に通流する冷却水に用いることとする。従
来の構成の燃料電池積層体においては、積層体の両端末
に位置する集電板、電気絶縁板および締付板を介しての
放熱により両端末に位置する単電池の温度が低下してい
た。これに対して、上記(1)のごとく、電気絶縁板に
冷却水流路を備え、本冷却水により両端末に位置する単
電池の温度を基準温度に保持することとすれば、従来の
ごとき両端末の単電池の温度低下による電池特性の低下
が回避されることとなる。また、この冷却水流路を、例
えば、電気絶縁板の側面に形成した複数の凹状溝からな
る冷却水流路とすれば、効果的に熱交換が行われ、両端
末の単電池の温度が制御されることとなる。さらに、上
記(2)のごとく、セパレータの冷却水流通溝を通流し
た冷却水を上記の電気絶縁板に備えた冷却水流路に通流
することとすれば、セパレータにおいて発電反応の熱を
受けて温度上昇した冷却水が電気絶縁板に備えた冷却水
の流路に通流することとなり、電気絶縁板に備えた冷却
水流路に通流する冷却水の温度は、セパレータ、すなわ
ち単電池に流れる冷却水の温度より数℃高くなるので、
両端末からの放熱を抑制し、両端末に位置する単電池の
温度低下を抑えて、他の単電池と同等の電池特性を得る
のに効果的である。
(2) The cooling water discharged through the cooling water flow grooves of the separator is used as the cooling water flowing through the cooling water flow path provided on the electric insulating plate. In the fuel cell stack of the conventional configuration, the temperature of the unit cells located at both ends has decreased due to heat dissipation through the current collector plate, the electric insulating plate and the clamp plate located at both ends of the stack. . On the other hand, as described in the above (1), if the electric insulating plate is provided with a cooling water flow path and the temperature of the cells located at both terminals is maintained at the reference temperature by the main cooling water, the conventional cooling water flow can be obtained. The deterioration of the battery characteristics due to the temperature drop of the unit cell of the terminal is avoided. Further, if this cooling water flow path is, for example, a cooling water flow path composed of a plurality of concave grooves formed on the side surface of the electric insulating plate, heat exchange is effectively performed, and the temperatures of the cells of both terminals are controlled. The Rukoto. Furthermore, as described in (2) above, if the cooling water flowing through the cooling water flow grooves of the separator is allowed to flow through the cooling water flow path provided in the electric insulating plate, the separator receives heat of the power generation reaction. The cooling water whose temperature has risen will flow through the cooling water flow path provided in the electric insulating plate, and the temperature of the cooling water flowing through the cooling water flow path provided in the electric insulating plate will be increased by the separator, i.e., the cells. Because it becomes several degrees higher than the temperature of the flowing cooling water,
This is effective in suppressing heat radiation from both terminals and suppressing a decrease in temperature of the unit cells located at both terminals, thereby obtaining battery characteristics equivalent to those of the other unit cells.

【0014】[0014]

【発明の実施の形態】図1は、本発明における固体高分
子電解質型燃料電池の実施例に用いられる電気絶縁板の
基本構成を示す斜視図であり、また、図2は、本実施例
の電気絶縁板を組み込んで構成された燃料電池積層体の
冷却水流通経路の構成例を示す模式図である。
FIG. 1 is a perspective view showing a basic structure of an electric insulating plate used in an embodiment of a solid polymer electrolyte fuel cell according to the present invention, and FIG. It is a schematic diagram which shows the example of a structure of the cooling water distribution path | route of the fuel cell laminated body comprised by incorporating the electric insulating plate.

【0015】図1に見られるように、本実施例の電気絶
縁板11Aにおいては、図6に示した従来例と同様に、
燃料ガスと酸化剤ガスの供給用のガス流路16がそれぞ
れ上部に配置され、燃料ガスと酸化剤ガスの排気用のガ
ス流路16がそれぞれ下部に配置されており、さらに、
セパレ─タへの冷却水を供給するための冷却水供給流路
17も、従来例と同様に上部に配置されている。本実施
例の図6に示した従来例との差異は、電気絶縁板11A
の一方の側面の中央部分に、複数の隔壁21と、隔壁2
1に隔てられた重力方向に延伸する複数の通流溝22か
らなる冷却水流路が形成され、この冷却水流路の下端
に、複数の単電池9と集電板10を通流した冷却水を導
入する溝入口19が、また、冷却水流路の上端に複数の
通流溝22を通流した冷却水を締付板12を通して外部
に排出するための冷却水排出流路18Aが備えられてい
ることにある。
As shown in FIG. 1, in the electric insulating plate 11A of this embodiment, as in the conventional example shown in FIG.
A gas flow path 16 for supplying the fuel gas and the oxidizing gas is disposed at an upper part, and a gas flow path 16 for discharging the fuel gas and the oxidizing gas is disposed at a lower part, respectively.
A cooling water supply flow path 17 for supplying cooling water to the separator is also arranged at the upper part as in the conventional example. The difference between the present embodiment and the conventional example shown in FIG.
A plurality of partitions 21 and a partition 2
A cooling water flow path comprising a plurality of flow grooves 22 extending in the direction of gravity separated by 1 is formed, and cooling water flowing through the plurality of cells 9 and the current collector plate 10 is formed at the lower end of the cooling water flow path. A groove inlet 19 to be introduced is provided, and a cooling water discharge flow path 18A for discharging cooling water flowing through the plurality of flow grooves 22 to the outside through the fastening plate 12 is provided at an upper end of the cooling water flow path. It is in.

【0016】本構成の冷却水流路を備えた電気絶縁板1
1Aを用いて形成される燃料電池積層体においては、冷
却水は、図2に模式的に表示したように、積層体の両端
末に配設された締付板12の端面に備えられた図示され
ていない冷却水供給口より導入され、電気絶縁板11A
と集電板10に設けられた冷却水供給流路を通過した後
に、複数個積層されている単電池9のセパレータに備え
られた冷却水流通用溝に分流して通流され、発電反応に
伴う発熱を吸収し、単電池を冷却する。発熱を吸収して
温度上昇した冷却水は、重力方向下端に配された流路に
合流され、集電板10に設けられた排出流路を経て、図
1に示した電気絶縁板11Aの溝入口19へと導入さ
れ、前述の重力方向に延伸する複数の通流溝22からな
る冷却水流路を通流したのち、冷却水排出流路18Aを
通り、締付板12の端面に備えられた冷却水排出口より
外部へと排出される。
The electric insulating plate 1 having the cooling water flow path of the present configuration
In the fuel cell stack formed using 1A, as shown schematically in FIG. 2, the cooling water is provided on the end face of the clamping plate 12 disposed at both ends of the stack. Introduced from the cooling water supply port which is not
After passing through the cooling water supply flow path provided in the current collecting plate 10, it is divided and passed through the cooling water distribution grooves provided in the separators of the plurality of unit cells 9, and is caused by the power generation reaction. Absorb heat and cool unit cells. The cooling water whose temperature has risen by absorbing the heat is merged into a flow path provided at the lower end in the direction of gravity, passes through a discharge flow path provided in the current collector plate 10, and is formed into a groove of the electric insulating plate 11A shown in FIG. After being introduced into the inlet 19 and flowing through the cooling water flow path composed of the plurality of flow grooves 22 extending in the above-described gravity direction, the cooling water flow path 18A is provided on the end face of the fastening plate 12 through the cooling water discharge flow path 18A. It is discharged to the outside from the cooling water discharge port.

【0017】したがって本構成においては、燃料電池積
層体の両端末に配した電気絶縁板11Aが、単電池の発
熱を吸収して温度上昇した冷却水によって温度制御され
ることとなるので、燃料電池積層体の両端に位置する単
電池の温度を他の中央側に位置する単電池の温度とほぼ
同等に維持することが可能となり、温度低下に伴う電池
特性の低下を引き起こすことなく安定して効率的に運転
できることとなる。
Therefore, in this configuration, the electric insulating plates 11A disposed at both ends of the fuel cell stack are controlled in temperature by the cooling water whose temperature has been increased by absorbing the heat generated by the unit cells. It is possible to maintain the temperature of the unit cells located at both ends of the stacked body almost equal to the temperature of the unit cells located at the other central side, and to achieve a stable efficiency without causing a decrease in the battery characteristics due to the temperature decrease. It will be able to drive in a typical way.

【0018】[0018]

【発明の効果】以上に述べたように、本発明によれば、
固体高分子電解質膜よりなる電解質層の両主面にそれぞ
れ電極層を密着して膜電極接合体を形成し、さらにその
両外面にガス流通溝および冷却水流通溝を備えたセパレ
ータを配して単電池を構成し、複数の単電池を積層方向
を水平方向に配して積層し、その両端に、発生した直流
電気を取り出すための集電板と、電気的な絶縁を保持す
るための電気絶縁板を順次配したのち、締付板により締
め付けて加圧保持し、冷却水流通溝に冷却水を通流して
膜電極接合体を好ましい温度に保持し、ガス流通溝に燃
料ガスおよび酸化剤ガスを通流して膜電極接合体の電極
層へと供給して集電板より発生した直流電気を取り出す
固体高分子電解質型燃料電池において、 (1)電気絶縁板に、両端末に位置する単電池の温度を
制御する冷却水を通流する冷却水流路、例えば、電気絶
縁板の側面に形成した複数の凹状縦溝よりなる冷却水流
路を備えて冷却水を通流することとしたので、燃料電池
積層体の両端に位置する単電池の温度が他の中央側に位
置する単電池の温度とほぼ同等に維持され、温度低下に
伴う電池特性の低下を引き起こすことなく安定して効率
的に運転できる固体高分子電解質型燃料電池が得られる
こととなった。する。
As described above, according to the present invention,
An electrode layer is adhered to both main surfaces of an electrolyte layer composed of a solid polymer electrolyte membrane to form a membrane electrode assembly, and a separator provided with a gas flow groove and a cooling water flow groove on both outer surfaces thereof is arranged. A unit cell is formed, a plurality of unit cells are stacked with the stacking direction arranged in the horizontal direction, and a current collecting plate for taking out generated DC electricity and electricity for maintaining electrical insulation are provided at both ends. After sequentially arranging the insulating plates, they are clamped and held by a clamping plate, and pressurized and held. In a solid polymer electrolyte fuel cell in which gas flows and is supplied to the electrode layer of the membrane electrode assembly to extract DC electricity generated from the current collector, (1) the electric insulating plate has Cooling water flowing through cooling water that controls battery temperature Channels, for example, are provided with a cooling water channel comprising a plurality of concave vertical grooves formed on the side surfaces of the electric insulating plate, so that the cooling water flows therethrough. Is maintained almost equal to the temperature of the other unit cells located on the center side, and a solid polymer electrolyte fuel cell that can operate stably and efficiently without causing a decrease in cell characteristics due to a temperature decrease is obtained. It became. I do.

【0019】(2)また、セパレータの冷却水流通溝を
通流して排出された冷却水を、上記の電気絶縁板に備え
た冷却水流路に通流する冷却水に用いることとすれば、
単電池の発熱を受けて温度上昇した冷却水により燃料電
池積層体の両端に位置する単電池が効果的に温度制御さ
れることとなるので、温度低下に伴う電池特性の低下を
引き起こすことなく安定して効率的に運転できる固体高
分子電解質型燃料電池として好適である。
(2) If the cooling water discharged through the cooling water flow groove of the separator is used as the cooling water flowing through the cooling water flow path provided in the electric insulating plate,
The temperature of the cells located at both ends of the fuel cell stack is effectively controlled by the cooling water whose temperature has risen due to the heat generated by the cells, so it is stable without lowering the cell characteristics due to the temperature drop It is suitable as a solid polymer electrolyte type fuel cell which can be efficiently operated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における固体高分子電解質型燃料電池の
実施例に用いられる電気絶縁板の基本構成を示す斜視図
FIG. 1 is a perspective view showing a basic configuration of an electric insulating plate used in an embodiment of a solid polymer electrolyte fuel cell according to the present invention.

【図2】図1の電気絶縁板を組み込んで構成された燃料
電池積層体の冷却水流通経路の構成例を示す模式図
FIG. 2 is a schematic view showing a configuration example of a cooling water flow path of a fuel cell stack configured by incorporating the electric insulating plate of FIG. 1;

【図3】従来の固体高分子電解質型燃料電池の単電池の
構成を模式的に示した分解断面図
FIG. 3 is an exploded cross-sectional view schematically showing a configuration of a unit cell of a conventional solid polymer electrolyte fuel cell.

【図4】従来の固体高分子電解質型燃料電池の燃料電池
積層体の構成を模式的に示した側面図
FIG. 4 is a side view schematically showing a configuration of a fuel cell stack of a conventional solid polymer electrolyte fuel cell.

【図5】従来の固体高分子電解質型燃料電池の燃料電池
積層体の冷却水流通経路の構成例を示す模式図
FIG. 5 is a schematic view showing a configuration example of a cooling water flow path of a fuel cell stack of a conventional solid polymer electrolyte fuel cell.

【図6】従来の固体高分子電解質型燃料電池の燃料電池
積層体に用いられている電気絶縁板の構成を示す斜視図
FIG. 6 is a perspective view showing a configuration of an electric insulating plate used in a fuel cell stack of a conventional solid polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1 膜電極接合体 1A 電解質層 1B 燃料電極層 1C 酸化剤電極層 2A,2B セパレ─タ 3A,3B ガス流通用溝 6A,6B 冷却水流通用溝 10 集電板 11A 電気絶縁板 12 締付板 16 ガス流路 17 冷却水供給流路 18A 冷却水排出流路 19 溝入口 21 隔壁 22 通流溝 DESCRIPTION OF SYMBOLS 1 Membrane electrode assembly 1A Electrolyte layer 1B Fuel electrode layer 1C Oxidizer electrode layer 2A, 2B Separator 3A, 3B Gas circulation groove 6A, 6B Cooling water circulation groove 10 Current collector plate 11A Electrical insulating plate 12 Tightening plate 16 Gas flow path 17 Cooling water supply flow path 18A Cooling water discharge flow path 19 Groove entrance 21 Partition wall 22 Communication groove

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質膜よりなる電解質層の両
主面にそれぞれ電極層を密着して膜電極接合体を形成
し、さらにその両外面にガス流通溝および冷却水流通溝
を備えたセパレータを配して単電池を構成し、複数の単
電池を積層方向を水平方向に配して積層し、その両端
に、発生した直流電気を取り出すための集電板と、電気
的な絶縁を保持するための電気絶縁板を順次配したの
ち、締付板により締め付けて加圧保持し、冷却水流通溝
に冷却水を通流して膜電極接合体を好ましいの温度に保
持し、ガス流通溝に燃料ガスおよび酸化剤ガスを通流し
て膜電極接合体の電極層へと供給して集電板より発生し
た直流電気を取り出す固体高分子電解質型燃料電池にお
いて、前記の電気絶縁板が、両端末に位置する単電池の
温度を制御する冷却水を通流する冷却水流路を備えてな
ることを特徴とする固体高分子電解質型燃料電池。
1. A membrane electrode assembly is formed by adhering electrode layers to both main surfaces of an electrolyte layer comprising a solid polymer electrolyte membrane, and further having a gas flow groove and a cooling water flow groove on both outer surfaces thereof. A separator is arranged to constitute a unit cell, a plurality of unit cells are arranged in a stacking direction in a horizontal direction and stacked, and at both ends, a current collector plate for extracting generated DC electricity and an electrical insulation are provided. After sequentially arranging electrical insulating plates for holding, tightening by a fastening plate and holding under pressure, flowing cooling water through a cooling water flow groove to maintain the membrane electrode assembly at a preferable temperature, In a solid polymer electrolyte fuel cell, a fuel gas and an oxidizing gas are passed through and supplied to the electrode layer of the membrane electrode assembly to take out the DC electricity generated from the current collector plate. Cooling water that controls the temperature of the cell located at the terminal Solid polymer electrolyte fuel cell characterized by comprising a cooling water passage to flow.
【請求項2】請求項1に記載の固体高分子電解質型燃料
電池において、電気絶縁板に備えた前記の冷却水流路
が、電気絶縁板の側面に形成された複数の凹状溝よりな
ることを特徴とする固体高分子電解質型燃料電池。
2. The solid polymer electrolyte fuel cell according to claim 1, wherein the cooling water flow path provided on the electric insulating plate comprises a plurality of concave grooves formed on a side surface of the electric insulating plate. A solid polymer electrolyte fuel cell.
【請求項3】請求項1または2に記載の固体高分子電解
質型燃料電池において、電気絶縁板に備えた前記の冷却
水流路に通流する冷却水が、セパレータの冷却水流通溝
を通流して排出された冷却水であることを特徴とする固
体高分子電解質型燃料電池。
3. The solid polymer electrolyte fuel cell according to claim 1, wherein the cooling water flowing through the cooling water flow path provided on the electric insulating plate flows through the cooling water flow groove of the separator. A solid polymer electrolyte fuel cell, characterized in that the cooling water is discharged after cooling.
JP9116595A 1997-05-07 1997-05-07 Solid high polymer electrolyte type fuel cell Withdrawn JPH10308229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9116595A JPH10308229A (en) 1997-05-07 1997-05-07 Solid high polymer electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9116595A JPH10308229A (en) 1997-05-07 1997-05-07 Solid high polymer electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH10308229A true JPH10308229A (en) 1998-11-17

Family

ID=14691043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9116595A Withdrawn JPH10308229A (en) 1997-05-07 1997-05-07 Solid high polymer electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH10308229A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367664A (en) * 2001-06-07 2002-12-20 Toyota Motor Corp Fuel cell
EP1298754A1 (en) * 2001-09-27 2003-04-02 Siemens Aktiengesellschaft Method for operating a fuel cell stack and fuel cell stack
KR20040005139A (en) * 2002-07-08 2004-01-16 현대자동차주식회사 Bipolar plate for fuel cell stack
JP2004022343A (en) * 2002-06-17 2004-01-22 Mitsubishi Nuclear Fuel Co Ltd Solid electrolyte fuel cell
JP2005085573A (en) * 2003-09-08 2005-03-31 Toyota Motor Corp Fuel cell
US7160640B2 (en) 2003-01-15 2007-01-09 Ballard Power Systems Inc. Fuel cell stack with passive end cell heater
JP2007053111A (en) * 2006-10-26 2007-03-01 Sanyo Electric Co Ltd Separator for fuel cell and fuel cell using the same
JP2007087766A (en) * 2005-09-22 2007-04-05 Toyota Motor Corp Fuel cell stack
JP2008108498A (en) * 2006-10-24 2008-05-08 Nippon Soken Inc Fuel cell
USRE42720E1 (en) 2001-06-06 2011-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell mounting structure
JP2012028233A (en) * 2010-07-27 2012-02-09 Nissan Motor Co Ltd Fuel cell system
JP2015088468A (en) * 2013-09-27 2015-05-07 本田技研工業株式会社 Fuel cell stack
JP2015111545A (en) * 2013-11-06 2015-06-18 本田技研工業株式会社 Fuel cell stack
JP2015162433A (en) * 2014-02-28 2015-09-07 本田技研工業株式会社 fuel cell stack
JP2016219314A (en) * 2015-05-22 2016-12-22 本田技研工業株式会社 Fuel cell stack
CN113555579A (en) * 2021-07-27 2021-10-26 中汽创智科技有限公司 Collector plate of fuel cell stack

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42720E1 (en) 2001-06-06 2011-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell mounting structure
JP2002367664A (en) * 2001-06-07 2002-12-20 Toyota Motor Corp Fuel cell
EP1298754A1 (en) * 2001-09-27 2003-04-02 Siemens Aktiengesellschaft Method for operating a fuel cell stack and fuel cell stack
WO2003030290A3 (en) * 2001-09-27 2004-01-22 Siemens Ag Method for operating a fuel cell stack and corresponding fuel cell stack
JP4558261B2 (en) * 2002-06-17 2010-10-06 三菱原子燃料株式会社 Solid oxide fuel cell
JP2004022343A (en) * 2002-06-17 2004-01-22 Mitsubishi Nuclear Fuel Co Ltd Solid electrolyte fuel cell
KR20040005139A (en) * 2002-07-08 2004-01-16 현대자동차주식회사 Bipolar plate for fuel cell stack
US7160640B2 (en) 2003-01-15 2007-01-09 Ballard Power Systems Inc. Fuel cell stack with passive end cell heater
JP2005085573A (en) * 2003-09-08 2005-03-31 Toyota Motor Corp Fuel cell
JP2007087766A (en) * 2005-09-22 2007-04-05 Toyota Motor Corp Fuel cell stack
JP2008108498A (en) * 2006-10-24 2008-05-08 Nippon Soken Inc Fuel cell
JP2007053111A (en) * 2006-10-26 2007-03-01 Sanyo Electric Co Ltd Separator for fuel cell and fuel cell using the same
JP2012028233A (en) * 2010-07-27 2012-02-09 Nissan Motor Co Ltd Fuel cell system
JP2015088468A (en) * 2013-09-27 2015-05-07 本田技研工業株式会社 Fuel cell stack
US9231259B2 (en) 2013-09-27 2016-01-05 Honda Motor Co., Ltd. Fuel cell stack
JP2015111545A (en) * 2013-11-06 2015-06-18 本田技研工業株式会社 Fuel cell stack
JP2015162433A (en) * 2014-02-28 2015-09-07 本田技研工業株式会社 fuel cell stack
JP2016219314A (en) * 2015-05-22 2016-12-22 本田技研工業株式会社 Fuel cell stack
CN113555579A (en) * 2021-07-27 2021-10-26 中汽创智科技有限公司 Collector plate of fuel cell stack

Similar Documents

Publication Publication Date Title
US5773160A (en) Electrochemical fuel cell stack with concurrent flow of coolant and oxidant streams and countercurrent flow of fuel and oxidant streams
US5798186A (en) Method and apparatus for commencing operation of a fuel cell electric power generation system below the freezing temperature of water
EP0736226B1 (en) Electrochemical fuel cell employing ambient air as the oxidant and coolant
US6582844B2 (en) Method of cooling a fuel cell
US7767355B2 (en) Fuel cell stack with dummy cell
JP3424223B2 (en) Fuel cell stack structure
US20100068599A1 (en) Fuel cell stack
JPH10308229A (en) Solid high polymer electrolyte type fuel cell
JPH08167424A (en) Solid high polymer electrolyte fuel cell
US7399548B2 (en) Fuel cell stack
CA2400452C (en) A fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP3448550B2 (en) Polymer electrolyte fuel cell stack
JP3734134B2 (en) Polymer electrolyte fuel cell
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JP2001118587A (en) Solid polymer type fuel cell and method for operating the same
JPH08203553A (en) Solid polymer electrolyte fuel cell
JP3146758B2 (en) Solid polymer electrolyte fuel cell
JP2005285402A (en) Fuel cell stack
JP3673252B2 (en) Fuel cell stack
JP3875612B2 (en) Fuel cell stack
JPH05190193A (en) Solid high polymeric electrolyte type fuel cell
JP3780775B2 (en) Solid polymer electrolyte fuel cell
JP3350260B2 (en) Solid polymer electrolyte fuel cell
JPH09161821A (en) Solid polymer electrolytic fuel cell
JPH0963623A (en) Solid polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040830