JP3142700B2 - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereofInfo
- Publication number
- JP3142700B2 JP3142700B2 JP05268748A JP26874893A JP3142700B2 JP 3142700 B2 JP3142700 B2 JP 3142700B2 JP 05268748 A JP05268748 A JP 05268748A JP 26874893 A JP26874893 A JP 26874893A JP 3142700 B2 JP3142700 B2 JP 3142700B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- semiconductor substrate
- temperature
- heterojunction
- dielectric thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims description 54
- 238000004519 manufacturing process Methods 0.000 title description 8
- 239000010408 film Substances 0.000 claims description 38
- 239000000758 substrate Substances 0.000 claims description 36
- 239000010409 thin film Substances 0.000 claims description 36
- 229910052454 barium strontium titanate Inorganic materials 0.000 claims description 27
- 229910002113 barium titanate Inorganic materials 0.000 claims description 16
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 8
- 125000005842 heteroatom Chemical group 0.000 claims description 8
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 230000005669 field effect Effects 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 11
- 229910052681 coesite Inorganic materials 0.000 description 9
- 229910052906 cristobalite Inorganic materials 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 235000012239 silicon dioxide Nutrition 0.000 description 9
- 229910052682 stishovite Inorganic materials 0.000 description 9
- 229910052905 tridymite Inorganic materials 0.000 description 9
- 239000003989 dielectric material Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000000992 sputter etching Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- NSXCBNDGHHHVKT-UHFFFAOYSA-N [Ti].[Sr].[Ba] Chemical compound [Ti].[Sr].[Ba] NSXCBNDGHHHVKT-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B53/00—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
Landscapes
- Formation Of Insulating Films (AREA)
- Junction Field-Effect Transistors (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、UHF帯以上の高周波
領域で使用する半導体装置及びその製造方法の改良に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a semiconductor device used in a high-frequency region above the UHF band and a method of manufacturing the same.
【0002】[0002]
【従来の技術】近年、半導体技術の進歩に伴い、半導体
集積回路の集積度はめざましい勢いで向上してきた。特
に、ヘテロ接合を用いた半導体素子の集積化は微細加工
技術の開発によりサブミクロン化が可能となり、1GH
z以上の高周波帯で優れた特性を示すことが確認され、
既に多くの分野で実用化されている。そのような集積回
路の中のキャパシタについては、窒化珪素膜や酸化珪素
膜の薄膜化技術により容量の増加、及び面積の縮小化が
進められてきた。2. Description of the Related Art In recent years, with the progress of semiconductor technology, the degree of integration of semiconductor integrated circuits has been remarkably improved. In particular, the integration of a semiconductor device using a heterojunction can be made submicron due to the development of microfabrication technology.
It is confirmed that it shows excellent characteristics in the high frequency band of z or more,
It has already been put to practical use in many fields. Regarding capacitors in such an integrated circuit, an increase in capacity and a reduction in area have been promoted by a technique of thinning a silicon nitride film or a silicon oxide film.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来よ
りキャパシタ形成用として用いられてきた窒化珪素膜又
は酸化珪素膜のような誘電体は、その誘電率εrが小さ
く(εr<7)、このため、これ等の窒化珪素膜等の誘
電体を例えばバイパスコンデンサ等の大きな容量値を持
つキャパシタとして集積しようとすると、そのキャパシ
タがチップ面積に占める割合が非常に大きくなり、その
結果、全体として小面積のチップに集積化することが困
難である欠点があった。特に、ヘテロ接合の半導体基板
は高価であって、大きなチップ面積はコストアップにつ
ながるため、窒化珪素膜等の誘電体より成るキャパシタ
を大面積のヘテロ接合基板には集積化していない。However, a dielectric such as a silicon nitride film or a silicon oxide film which has been conventionally used for forming a capacitor has a small dielectric constant εr (εr <7). If a dielectric such as a silicon nitride film is to be integrated as a capacitor having a large capacitance value such as a bypass capacitor, the ratio of the capacitor to the chip area becomes extremely large, and as a result, the overall area of the chip becomes small. There is a drawback that it is difficult to integrate on a chip. In particular, since a heterojunction semiconductor substrate is expensive and a large chip area leads to an increase in cost, a capacitor made of a dielectric such as a silicon nitride film is not integrated on a large-area heterojunction substrate.
【0004】そこで、例えば高誘電体材料を用いてキャ
パシタを形成することが考えられるが、この考えでは、
その製造方法として、高誘電体形成時にはヘテロ基板形
成温度よりも高温の熱処理工程が必要であるため、その
ような高温の熱処理工程を行うと、半導体基板のヘテロ
界面の急峻性が劣化し、ヘテロ接合トランジスタ本来の
特性が得られないという問題があった。Therefore, for example, it is conceivable to form a capacitor using a high dielectric material.
As a manufacturing method, a heat treatment step at a temperature higher than the hetero-substrate formation temperature is required at the time of forming a high dielectric substance. Therefore, when such a high-temperature heat treatment step is performed, the steepness of the hetero interface of the semiconductor substrate deteriorates, There is a problem that the original characteristics of the junction transistor cannot be obtained.
【0005】本発明は上記課題に鑑み、その目的は、大
きな容量値のキャパシタ等を小面積のチップに集積しつ
つ、ヘテロ界面の急峻性の劣化のないヘテロ接合トラン
ジスタを備えた半導体装置及びその製造方法を提供する
ことにある。The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device having a heterojunction transistor in which a capacitor or the like having a large capacitance value is integrated on a chip having a small area and the steepness of a heterointerface is not deteriorated. It is to provide a manufacturing method.
【0006】[0006]
【課題を解決するための手段】前記の課題を解決するた
め、本発明者等は、その鋭意研究の結果、高誘電体薄膜
として、半導体基板のヘテロ結合の形成温度よりも低い
熱処理温度で形成可能な材料、特にチタン酸バリウムと
チタン酸ストロンチウムの混晶より成り、且つそのチタ
ン酸バリウムの組成比が70%以下の高誘電率材料があ
る点を見い出し、この誘電体材料を使用して、ヘテロ接
合を有する半導体基板上に大容量のキャパシタ等を形成
することとする。In order to solve the above problems SUMMARY OF THE INVENTION The present inventors have found that the result of the extensive studies, as a high-dielectric thin film, at a lower heat treatment temperature than the formation temperature of the heterojunction of the semiconductor substrate It is found that there is a material which can be formed, particularly a high dielectric constant material which is composed of a mixed crystal of barium titanate and strontium titanate and has a composition ratio of barium titanate of 70% or less. A large-capacity capacitor or the like is formed on a semiconductor substrate having a hetero junction.
【0007】すなわち、請求項1記載の発明の具体的な
構成は、半導体装置として、ヘテロ接合を有する半導体
基板と、前記半導体基板上に形成され、前記ヘテロ接合
の形成温度以下の熱処理温度で形成可能な高誘電体薄膜
とを備え、前記高誘電体薄膜を、チタン酸バリウムとチ
タン酸ストロンチウムとの混晶より成り、前記チタン酸
バリウムの組成比が70%以下の誘電体材料とする構成
である。 That is, a specific configuration of the invention according to claim 1 is that a semiconductor device is formed on a semiconductor substrate having a heterojunction and a heat treatment temperature lower than the formation temperature of the heterojunction. and a possible high dielectric thin film, the high dielectric thin film consists of a mixed crystal of barium titanate and strontium titanate, the composition ratio of the barium titanate is 70% or less of the dielectric material constituting It is.
【0008】[0008]
【作用】したがって、本発明では、ヘテロ接合を有する
半導体基板の上に形成する高誘電体薄膜として、チタン
酸バリウムとチタン酸ストロンチウムとの混晶で前記チ
タン酸バリウムの組成比が70%以下の誘電体材料が使
用されているので、その誘電体材料の誘電率が高い分、
同一膜厚でも、チップに占める面積が従来の窒化珪素膜
等を使用する場合に比して縮小して、チップ面積が大幅
に縮小する。[Action] Accordingly, the present invention, as a high dielectric thin film formed on a semiconductor substrate having a heterojunction, the composition ratio of the barium titanate in the mixed crystal of titanium barium strontium titanate 70% Since the following dielectric materials are used, the dielectric constant of the dielectric material is high,
Even with the same film thickness, the area occupied in the chip is reduced as compared with the case where a conventional silicon nitride film or the like is used, and the chip area is significantly reduced.
【0009】しかも、前記高誘電体薄膜は、半導体基板
のヘテロ接合の形成温度よりも低い温度で形成されるの
で、その半導体基板のヘテロ界面の急俊性は良好に確保
される。 [0009] Moreover, the high-dielectric thin film, since it is formed at a temperature lower than the formation temperature of the heterojunction of the semiconductor substrate, rapid Shun of the hetero interface of the semiconductor substrate is secured satisfactorily <br/> .
【0010】[0010]
【実施例】以下、本発明の一実施例を図面に基いて説明
する。An embodiment of the present invention will be described below with reference to the drawings.
【0011】図1は本発明の半導体装置の断面図を示
す。同図は、ヘテロ接合を有する半導体基板を使用して
電界効果トランジスタ(以下、MODFETと略す)2
0を形成すると共に、前記半導体基板上に大容量のキャ
パシタ(容量素子)21と、抵抗素子(図示せず)とを
形成したものである。FIG. 1 is a sectional view of a semiconductor device according to the present invention. The figure shows a field effect transistor (hereinafter abbreviated as MODFET) 2 using a semiconductor substrate having a heterojunction.
0, and a large-capacity capacitor (capacitance element) 21 and a resistance element (not shown) are formed on the semiconductor substrate.
【0012】同図において、1はGaAsより成る半絶
縁性の半導体基板であって、GaAs/AlGaAsの
ヘテロ接合(モジュレーションドーピング構造)を有
し、このヘテロ接合の形成温度は例えば摂氏620度で
ある。2は前記半導体基板1上にメサエッチングにより
形成されたMODFET20の活性領域、3は前記半導
体基板1の上に形成されたSiN膜、4は前記SiN膜
3の上に形成されたSiO2 膜である。In FIG. 1, reference numeral 1 denotes a semi-insulating semiconductor substrate made of GaAs having a GaAs / AlGaAs heterojunction (modulation doping structure).
And, the formation temperature of the heterojunction is, for example, C. 620 degrees. 2 is an active region of the MODFET 20 formed on the semiconductor substrate 1 by mesa etching, 3 is a SiN film formed on the semiconductor substrate 1, and 4 is an SiO2 film formed on the SiN film 3. .
【0013】また、5は、前記MODFET20の活性
領域2により形成された段差の下段の領域に形成された
キャパシタ21の下部電極であって、前記SiO2 膜4
の上に形成されている。6は前記キャパシタ21の誘電
体層であって、チタン酸バリウムとチタン酸ストロンチ
ウムの混晶(以下、BSTOと略記する)を使用した薄
膜より成り、前記チタン酸バリウムの組成比が全体に対
して70%以下の誘電体材料で構成され、その形成の熱
処理温度は、前記半導体基板1のヘテロ接合の形成温度
(摂氏620度)以下の温度(例えば摂氏600度)で
ある。また、7はキャパシタ21の上部電極である。Reference numeral 5 denotes a lower electrode of the capacitor 21 formed in a region below the step formed by the active region 2 of the MODFET 20.
Is formed on. Reference numeral 6 denotes a dielectric layer of the capacitor 21, which is formed of a thin film using a mixed crystal of barium titanate and strontium titanate (hereinafter abbreviated as BSTO), and has a composition ratio of the barium titanate to the whole. It is made of a dielectric material of 70% or less, and the heat treatment temperature for the formation is a temperature (for example, 600 degrees Celsius) or less, which is lower than the formation temperature (620 degrees Celsius) of the hetero junction of the semiconductor substrate 1. Reference numeral 7 denotes an upper electrode of the capacitor 21.
【0014】更に、8はスペーサとしてのSiO2 膜、
9はMODFET20のオーミック電極、10はゲート
電極、11はMODFET20の上に形成したSiN
膜、12はMODFET20、キャパシタ21等の素子
を接続する配線、13は前記SiN膜11に形成した配
線接続用の開口である。Further, 8 is an SiO 2 film as a spacer,
9 is an ohmic electrode of the MODFET 20, 10 is a gate electrode, and 11 is a SiN formed on the MODFET 20.
Reference numeral 12 denotes a wiring connecting elements such as the MODFET 20 and the capacitor 21, and reference numeral 13 denotes a wiring connection opening formed in the SiN film 11.
【0015】次に、前記図1の半導体装置の製造方法を
図2に基いて説明する。先ず、分子線エピタキシャル法
により摂氏620度でGaAsの半導体基板1にGaA
s/AlGaAsのヘテロ接合(モジュレーションドー
ピング構造)を成長形成した後、この半導体基板1に対
してメサエッチングを行なって選択的活性領域2及び抵
抗を形成する(同図a参照)。Next, a method of manufacturing the semiconductor device of FIG. 1 will be described with reference to FIG. First, GaAs is deposited on a GaAs semiconductor substrate 1 at 620 degrees Celsius by molecular beam epitaxy.
After growing a heterojunction (modulation doping structure) of s / AlGaAs, the semiconductor substrate 1 is subjected to mesa etching to form a selective active region 2 and a resistor (see FIG. 2A).
【0016】続いて、約3000ÅのSiO2 膜3をC
VD法で堆積し、そのSiO2 膜3上にPt/Tiより
成るキャパシタ21の下部電極層5を形成し、更にその
下部電極層5上にBSTO薄膜6をアルコラートのゾル
・ゲル液のスピンコートにより回転数をコントロールし
ながら塗布し、酸素又はオゾンの分圧が0.2気圧以上
の雰囲気の下で、熱処理温度が前記半導体基板1のヘテ
ロ接合の成長形成温度(摂氏620度)以下の温度、例
えば摂氏600度で1分間継続する焼成を行うことによ
り、約2500ÅのBSTO薄膜6より成る誘電体層を
形成する。その後、前記誘電体層(BSTO薄膜6)の
上にPt層をキャパシタ21の上部電極7として形成す
る。その後は、フォトリソグラフィーを用いてメサの下
部にパターニングした後、キャパシタ21となる部分以
外の上部電極5及びBSTO膜6をアルゴンイオンによ
るイオンミリングを用いて加速電圧1keV、及び真空
度10-4torrの条件でフォトレジストマスクにより
選択的にエッチングし除去し、次いでイオンミリングを
前記と同一の条件で用いてフォトレジストマスクにより
下部電極5のパターニングを行って、キャパシタ21を
形成する(同図b参照)。Subsequently, the SiO 2 film 3 having a thickness of about 3000
The lower electrode layer 5 of the capacitor 21 made of Pt / Ti is formed on the SiO2 film 3 by the VD method, and the BSTO thin film 6 is further formed on the lower electrode layer 5 by spin coating of a sol-gel liquid of alcoholate. Coating is performed while controlling the number of revolutions, and in an atmosphere where the partial pressure of oxygen or ozone is 0.2 atm or more, the heat treatment temperature is a temperature not higher than the growth formation temperature of the heterojunction of the semiconductor substrate 1 (620 degrees Celsius), For example, by performing sintering at 600 degrees Celsius for one minute, a dielectric layer made of the BSTO thin film 6 of about 2500 ° is formed. Thereafter, a Pt layer is formed on the dielectric layer (BSTO thin film 6) as the upper electrode 7 of the capacitor 21. Thereafter, after patterning the lower portion of the mesa by using photolithography, the upper electrode 5 and the BSTO film 6 other than the portion to be the capacitor 21 are accelerated at an acceleration voltage of 1 keV and a degree of vacuum of 10 -4 torr by ion milling with argon ions. The photoresist 21 is selectively etched and removed under the same conditions, and then the lower electrode 5 is patterned by the photoresist mask using ion milling under the same conditions as above to form the capacitor 21 (see FIG. 2B). .
【0017】その後、更にフォトレジストマスクを用い
てSiO2 膜4をフッ酸によるウェットエッチングによ
り除去し、更にSiN膜3をCF4 を用いた低ダメージ
プラズマエッチングによって除去することにより半導体
基板1のメサ部分及びその周囲を露出させ、4000Å
のSiO2 膜4を常圧CVD法により基板1の全面に形
成する。続いて、フォトレジストを用いてSiO2 膜4
をエッチングした後、AuGeNi/Auの金属を各々
2500Å/2000Å真空蒸着し、リフトオフし、摂
氏500度5分間アルゴン雰囲気でアロイすることによ
り、MODFET20のオーミック電極9を形成する。
更に、フォトレジストマスクを用いてMODFET20
のゲート部のパターニングを行い、SiO2 膜4をエッ
チングし、Ti/Pt/Auを各々500Å/1500
Å/2000Å真空蒸着することにより、MODFET
20のゲート電極10を形成する(同図c参照)。Thereafter, the SiO2 film 4 is further removed by wet etching using hydrofluoric acid using a photoresist mask, and the SiN film 3 is further removed by low-damage plasma etching using CF4. Expose the surrounding area, 4000Å
Is formed on the entire surface of the substrate 1 by the normal pressure CVD method. Subsequently, a SiO2 film 4 is formed using a photoresist.
Is etched, and a metal of AuGeNi / Au is vacuum-deposited at 2500/2000 ° each, lifted off, and alloyed in an argon atmosphere at 500 ° C. for 5 minutes to form the ohmic electrode 9 of the MODFET 20.
Further, the MODFET 20 is formed using a photoresist mask.
Is patterned, the SiO2 film 4 is etched, and Ti / Pt / Au is formed at 500.degree./1500.
Å / 2000Å MODFET by vacuum deposition
20 gate electrodes 10 are formed (see FIG. 3C).
【0018】最後に、プラズマCVD法によりSiN膜
11を5000Å堆積した後、フォトレジストマスクを
用いてCF4 ガスを用いた反応性イオンエッチングによ
りSiN膜11の所定箇所にコンタクトホール13…を
開孔する。そして、このSiN膜11の上にTi/Au
を各々500Å/5000Å堆積し、フォトレジストマ
スクを用いてイオンミリングによってエッチングして、
配線12…を形成し、その後、必要であれば保護膜とし
て酸化珪素膜を5000Å程度堆積し、必要な部分を開
孔して半導体集積回路が完成する。Finally, after depositing 5000 nm of SiN film 11 by the plasma CVD method, contact holes 13 are formed at predetermined positions of SiN film 11 by reactive ion etching using CF4 gas using a photoresist mask. . Then, Ti / Au is formed on the SiN film 11.
Are deposited 500/5000 each and etched by ion milling using a photoresist mask,
Wirings 12 are formed, and thereafter, if necessary, a silicon oxide film is deposited as a protective film to a thickness of about 5000 °, and necessary portions are opened to complete a semiconductor integrated circuit.
【0019】したがって、本実施例では、GaAs/A
lGaAsのヘテロ接合を有する半導体基板1上に形成
した誘電体層(高誘電体薄膜)として、複合金属酸化物
であるBSTO薄膜(チタン酸バリウムとチタン酸スト
ロンチウムとの混晶より成り、且つ前記チタン酸バリウ
ムの組成比が70%以下の誘電体材料の薄膜)6を使用
するので、そのBSTO薄膜6が高誘電率である分、チ
ップの小面積の部分に配置できる。Therefore, in this embodiment, GaAs / A
As a dielectric layer (high dielectric thin film) formed on the semiconductor substrate 1 having a heterojunction of 1GaAs, a BSTO thin film (composed of a mixed crystal of barium titanate and strontium titanate), Since the dielectric material thin film 6 having a barium acid composition ratio of 70% or less is used, the BSTO thin film 6 has a high dielectric constant and can be disposed in a small area of the chip.
【0020】いま、本実施例の条件で製造したBSTO
薄膜6の誘電率εrを従来のSiN膜及びSiO2 膜の
誘電率と比較したものを図3aに示す。また、比較のた
めに膜厚100nmで1000pFのキャパシタを製造
するために必要なキャパシタ面積を同図bに示す。同図
から判るように、BSTO薄膜の誘電率εrは320で
あって、SiO2 膜の55倍、SiN膜の38倍であ
り、従ってキャパシタの面積をそれぞれ1/55及び1
/38と大幅に減ずることができ、よって大容量のキャ
パシタ21であっても、チップ面積の大幅な縮小化が可
能である。Now, the BSTO manufactured under the conditions of this embodiment
FIG. 3A shows a comparison between the dielectric constant .epsilon.r of the thin film 6 and the dielectric constants of the conventional SiN film and SiO2 film. For comparison, FIG. 2B shows the capacitor area required to manufacture a capacitor having a thickness of 100 nm and a capacitance of 1000 pF. As can be seen from the figure, the dielectric constant εr of the BSTO thin film is 320, which is 55 times that of the SiO2 film and 38 times that of the SiN film.
/ 38, so that even if the capacitor 21 has a large capacity, the chip area can be significantly reduced.
【0021】しかも、ヘテロ接合を有する半導体基板1
上に形成するBSTO薄膜6は、そのヘテロ接合の形成
温度の摂氏620度未満の摂氏600度で熱処理されて
形成されるので、ヘテロ界面の急峻性は劣化せず、これ
を有効に保持できる。In addition, the semiconductor substrate 1 having a hetero junction
The BSTO thin film 6 formed thereon is formed by being heat-treated at a temperature of 600 degrees Celsius, which is less than 620 degrees Celsius, at which the heterojunction is formed. Therefore, the steepness of the hetero interface is not deteriorated and can be effectively maintained.
【0022】図4は、BSTO薄膜6の組成比xを前記
実施例の条件で製造したキャパシタ21の周波数特性を
測定した結果を示す。組成比x=0.7以下では、高周
波特性は10GHzを越えるので、x=0.7以下であ
ればSHF帯をカバーできることが判る。FIG. 4 shows the result of measuring the frequency characteristics of the capacitor 21 manufactured under the conditions of the above embodiment with the composition ratio x of the BSTO thin film 6. When the composition ratio x is less than 0.7, the high-frequency characteristics exceed 10 GHz, and it can be seen that the SHF band can be covered when x is less than 0.7.
【0023】図5は、製造したBSTO薄膜6より成る
キャパシタ21の温度変化に対する容量変化特性を示
す。同図から判るように、−25℃〜85℃における容
量の変化は10%以下であるので、セラミックで製造さ
れる組成比x=0.7のBSTO薄膜6で生じる相変化
による容量変化は現れていない。FIG. 5 shows a capacitance change characteristic of the capacitor 21 made of the manufactured BSTO thin film 6 with respect to a temperature change. As can be seen from the figure, since the change in capacitance between -25 ° C. and 85 ° C. is 10% or less, a capacitance change due to a phase change occurring in the BSTO thin film 6 made of ceramic and having a composition ratio x = 0.7 appears. Not.
【0024】図6は、BSTO薄膜6の焼成温度と誘電
率の関係を示す。同図から判るように摂氏500度以上
の温度で誘電率が急激に向上するので、高誘電体薄膜を
形成するには、ヘテロ接合の形成温度の上限値の摂氏6
50度から摂氏500度までの範囲で焼成することが望
ましい。FIG. 6 shows the relationship between the firing temperature of the BSTO thin film 6 and the dielectric constant. As can be seen from the figure, the dielectric constant sharply increases at a temperature of 500 degrees Celsius or higher. Therefore, in order to form a high dielectric thin film, the upper limit of the heterojunction formation temperature of 6 degrees Celsius is required.
It is desirable to bake in the range of 50 degrees to 500 degrees Celsius.
【0025】また、本実施例では、キャパシタ21は、
BSTO薄膜6の上下が窒化珪素膜(SiN膜)で完全
に被覆されているので、BaやSrによる重金属による
汚染がMODFET20等へ影響することを防止でき
る。In this embodiment, the capacitor 21 is
Since the upper and lower portions of the BSTO thin film 6 are completely covered with the silicon nitride film (SiN film), it is possible to prevent the contamination of the MODFET 20 and the like by heavy metals such as Ba and Sr.
【0026】更に、本実施例では、MODFET20の
オーミック電極9のアロイ温度(つまり摂氏500度)
は、BSTO薄膜6の形成の熱処理温度(つまり摂氏6
00度)よりも低いので、BSTO薄膜6の劣化の問題
も生じない。Further, in this embodiment, the alloy temperature of the ohmic electrode 9 of the MODFET 20 (that is, 500 degrees Celsius)
Is the heat treatment temperature for forming the BSTO thin film 6 (that is, 6 degrees Celsius).
00 degrees), the problem of deterioration of the BSTO thin film 6 does not occur.
【0027】しかも、本実施例では、MODFET20
の一部を構成する半導体基板1の上にキャパシタ21を
集積しているので、従来のようにMODFET単体をパ
ッケージ外部で強誘電体のキャパシタに接続した本実施
例と等価的な回路構成の場合と比較して、ワイヤやリー
ド等の寄生インダクタンス成分を低く抑制できるので、
MODFET20の特性は、測定したところ、相互コン
ダクタンス500mS/mm、12GHzの雑音指数
0.5dBとなり、大きく改善される。In this embodiment, the MODFET 20
In this case, the capacitor 21 is integrated on the semiconductor substrate 1 that constitutes a part of the semiconductor device 1, so that the circuit configuration is equivalent to that of the present embodiment in which the MODFET alone is connected to the ferroelectric capacitor outside the package as in the related art. As compared with, parasitic inductance components such as wires and leads can be suppressed low,
The characteristics of the MODFET 20 are greatly improved as measured, with a transconductance of 500 mS / mm and a noise figure of 0.5 dB at 12 GHz.
【0028】尚、本実施例においては、メサエッチング
を用いてMODFET20とキャパシタ21との素子分
離を行ったが、プロトンや酸素等のイオン注入により素
子分離を行ってもよいのは勿論である。In the present embodiment, the MODFET 20 and the capacitor 21 are separated from each other by mesa etching. However, the device may be separated by ion implantation of protons, oxygen, or the like.
【0029】更に、本実施例においては、高誘電率を有
する誘電体薄膜を容量絶縁膜として用いた例を示した
が、その他、高誘電率を有する誘電体薄膜を用いて容量
素子、焦電素子又は圧電素子を構成し、これをヘテロ接
合の半導体基板上に集積化する場合にも同様に適用でき
るのは言うまでもない。Furthermore, in the present embodiment, the dielectric thin film having a high dielectric constant the example of using as the capacitor insulating film, other capacitive element have use a dielectric thin film having a high dielectric constant, focus It goes without saying that the present invention can be similarly applied to a case where an electric element or a piezoelectric element is formed and is integrated on a heterojunction semiconductor substrate.
【0030】[0030]
【発明の効果】以上、説明したように、本発明の半導体
装置及びその製造方法によれば、ヘテロ接合を有する半
導体基板の上に形成する薄膜として、その半導体基板の
ヘテロ接合の形成温度よりも低い熱処理温度で形成可能
な高誘電体薄膜、即ち、チタン酸バリウムとチタン酸ス
トロンチウムとの混晶で且つ前記チタン酸バリウムの組
成比が70%以下の誘電体材料を使用したので、その誘
電体材料を使用したキャパシタ等の素子がチップに占め
る面積を小面積にして、チップ面積を大幅に縮小できる
と共に、半導体基板のヘテロ界面の急俊性を良好に確保
できる。As described above, according to the semiconductor device and the method of manufacturing the same of the present invention, a thin film formed on a semiconductor substrate having a heterojunction has a lower temperature than the heterojunction forming temperature of the semiconductor substrate. formation available-at a low heat treatment temperature
Since a high dielectric thin film, that is, a mixed material of barium titanate and strontium titanate and the composition ratio of barium titanate is 70% or less is used, a capacitor using the dielectric material is used. The area occupied by the element in the chip can be reduced, and the chip area can be significantly reduced, and the abruptness of the hetero interface of the semiconductor substrate can be secured well.
【0031】特に、高誘電体薄膜として、前記チタン酸
バリウムとチタン酸ストロンチウムとの混晶で、且つ前
記チタン酸バリウムの組成比が70%以下の誘電体材料
を使用する場合に、その形成の熱処理を、摂氏500度
以上650度以下の温度で且つ酸素又はオゾンの分圧が
0.2気圧以上の雰囲気の下で行うと、半導体基板のヘ
テロ接合の特性を一層良好に確保することができる。In particular, in the case where a dielectric material having a mixed crystal of barium titanate and strontium titanate and having a composition ratio of barium titanate of 70% or less is used as the high dielectric thin film, the formation of the high dielectric thin film is difficult. When the heat treatment is performed at a temperature of 500 to 650 degrees Celsius and in an atmosphere in which the partial pressure of oxygen or ozone is 0.2 atm or more, the characteristics of the heterojunction of the semiconductor substrate can be more favorably secured. .
【図1】本発明の実施例を示す半導体装置の断面図であ
る。FIG. 1 is a sectional view of a semiconductor device showing an embodiment of the present invention.
【図2】半導体装置の製造工程を示す図である。FIG. 2 is a diagram showing a manufacturing process of the semiconductor device.
【図3】本発明の実施例と従来例とで使用する誘電体の
誘電率及びその占有面積の比較を示す図である。FIG. 3 is a diagram showing a comparison between a dielectric constant of a dielectric used in an embodiment of the present invention and a conventional example and an occupied area thereof.
【図4】本発明の半導体装置の周波数特性を示す図であ
る。FIG. 4 is a diagram showing frequency characteristics of the semiconductor device of the present invention.
【図5】本発明の半導体装置の温度特性を示す図であ
る。FIG. 5 is a diagram showing temperature characteristics of the semiconductor device of the present invention.
【図6】本発明の半導体装置の焼成温度に対する誘電率
の変化特性を示す図である。FIG. 6 is a diagram showing a change characteristic of a dielectric constant with respect to a firing temperature of a semiconductor device of the present invention.
1 GaAs基板(半導体基板) 3 SiN膜 4 SiO2 膜 5 下部電極 6 BSTO膜 7 上部電極 8 スペーサー(SiO2 膜) 9 オーミック電極 10 ゲート電極 11 層間SiN膜 12 配線 20 電界効果トランジスタ 21 キャパシタ DESCRIPTION OF SYMBOLS 1 GaAs substrate (semiconductor substrate) 3 SiN film 4 SiO2 film 5 Lower electrode 6 BSTO film 7 Upper electrode 8 Spacer (SiO2 film) 9 Ohmic electrode 10 Gate electrode 11 Interlayer SiN film 12 Wiring 20 Field effect transistor 21 Capacitor
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−129345(JP,A) 特開 昭63−178556(JP,A) 特開 平5−116913(JP,A) 特開 平5−116454(JP,A) 特開 平1−286922(JP,A) 特開 平2−231754(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/312 - 21/318 H01L 21/32 H01L 21/47 - 21/475 H01L 21/337 H01L 21/338 H01L 27/095 H01L 29/778 H01L 29/80 - 29/812 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-129345 (JP, A) JP-A-63-178556 (JP, A) JP-A-5-116913 (JP, A) 116454 (JP, A) JP-A-1-286922 (JP, A) JP-A-2-231754 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/312-21 / 318 H01L 21/32 H01L 21/47-21/475 H01L 21/337 H01L 21/338 H01L 27/095 H01L 29/778 H01L 29/80-29/812
Claims (5)
度以下の熱処理温度で形成可能な高誘電体薄膜とを備
え、 前記 高誘電体薄膜は、チタン酸バリウムとチタン酸スト
ロンチウムとの混晶より成り、前記チタン酸バリウムの
組成比が70%以下であることを特徴とする半導体装
置。 A semiconductor substrate having a heterojunction ; and a forming temperature of the heterojunction formed on the semiconductor substrate.
High dielectric thin film that can be formed at a heat treatment temperature
A semiconductor device , wherein the high dielectric thin film is made of a mixed crystal of barium titanate and strontium titanate, and the composition ratio of the barium titanate is 70% or less.
て形成された段差を有し、 前記段差の下段領域には、高誘電体薄膜より成る容量素
子が形成されることを特徴とする請求項1記載の半導体
装置。2. A semiconductor substrate has a step formed by etching a mesa shape, the lower region of the step, the claims, characterized in that the capacitive element made of high-dielectric thin film is formed 1 Symbol mounting semiconductor device.
を覆われることを特徴とする請求項1記載の半導体装
置。3. A high-dielectric thin film, the semiconductor device according to claim 1 Symbol mounting, characterized in that the covered around by a silicon nitride film.
トランジスタの一部を構成し、 前記電界効果トランジスタのオーミック電極のアロイ温
度は、高誘電体薄膜の熱処理温度未満の温度に設定され
ることを特徴とする請求項1記載の半導体装置。4. A semiconductor substrate having a heterojunction forms a part of a field effect transistor, and an alloy temperature of an ohmic electrode of the field effect transistor is set to a temperature lower than a heat treatment temperature of a high dielectric thin film. the semiconductor device of claim 1 Symbol mounting features.
ル成長させ、その後、 前記半導体基板上に、 チタン酸バリウムとチタン酸スト
ロンチウムとの混晶より成り且つ前記チタン酸バリウム
の組成比が70%以下の高誘電体薄膜を、前記ヘテロ接
合のエピタキシャル成長の際の成長温度よりも低い摂氏
500度以上650度以下の熱処理温度で且つ酸素又は
オゾンの分圧が0.2気圧以上の雰囲気の下で形成する
ことを特徴とする半導体装置の製造方法。 5. A heterojunction is epitaxially formed on a semiconductor substrate.
Le grown, then said on a semiconductor substrate, a high dielectric thin film composition ratio of and the barium titanate consists mixed crystal less 70% of barium titanate and strontium titanate, said hetero contact
Forming at a heat treatment temperature of 500 ° C. to 650 ° C. lower than the growth temperature at the time of the epitaxial growth and a partial pressure of oxygen or ozone of 0.2 atm or more. producing how the semi conductor device you.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05268748A JP3142700B2 (en) | 1993-10-27 | 1993-10-27 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05268748A JP3142700B2 (en) | 1993-10-27 | 1993-10-27 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07122734A JPH07122734A (en) | 1995-05-12 |
JP3142700B2 true JP3142700B2 (en) | 2001-03-07 |
Family
ID=17462793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05268748A Expired - Lifetime JP3142700B2 (en) | 1993-10-27 | 1993-10-27 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3142700B2 (en) |
-
1993
- 1993-10-27 JP JP05268748A patent/JP3142700B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07122734A (en) | 1995-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5812364A (en) | Capacitor | |
US6746912B2 (en) | MIM capacitor and manufacturing method therefor | |
US5869381A (en) | RF power transistor having improved stability and gain | |
US5459087A (en) | Method of fabricating a multi-layer gate electrode with annealing step | |
USRE32207E (en) | Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide | |
US5620909A (en) | Method of depositing thin passivating film on microminiature semiconductor devices | |
JP3142700B2 (en) | Semiconductor device and manufacturing method thereof | |
US20040259316A1 (en) | Fabrication of parallel plate capacitors using BST thin films | |
US6767768B2 (en) | Method for forming antifuse via structure | |
JPS62194673A (en) | Manufacture of semiconductor device | |
JP3731277B2 (en) | Semiconductor integrated circuit device | |
JP3254715B2 (en) | Method for manufacturing semiconductor device | |
JP3324946B2 (en) | MIM capacitor and its manufacturing method, and semiconductor device and its manufacturing method | |
JP3408019B2 (en) | Semiconductor device and method of manufacturing semiconductor device | |
JPH06188249A (en) | Manufacture of semiconductor device | |
KR100248415B1 (en) | Fabrication method of monolithic microwave integrated circuit | |
JP2605647B2 (en) | Method for manufacturing semiconductor device | |
JP3902417B2 (en) | Manufacturing method of semiconductor device | |
WO2023205936A1 (en) | Semiconductor device and preparation method therefor | |
JPH11274415A (en) | Manufacture of capacitive element and manufacture of semiconductor device | |
US7241703B2 (en) | Film forming method for semiconductor device | |
US6300190B1 (en) | Method for fabricating semiconductor integrated circuit device | |
JP2591162B2 (en) | Method of manufacturing semiconductor device and semiconductor device manufactured thereby | |
KR100261286B1 (en) | Epitaxial layer structure of monolithic microwave device | |
JPH07107926B2 (en) | Method for manufacturing semiconductor capacitive element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001205 |