JP3020328B2 - Flow control method in mixing ratio control device - Google Patents
Flow control method in mixing ratio control deviceInfo
- Publication number
- JP3020328B2 JP3020328B2 JP3279914A JP27991491A JP3020328B2 JP 3020328 B2 JP3020328 B2 JP 3020328B2 JP 3279914 A JP3279914 A JP 3279914A JP 27991491 A JP27991491 A JP 27991491A JP 3020328 B2 JP3020328 B2 JP 3020328B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- air
- fluid
- flow
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Testing Of Engines (AREA)
- Regulation And Control Of Combustion (AREA)
- Feeding And Controlling Fuel (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば、ブタンガスと
空気とを適宜比率で混合し燃料ガスとしての発熱量制御
をする際の混合比率制御装置、あるいは加熱炉などに適
用される燃焼用バーナを含む燃焼制御装置などにおける
流量制御方法に関するものである。なお、以下は、本発
明を理解し易くするため燃焼制御装置における流量制御
方法を主体に説明する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, a mixing ratio control device for controlling the calorific value as a fuel gas by mixing butane gas and air at an appropriate ratio, or a combustion burner applied to a heating furnace or the like. The present invention relates to a flow control method in a combustion control device and the like including the same. In the following, a flow control method in a combustion control device will be mainly described to facilitate understanding of the present invention.
【0002】[0002]
【従来の技術】従来より加熱炉には燃焼用バーナが設け
られ、このバーナに燃料管路と空気管路とを接続すると
ともに、各管路には弁開閉駆動モータおよび弁開度セン
サを具備する可変絞り機構や、弁前圧力センサあるいは
差圧センサ等のセンサ類、さらにこれらセンサ類や弁開
閉駆動モータに結ばれた演算制御器が装備されている。2. Description of the Related Art Conventionally, a heating furnace is provided with a burner for combustion, and a fuel line and an air line are connected to the burner, and each line is provided with a valve opening / closing drive motor and a valve opening degree sensor. A variable throttle mechanism, sensors such as a pre-valve pressure sensor and a differential pressure sensor, and an arithmetic controller connected to these sensors and a valve opening / closing drive motor are provided.
【0003】このような加熱設備における燃焼用バーナ
の燃焼制御は、演算制御器に、予め燃料系と空気系の各
管路の可変絞り機構の開度に対する流量係数、および可
変絞り機構と燃焼用バーナとの間の圧力と流量との関係
などを記憶させておき、前記関係および弁前圧力センサ
からの信号、および別途定められ、演算制御器に入力さ
れた流量設定値に基づいて、時々刻々可変絞り機構に要
求される開度を求め、各管路より燃料と空気とをバーナ
に供給、燃焼させて行われている。[0003] The combustion control of the combustion burner in such a heating system is carried out by an arithmetic and control unit in advance by controlling the flow coefficient with respect to the opening degree of the variable throttle mechanism in each of the fuel system and air system pipes, and the variable throttle mechanism and the combustion system. The relationship between the pressure and the flow rate between the burner and the like are stored, and based on the relationship and the signal from the pre-valve pressure sensor, and the flow rate set value that is separately determined and input to the arithmetic and control unit, it is moment by moment. The opening degree required for the variable throttle mechanism is obtained, and fuel and air are supplied to each burner from each pipe and burned.
【0004】[0004]
【発明が解決しようとする課題】上述した燃焼用バーナ
の燃焼制御では、燃焼状態(炉内温度)の変更時、また
は炉内温度が大きく昇温あるいは降温変動した際に、燃
料流量の変化に追随して燃料と空気の両管路の可変絞り
機構の開度を空気比が一定になるように制御して行おう
とするが、時々刻々演算制御する、短い一演算周期時間
内では、弁開閉駆動モータの駆動速度能力と相まって開
度が制御しきれない場合が起こり、燃料と空気の流量比
率(空気比)が大きく乱れる。In the combustion control of the combustion burner described above, when the combustion state (furnace temperature) is changed, or when the furnace temperature is greatly increased or decreased, the fuel flow rate is changed. Attempts are made to control the opening of the variable throttle mechanism in both the fuel and air lines so that the air ratio is kept constant, but the operation is controlled every moment. In some cases, the opening cannot be fully controlled in combination with the driving speed capability of the driving motor, and the flow ratio (air ratio) between fuel and air is greatly disturbed.
【0005】このように流量比率に乱れが発生すると、
不完全燃焼による煤などが発生するなど炉にとって不都
合が生じる。When the flow rate ratio is disturbed as described above,
Problems such as soot generation due to incomplete combustion occur for the furnace.
【0006】本発明は、上記の問題点に鑑みてなされた
もので、その目的は、燃料と空気の流量比率に大きな乱
れを起こすことなく燃焼状態の変更、または炉内温度の
大きな昇温あるいは降温変動に対応し得る燃焼制御装置
における流量制御方法を提供することである。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to change the combustion state without significantly disturbing the flow rate ratio between fuel and air, or to increase the temperature in the furnace or to increase the temperature in the furnace. An object of the present invention is to provide a flow control method in a combustion control device that can cope with a temperature drop.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係わる燃焼制御装置における流量制御方
法は、燃料管路と空気管路が接続され且つ流量係数が既
知の燃焼用バーナと、前記各管路に配設された可変絞り
機構、弁前圧力センサ、流体温度センサと、前記可変絞
り機構の弁開閉駆動モータおよび弁開度センサ、さらに
弁前圧力センサおよび流体温度センサとに結ばれた演算
制御器とを備える燃焼制御装置における流体制御方法で
あって、 a:各管路における弁前圧力、流体温度および弁開度を
各センサにより計測するステップと、 b:弁開度センサにより一演算毎に計測される弁開度か
ら弁開閉駆動モータの能力上一演算時間内に到達可能な
上限開度と下限開度を求めるとともに、これら上下限開
度における燃料と空気のそれぞれの可変絞り機構の流量
係数を求めるステップと、 c:前記流量係数を元に、前記aで計測された圧力と温
度の条件下における前記各上下限開度に対応する燃料と
空気のそれぞれの流量を求めるステップと、 d:設定要求されている燃料系の流量が、前記cで求め
た上下限流量範囲に入っているか否かを判定するステッ
プと、 e:前記dで範囲外であると判定したときに、上限もし
くは下限の流量の近い方の制限流量を次回の燃料設定要
求流量とするステップと、 f:前記dで範囲外と判定され前記eにより次回の燃料
設定要求流量を修正した場合に、その修正された燃料設
定要求流量に対応する空気系の設定要求流量を、空気比
設定要求値と燃焼に必要な理論空気量とから求めるステ
ップと、 g:前記fで求めた空気系の設定要求流量が、前記cで
求めた上下限流量範囲に入っているか否かを判定するス
テップと、 h:前記gで範囲外であると判定したときに、上限もし
くは下限の流量の近い方の制限流量を次回の空気設定要
求流量とするステップと、 i:前記gで範囲外と判定され前記hにより次回の空気
設定要求流量を修正した場合には、この修正した空気設
定要求流量に対応する燃料系の設定要求流量を、設定要
求空気比と燃焼に必要な理論空気量とから求めるステッ
プと、を含むものである。In order to achieve the above object, a flow control method in a combustion control apparatus according to the present invention comprises a combustion burner in which a fuel pipe and an air pipe are connected and a flow coefficient is known. A variable throttle mechanism, a valve front pressure sensor, a fluid temperature sensor, and a valve opening / closing drive motor and a valve opening sensor of the variable throttle mechanism, and a valve front pressure sensor and a fluid temperature sensor. A control method for a combustion control device, comprising: an arithmetic controller connected to (a), a: measuring a valve front pressure, a fluid temperature, and a valve opening degree in each pipe by each sensor; and b: valve opening. The upper limit opening and the lower limit opening that can be reached within one calculation time in terms of the performance of the valve opening / closing drive motor are obtained from the valve opening measured by the degree sensor for each calculation, and the fuel and air at these upper and lower limits are determined. Obtaining flow coefficients of the respective variable throttle mechanisms; c: based on the flow coefficients, the fuel and air corresponding to the upper and lower limits of opening under the conditions of the pressure and temperature measured in a. Determining each flow rate; d: determining whether the flow rate of the fuel system requested to be set is within the upper / lower limit flow rate range determined in c); and e: out of the range in d. When it is determined that there is, the next lower limit flow rate is set to the next lower limit flow rate as the next fuel setting request flow rate; and f: it is determined to be out of the range by the above d and the next fuel setting request flow rate is made by the above e. A step of obtaining a required set flow rate of the air system corresponding to the corrected required fuel set flow rate from the required air ratio setting value and the theoretical air amount required for combustion, and g: obtained by f. Air system setting request Determining whether the amount falls within the upper / lower limit flow rate range obtained in the above c; and h: when determining that the flow rate is out of the range in the above g, the limit flow rate which is closer to the upper or lower limit flow rate. Is the next required air setting flow rate; and i: when it is determined that the flow rate is out of the range in g and the next required air setting flow rate is corrected in h, the fuel system corresponding to the corrected required air setting flow rate Determining the set required flow rate from the set required air ratio and the theoretical air amount required for combustion.
【0008】[0008]
【作用】本発明では、弁開度センサにより一演算時間毎
に計測される弁開度から弁開閉駆動モータの能力上一演
算時間内に到達可能な上限開度と下限開度を求めるとと
もに、これら上下限開度に対応する燃料と空気のそれぞ
れの流量を求めておき、これら上下限流量範囲と、別途
定められた燃料の設定要求流量、あるいは設定要求空気
比と燃焼に必要な理論空気量とから求められた燃料の設
定要求流量に対応する空気の設定要求流量とを比較し、
設定要求流量が上下限流量範囲を外れている場合には、
上限もしくは下限の流量の近い方の制限流量を次回設定
要求流量とするとともに、このように上限もしくは下限
の流量を採用した場合には、設定要求空気比と燃焼に必
要な理論空気量とから演算により設定要求流量を修正す
るので、燃料と空気の流量比率(空気比)が大きく乱れ
ることがなく殆ど一定の状態で燃焼用バーナの燃焼制御
が行え、燃焼状態が変更される場合や、燃焼状態が大き
く変化する場合でも不完全燃焼を防止した燃焼が行え
る。According to the present invention, an upper limit opening and a lower limit opening that can be reached within one calculation time are obtained from the valve opening measured by the valve opening sensor at every calculation time in view of the performance of the valve opening / closing drive motor. The respective flow rates of fuel and air corresponding to these upper and lower opening degrees are obtained, and the upper and lower flow rate ranges, the set required flow rate of the fuel separately set, or the set required air ratio and the theoretical air amount required for combustion are determined. And the set required flow rate of the air corresponding to the set required flow rate of the fuel determined from
If the set required flow rate is out of the upper and lower flow rate range,
The next lower limit flow rate is set as the lower limit flow rate which is closer to the upper or lower limit flow rate, and when the upper limit or lower limit flow rate is adopted in this way, calculation is performed from the set required air ratio and the theoretical air amount required for combustion. , The flow rate ratio (air ratio) between fuel and air can be controlled in a substantially constant state without greatly disturbing the fuel / air flow rate. Combustion can be performed with incomplete combustion prevented.
【0009】また、上述のように、燃料や空気の設定要
求流量が上下限流量範囲を外れる場合には、上限もしく
は下限の流量の近い方の制限流量を次回設定要求流量と
しているので、燃焼状態変更過渡期における流量比率の
乱れを極小に抑えることができる。Further, as described above, when the set required flow rate of the fuel or air is out of the upper and lower limit flow rate ranges, the limit flow rate closer to the upper or lower limit flow rate is set as the next set required flow rate. Disturbance in the flow rate ratio during the transition transition period can be minimized.
【0010】[0010]
【実施例】以下、本発明の実施例を説明する。図1は、
本発明に係わる燃焼用バーナの燃焼制御方法を加熱装置
に適用した場合の概念図であって、aは全体図、bはa
の燃焼用バーナ周辺の拡大図である。Embodiments of the present invention will be described below. FIG.
It is a conceptual diagram when the combustion control method of the combustion burner according to the present invention is applied to a heating device, where a is an overall view and b is a view.
FIG. 3 is an enlarged view of the vicinity of a combustion burner of FIG.
【0011】図において、1は燃料供給管路であって、
この燃料供給管路1は、LPGなどのガス燃料等の燃料
供給源に接続されている。In the drawing, reference numeral 1 denotes a fuel supply line,
The fuel supply line 1 is connected to a fuel supply source such as a gas fuel such as LPG.
【0012】2は燃焼用空気供給管路であって、この燃
焼用空気供給管路2は、図外のブロワ,予熱空気設備等
の燃焼用空気供給源に接続されている。Reference numeral 2 denotes a combustion air supply pipe, which is connected to a combustion air supply source such as a blower and a preheating air equipment (not shown).
【0013】3は加熱装置であって、被加熱物を加熱す
るための連続式加熱炉,バッチ炉,焼鈍炉などを指す。Reference numeral 3 denotes a heating device, which refers to a continuous heating furnace, a batch furnace, an annealing furnace, or the like for heating an object to be heated.
【0014】4は温度調節計(TIC)であって、この
温度調節計4は、加熱装置3の炉内温度を計測制御する
ための調節計(一般的なPID制御方式のTIC等)で
あり、炉内をゾーンコントロールする場合には、温度制
御ゾーン毎に設けられる。Reference numeral 4 denotes a temperature controller (TIC). The temperature controller 4 is a controller (a general PID control type TIC or the like) for measuring and controlling the furnace temperature of the heating device 3. When the inside of the furnace is zone-controlled, it is provided for each temperature control zone.
【0015】5は炉内温度計測センサであって、この炉
内温度計測センサ5は、加熱装置3の温度調節計用にプ
ロセスバリュウ(PV)を計測するためのもので、温度
制御ゾーン毎に設けられる。Reference numeral 5 denotes an in-furnace temperature measurement sensor for measuring a process value (PV) for a temperature controller of the heating device 3 for each temperature control zone. Provided.
【0016】6は演算制御器であって、この演算制御器
6は、後述する燃焼用バーナ12の各バーナ毎に燃料と燃
焼用空気流量を制御するための演算制御器であり、この
演算制御器6には、本発明の燃焼制御方式が採用され精
度の良い流量比率(空気比)制御並びに流量計測が行え
るようになっている。Reference numeral 6 denotes an arithmetic controller, which is an arithmetic controller for controlling the fuel and combustion air flow rate for each burner of the combustion burner 12, which will be described later. The burner 6 employs the combustion control method of the present invention so that accurate flow rate ratio (air ratio) control and flow rate measurement can be performed.
【0017】7は流体温度計測用センサであって、この
流体温度計測用センサ7は、制御流体である、燃料ガス
と燃焼用空気の流体温度を計測し、演算制御器6内部で
演算される温度補償演算に使用されるデータを計測する
ためのものである。Reference numeral 7 denotes a fluid temperature measurement sensor which measures the fluid temperature of fuel gas and combustion air, which are control fluids, and is operated inside the operation controller 6. This is for measuring data used for temperature compensation calculation.
【0018】8は弁前圧力センサであって、この弁前圧
力センサ8は、後述する流量調節弁11の弁前圧力を計測
するもので、この計測によって、前もって流量特性(開
度と流量係数)を把握してある流量調節弁11の開度をコ
ントロールする。これにより、燃焼用バーナ12の固定流
量係数を考慮して目標流量に制御するために必要な弁開
度を演算制御器6内部で演算し開度制御を行う。Reference numeral 8 denotes a pre-valve pressure sensor which measures the pre-valve pressure of the flow rate control valve 11 described later. By this measurement, the flow characteristic (opening and flow coefficient) is determined in advance. ) Is controlled to control the opening of the flow control valve 11. As a result, the valve opening required for controlling the target flow rate in consideration of the fixed flow coefficient of the combustion burner 12 is calculated in the arithmetic and control unit 6 to perform the opening control.
【0019】9は弁開閉駆動モータであって、この弁開
閉駆動モータ9には、演算制御器6よりパルス出力され
る相対移動開度(モータの回転量)に正確に操作される
モータが搭載され、また図示省略する流量調節弁11の開
度位置計測センサ(弁開度センサ)が装備されている。Reference numeral 9 denotes a valve opening / closing drive motor. The valve opening / closing drive motor 9 is equipped with a motor which is accurately operated to the relative movement opening (the amount of rotation of the motor) outputted from the arithmetic and control unit 6 in pulses. Further, an opening position measuring sensor (valve opening sensor) of the flow rate control valve 11 not shown is provided.
【0020】10はバーナ前圧力センサであって、このバ
ーナ前圧力センサ10は、流体温度計測用センサ7、弁前
圧力センサ8、弁開閉駆動モータ9および後述する燃焼
用バーナ12で制御演算あるいは計測される流量に対し
て、このバーナ前圧力センサ10と燃焼用バーナ12の固定
流量係数と流体温度計測用センサ7とより計測される流
量とを比較することにより、流体温度計測用センサ7、
弁前圧力センサ8、弁開閉駆動モータ9、流量調節弁11
および燃焼用バーナ12の異常の有無を演算制御器6内部
で自動判定させるための補助センサとなるものである。Reference numeral 10 denotes a pre-burner pressure sensor. The pre-burner pressure sensor 10 is controlled by a fluid temperature measurement sensor 7, a pre-valve pressure sensor 8, a valve opening / closing drive motor 9, and a combustion burner 12 described later. By comparing the measured flow rate with the fixed flow coefficient of the pre-burner pressure sensor 10 and the fixed flow coefficient of the combustion burner 12 and the flow rate measured by the fluid temperature measurement sensor 7, the fluid temperature measurement sensor 7,
Valve front pressure sensor 8, valve opening / closing drive motor 9, flow control valve 11
And an auxiliary sensor for automatically determining whether or not the combustion burner 12 is abnormal inside the arithmetic and control unit 6.
【0021】11は流量調節弁であって、この流量調節弁
11は、弁開閉駆動モータ9により操作され流量調節を行
うための弁であるが、同時に開度と流量係数の特性を把
握し演算制御器6に予め登録しておくことにより計測制
御用の可変絞り機構(バリュアブルオリフィス)として
の機能を果たすものである。Reference numeral 11 denotes a flow control valve, which is a flow control valve.
Reference numeral 11 denotes a valve operated by the valve opening / closing drive motor 9 for adjusting the flow rate. At the same time, the characteristics of the opening degree and the flow coefficient are grasped and registered in the arithmetic and control unit 6 in advance so that the variable for measurement control can be obtained. It functions as a diaphragm mechanism (valueable orifice).
【0022】12は燃焼用バーナであって、この燃焼用バ
ーナ12は、燃料と燃焼用空気を混合し、燃焼させ炉内雰
囲気を加熱昇温させるものであるが、併せて、制御・診
断用の固定絞り機構としての流量係数を把握し演算制御
器6内部で演算するための固定オリフィスとしての機能
を有するものである。Reference numeral 12 denotes a combustion burner. The combustion burner 12 mixes fuel and combustion air, burns the mixture, and heats and raises the atmosphere in the furnace. Has a function as a fixed orifice for grasping a flow coefficient as a fixed throttle mechanism and calculating the inside of the calculation controller 6.
【0023】次に、上記構成の装置における燃焼制御方
法を手順を追って説明する。加熱装置3における二つの
ゾーンA,Bの各ゾーンの炉内温度を、温度調節計4を
介して炉内温度計測センサ5により計測し、温度調節計
4の制御出力信号を、各ゾーンA,Bに対応する演算制
御器6に伝送する一方、燃料供給管路1と燃焼用空気供
給管路2における弁前圧力、流体温度および弁開度を、
流体温度計測用センサ7、弁前圧力センサ8および流量
調節弁11の開度位置計測センサの各センサにより計測
し、その計測信号を演算制御器6に伝送する。Next, a combustion control method in the above-described apparatus will be described step by step. The furnace temperature of each of the two zones A and B in the heating device 3 is measured by the furnace temperature measurement sensor 5 via the temperature controller 4, and the control output signal of the temperature controller 4 is transmitted to each of the zones A and B. B, while transmitting the pre-valve pressure, fluid temperature and valve opening in the fuel supply line 1 and the combustion air supply line 2 to the arithmetic and control unit 6 corresponding to B.
The temperature is measured by the fluid temperature measurement sensor 7, the valve front pressure sensor 8, and the opening position measurement sensor of the flow rate control valve 11, and the measurement signal is transmitted to the arithmetic and control unit 6.
【0024】次に、演算制御器6内で、前記計測された
弁開度から弁開閉駆動モータ9の能力上一演算時間内に
到達可能な上限開度と下限開度を演算により求めるとと
もに、これら上下限開度における燃料と空気のそれぞれ
の流量調節弁11の流量係数を演算により求め、さらにこ
の流量係数を元に、前記計測された圧力と温度の条件下
における前記各上下限開度に対応する燃料と空気のそれ
ぞれの流量を演算により求める。Next, in the arithmetic and control unit 6, an upper limit opening and a lower limit opening which can be reached within one calculation time due to the performance of the valve opening / closing drive motor 9 are obtained from the measured valve opening by calculation. The flow coefficient of each flow control valve 11 of fuel and air at these upper and lower limits is obtained by calculation, and based on this flow coefficient, the upper and lower limits under the conditions of the measured pressure and temperature are calculated. The respective flow rates of the corresponding fuel and air are obtained by calculation.
【0025】次に、別途定められ、設定要求されている
燃料系の流量が、前記で求めた燃料の上下限流量範囲に
入っているか否かを判定し、範囲内であればそれを次回
の燃料設定要求流量とするとともに、予めその次回の燃
料設定要求流量に対応させて求めてある空気系の設定要
求流量を次回の空気設定要求流量とし、これらの流量に
見合う弁開度を弁開閉駆動モータ9に出力して燃料と空
気の流量制御を行う。Next, it is determined whether or not the flow rate of the fuel system, which has been separately determined and requested to be set, falls within the upper and lower flow rate ranges of the fuel obtained as described above. In addition to the fuel setting required flow rate, the air system setting required flow rate previously determined corresponding to the next fuel setting required flow rate is set as the next air setting required flow rate, and the valve opening corresponding to these flow rates is set to the valve opening / closing drive. Output to the motor 9 to control the flow rate of fuel and air.
【0026】一方、前記判定で範囲外であると判定した
ときには、上限もしくは下限の流量の近い方の制限流量
を次回の燃料設定要求流量とし、この燃料設定要求流量
に対応する空気系の設定要求流量を、空気比設定要求値
と燃焼に必要な理論空気量とから演算により求め、この
求めた空気系の設定要求流量が、前記段落番号〔002
4〕で求めた空気の上下限流量範囲に入っているか否か
を判定し、範囲内であればそれを次回の空気設定要求流
量とし、これらの流量に見合う弁開度を弁開閉駆動モー
タ9に出力して燃料と空気の流量制御を行う。On the other hand, when it is determined in the above determination that the flow rate is out of the range, the limit flow rate closer to the upper or lower flow rate is set as the next required fuel setting flow rate, and the air system setting demand corresponding to this fuel setting required flow rate is determined. The flow rate is calculated from the required air ratio setting value and the theoretical air amount required for combustion, and the calculated required flow rate of the air system is calculated according to the paragraph number [002].
It is determined whether the air is within the upper / lower flow rate range obtained in 4), and if it is within the range, the flow rate is set as the next required air setting flow rate, and the valve opening corresponding to these flow rates is set to the valve opening / closing drive motor 9. To control the flow rate of fuel and air.
【0027】また一方、前記判定で範囲外であると判定
したときには、上限もしくは下限の流量の近い方の制限
流量を次回の空気設定要求流量とし、この場合は空気比
が空気比設定要求値からずれているため、前記と同要領
によってこの空気設定要求流量に対応する燃料系の設定
要求流量を、再度、空気比設定要求値と燃焼に必要な理
論空気量とから演算により求め、この求めた燃料系の設
定要求流量を次回の燃料設定要求流量とし、これらの流
量に見合う弁開度を弁開閉駆動モータ9に出力して燃料
と空気の流量制御を行う。On the other hand, when it is determined in the above determination that the flow rate is out of the range, the limit flow rate which is closer to the upper or lower flow rate is set as the next required air setting flow rate. Because of the deviation, the set required flow rate of the fuel system corresponding to this air set required flow rate was calculated again from the required air ratio setting value and the theoretical air amount required for combustion in the same manner as described above. The set required flow rate of the fuel system is set as the next required fuel set flow rate, and the valve opening corresponding to these flow rates is output to the valve opening / closing drive motor 9 to control the fuel and air flow rates.
【0028】上記の如く燃焼用バーナ12への燃料と空気
の流量を制御して供給するので、流量比率(空気比)が
殆ど一定して燃焼が行え、従って、燃焼状態の変更など
に伴う大きな昇温あるいは降温に対しても流量比率の変
動を小さくして燃焼状態の変更を行うことができる。Since the fuel and air flow rates are controlled and supplied to the combustion burner 12 as described above, the combustion can be performed with a substantially constant flow rate ratio (air ratio). Even when the temperature rises or falls, the variation in the flow rate can be reduced to change the combustion state.
【0029】なお、上記実施例において修正した場合の
空気あるいは燃料の各設定要求流量は、次回に到達可能
な開度範囲における設定要求空気比を満足している燃料
系流量の外部要求に対して最も迅速な流量設定となって
おり、この設定要求流量に一致する流量調節弁11の流量
係数は、下記の関係式により算出される。 Qs={Po×N2×V2/(N2+V2)}1/2 V(s)={Qs2 ×N2/(Po×N2−Qs2 )}1/2 但し、V(s):可変絞り機構(流量調節弁11)に要求され
る流量係数 V:可変絞り機構(流量調節弁11)の流量係数 N:固定絞り流量係数 Po:弁前圧力センサ8により計測される供給圧力 Qs:設定要求流量The set required flow rate of air or fuel, which is corrected in the above-described embodiment, is different from the external demand of the fuel system flow rate satisfying the set required air ratio in the opening range which can be reached next time. The flow rate setting is the quickest, and the flow coefficient of the flow control valve 11 that matches the set required flow rate is calculated by the following relational expression. Qs = {Po × N 2 × V 2 / (N 2 + V 2 )} 1/2 V (s) = {Qs 2 × N 2 / (Po × N 2 −Qs 2 )} 1/2, where V ( s): Flow coefficient required for the variable throttle mechanism (flow control valve 11) V: Flow coefficient of the variable throttle mechanism (flow control valve 11) N: Fixed throttle flow coefficient Po: Supply measured by the pressure sensor 8 before the valve Pressure Qs: Set required flow rate
【0030】上記で算出された流量係数より、演算制御
器6に記憶している可変絞り系の流量係数と弁開度との
関係式または、特性を記憶したデータテーブルより補間
計算等により設定要求弁開度を算出する。Based on the flow coefficient calculated above, a relational expression between the flow coefficient of the variable throttle system and the valve opening stored in the arithmetic and control unit 6 or a setting request by interpolation calculation or the like from a data table storing characteristics. Calculate the valve opening.
【0031】また、演算制御器6における一制御演算時
間が長くなる場合は、各センサ5,7,8等、による前
回の計測値に基づいて演算された操作量を弁開閉駆動モ
ータ9に出力して稼働する一方、この稼働に並行して今
回計測値に基づく演算を行うようにしてもよく、このよ
うにすることにより、より一制御演算時間を短くでき
る。When one control operation time in the operation controller 6 becomes long, the operation amount calculated based on the previous measurement value by each sensor 5, 7, 8, etc. is output to the valve opening / closing drive motor 9. On the other hand, the operation based on the current measurement value may be performed in parallel with this operation. By doing so, one control operation time can be further reduced.
【0032】また、演算制御器6では、フィードバック
制御系を弁開度のみに対して行い、流量制御系をフィー
ドバックループから除外したので、流量制御系の遅れ要
素が無くなり、安定した制御系が構築できる。In the arithmetic and control unit 6, since the feedback control system is performed only for the valve opening and the flow control system is excluded from the feedback loop, the delay element of the flow control system is eliminated and a stable control system is constructed. it can.
【0033】なお、上記実施例においては、流量調節弁
11の下流に燃焼用バーナ12を1台配設した例を説明した
が、本発明はこれに限定されるものではなく、流量調節
弁11下流に複数台の燃焼バーナ12を並設してもよい。In the above embodiment, the flow control valve
Although an example in which one combustion burner 12 is provided downstream of 11 has been described, the present invention is not limited to this, and a plurality of combustion burners 12 may be arranged in parallel downstream of the flow control valve 11. Good.
【0034】以上の説明は、本発明を理解し易くするた
め燃焼制御装置における流量制御方法を主体に説明して
きたが、本発明は、燃焼制御装置における流量制御方法
に限定されるものではなく、2流体を対象とする混合比
率制御装置など、例えば、ブタンガスと空気とを適宜比
率で混合し燃料ガスとしての発熱量制御をする際の混合
比率制御などの流量制御に適用し得るものである。Although the above description has mainly been given of the flow rate control method in the combustion control device for easy understanding of the present invention, the present invention is not limited to the flow rate control method in the combustion control device. A mixing ratio control device for two fluids, for example, can be applied to flow rate control such as mixing ratio control when mixing butane gas and air at an appropriate ratio and controlling the calorific value as a fuel gas.
【0035】[0035]
【発明の効果】以上説明したように、混合比率制御装置
が燃焼制御装置である場合、本発明に係わる流量制御方
法によれば、燃焼状態を変更する場合や、燃焼状態が大
きく変化する場合に、燃料と空気の流量比率(空気比)
を大きく乱すことなく殆ど一定の流量比率で燃焼用バー
ナの燃焼制御が行える。これにより燃焼状態の変更時で
も不完全燃焼が抑制できるのですすなどの発生が防止で
きる。As described above, when the mixing ratio control device is a combustion control device, according to the flow rate control method according to the present invention, when the combustion state is changed or when the combustion state is greatly changed, , Fuel and air flow ratio (air ratio)
The combustion control of the combustion burner can be performed at an almost constant flow rate ratio without largely disturbing the combustion. Thus, even when the combustion state is changed, incomplete combustion can be suppressed, and occurrence of soot and the like can be prevented.
【0036】また、燃料や空気の設定要求流量が上下限
流量範囲を外れる場合には、上限もしくは下限の流量の
近い方の制限流量を次回設定要求流量としているので、
燃焼状態変更過渡期における流量比率の乱れを極小に抑
えることができる。When the set required flow rate of fuel or air is out of the upper and lower limit flow rate ranges, the limit flow rate which is closer to the upper or lower limit flow rate is set as the next set required flow rate.
Disturbance in the flow rate ratio during the transition period of the combustion state change can be minimized.
【図1】本発明に係わる燃焼用バーナの燃焼制御方法を
加熱装置に適用した場合の概念図であって、aは全体
図、bはaのバーナ周辺の拡大図である。FIG. 1 is a conceptual diagram when a combustion control method for a combustion burner according to the present invention is applied to a heating device, where a is an overall view and b is an enlarged view around the burner of a.
1:燃料供給管路 2:燃焼用空気供給管路
3:加熱装置 4:温度調節計 5:炉内温度計測センサ
6:演算制御器 7:流体温度計測用センサ 8:弁前圧力セン
サ 9:弁開閉駆動モータ 10:バーナ前圧力センサ 1
1:流量調節弁 12:燃焼用バーナ A,B:ゾーン1: Fuel supply line 2: Combustion air supply line
3: heating device 4: temperature controller 5: furnace temperature measurement sensor
6: Operation controller 7: Fluid temperature measurement sensor 8: Valve front pressure sensor 9: Valve opening / closing drive motor 10: Burner front pressure sensor 1
1: Flow control valve 12: Combustion burner A, B: Zone
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中垣 弘司 大阪府大阪市西区京町堀2丁目4番7号 中外炉工業株式会社内 (72)発明者 田中 祐三 大阪府大阪市西区京町堀2丁目4番7号 中外炉工業株式会社内 (72)発明者 中安 斌 兵庫県姫路市広畑区正門通4−10−11 中外プロックス株式会社 インキュベー ションセンター内 (72)発明者 楢原 秀昭 兵庫県姫路市広畑区正門通4−10−11 中外プロックス株式会社 インキュベー ションセンター内 (56)参考文献 特開 昭63−273724(JP,A) 実開 昭61−191840(JP,U) 特公 昭60−14973(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F23N 1/02 F23N 1/02 101 F23N 5/18 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koji Nakagaki 2-4-7 Kyomachibori, Nishi-ku, Osaka-shi, Osaka Inside Chugai Furnace Industry Co., Ltd. (72) Inventor Yuzo Tanaka 2--4, Kyomachibori, Nishi-ku, Osaka-shi, Osaka No. 7 Inside Chugai Furnace Industry Co., Ltd. (72) Inventor Nakayasu Bin 4-10-11 Shomondori, Hirohata-ku, Himeji City, Hyogo Prefecture Inside Chugai Prox Co., Ltd. 4-10-11 Shomon-dori Chugai Prox Co., Ltd. Incubation Center (56) References JP-A-63-273724 (JP, A) JP-A-61-191840 (JP, U) JP-B-60-14973 (JP) , B2) (58) Field surveyed (Int.Cl. 7 , DB name) F23N 1/02 F23N 1/02 101 F23N 5/18
Claims (3)
量係数が既知の固定絞り機構と、前記各流体管路に配設
された可変絞り機構、弁前圧力センサ、流体温度センサ
と、前記可変絞り機構の弁開閉駆動モータおよび弁開度
センサ、さらに弁前圧力センサおよび流体温度センサと
に結ばれた演算制御器とを備え、A流体とB流体の異な
る2流体をある比率をもって混合する混合比率制御装置
における流量制御方法であって、 a:各管路における弁前圧力、流体温度および弁開度を
各センサにより計測するステップと、 b:弁開度センサにより一演算毎に計測される弁開度か
ら弁開閉駆動モータの能力上一演算時間内に到達可能な
上限開度と下限開度を求めるとともに、これら上下限開
度における2流体のそれぞれの可変絞り機構の流量係数
を求めるステップと、 c:前記流量係数を元に、前記aで計測された圧力と温
度の条件下における前記各上下限開度に対応する2流体
のそれぞれの流量を求めるステップと、 d:設定要求されているA流体の流量が、前記cで求め
た上下限流量範囲に入っているか否かを判定するステッ
プと、 e:前記dで範囲外であると判定したときに、上限もし
くは下限の流量の近い方の制限流量を次回のA流体の設
定要求流量とするステップと、 f:前記dで範囲外と判定され前記eにより次回のA流
体の設定要求流量を修正した場合に、その修正されたA
流体の設定要求流量に対応するB流体の設定要求流量
を、混合比率設定要求値からB流体の設定要求流量を求
めるステップと、 g:前記fで求めたB流体の設定要求流量が、前記cで
求めた上下限流量範囲に入っているか否かを判定するス
テップと、 h:前記gで範囲外であると判定したときに、上限もし
くは下限の流量の近い方の制限流量を次回のB流体の設
定要求流量とするステップと、 i:前記gで範囲外と判定され前記hにより次回のB流
体の設定要求流量を修正した場合には、この修正したB
流体の設定要求流量に対応するA流体の設定要求流量
を、混合比率設定要求値からから求めるステップと、を
含むことを特徴とする混合比率制御装置における流量制
御方法。1. A fixed throttle mechanism in which an A fluid line and a B fluid line are connected and whose flow coefficient is known, a variable throttle mechanism, a pre-valve pressure sensor, and a fluid temperature sensor disposed in each of the fluid lines. And a calculation controller connected to a valve opening / closing drive motor and a valve opening degree sensor of the variable throttle mechanism, and a pre-valve pressure sensor and a fluid temperature sensor. A flow rate control method in a mixing ratio control device that mixes by: a: a step of measuring a valve front pressure, a fluid temperature, and a valve opening degree in each pipe line by each sensor; and b: each operation by a valve opening degree sensor. The upper limit opening and the lower limit opening that can be reached within one calculation time in terms of the performance of the valve opening / closing drive motor are obtained from the valve opening measured at the same time. coefficient C: obtaining the respective flow rates of the two fluids corresponding to the respective upper and lower opening degrees under the conditions of the pressure and the temperature measured in a, based on the flow coefficient, d: setting request Determining whether the flow rate of the fluid A is within the upper / lower limit flow rate range obtained in the above c; and e: when it is determined in the above d that the flow rate is out of the range, the upper or lower flow rate. Setting the limit flow rate closer to the next to the next required set flow rate of the fluid A; and f: if the d is determined to be out of the range and the set required flow rate of the next fluid A is corrected by the above e, the corrected flow rate is corrected. A
A step of obtaining a set required flow rate of the B fluid corresponding to the set required flow rate of the fluid, and a set required flow rate of the B fluid from the required mixture ratio setting value; Determining whether or not the flow rate falls within the upper / lower flow rate range obtained in step h; and, when determining that the flow rate is out of the range, the lower limit flow rate, which is closer to the upper or lower limit flow rate, is used for the next B fluid. And i: when the determined required flow rate of the next B fluid is corrected according to h and the determined required flow rate is determined to be out of the range by the above g, the corrected B
Obtaining a set required flow rate of fluid A corresponding to the set required flow rate of the fluid from the required mixture ratio setting value.
流量係数が既知の混合機構を備える請求項1記載の混合
比率制御装置における流量制御方法。2. A fixed throttle mechanism having a known flow coefficient,
The flow control method according to claim 1, further comprising a mixing mechanism having a known flow coefficient.
数が既知の燃焼用バーナと、前記各管路に配設された可
変絞り機構、弁前圧力センサ、流体温度センサと、前記
可変絞り機構の弁開閉駆動モータおよび弁開度センサ、
さらに弁前圧力センサおよび流体温度センサとに結ばれ
た演算制御器とを備える燃焼制御装置における流量制御
方法であって、 a:各管路における弁前圧力、流体温度および弁開度を
各センサにより計測するステップと、 b:弁開度センサにより一演算毎に計測される弁開度か
ら弁開閉駆動モータの能力上一演算時間内に到達可能な
上限開度と下限開度を求めるとともに、これら上下限開
度における燃料と空気のそれぞれの可変絞り機構の流量
係数を求めるステップと、 c:前記流量係数を元に、前記aで計測された圧力と温
度の条件下における前記各上下限開度に対応する燃料と
空気のそれぞれの流量を求めるステップと、 d:設定要求されている燃料系の流量が、前記cで求め
た上下限流量範囲に入っているか否かを判定するステッ
プと、 e:前記dで範囲外であると判定したときに、上限もし
くは下限の流量の近い方の制限流量を次回の燃料設定要
求流量とするステップと、 f:前記dで範囲外と判定され前記eにより次回の燃料
設定要求流量を修正した場合に、その修正された燃料設
定要求流量に対応する空気系の設定要求流量を、空気比
設定要求値と燃焼に必要な理論空気量とから求めるステ
ップと、 g:前記fで求めた空気系の設定要求流量が、前記cで
求めた上下限流量範囲に入っているか否かを判定するス
テップと、 h:前記gで範囲外であると判定したときに、上限もし
くは下限の流量の近い方の制限流量を次回の空気設定要
求流量とするステップと、 i:前記gで範囲外と判定され前記hにより次回の空気
設定要求流量を修正した場合には、この修正した空気設
定要求流量に対応する燃料系の設定要求流量を、設定要
求空気比と燃焼に必要な理論空気量とから求めるステッ
プと、を含むことを特徴とする燃焼制御装置における流
量制御方法。3. A combustion burner in which a fuel pipe and an air pipe are connected and whose flow coefficient is known, a variable throttle mechanism, a valve front pressure sensor, a fluid temperature sensor, and a variable throttle mechanism provided in each of the pipes. Valve opening / closing drive motor of variable throttle mechanism and valve opening degree sensor,
A flow control method in a combustion control device further comprising: an arithmetic controller connected to a valve front pressure sensor and a fluid temperature sensor, wherein: a: a valve front pressure, a fluid temperature, and a valve opening degree in each pipe line; And b: determining an upper limit opening and a lower limit opening that can be reached within one calculation time in terms of the performance of the valve opening / closing drive motor from the valve opening measured at each calculation by the valve opening sensor, Determining the flow coefficient of each of the variable throttle mechanisms for fuel and air at these upper and lower limit opening degrees; and c: based on the flow coefficient, the upper and lower limit opening under the conditions of the pressure and temperature measured in a. Determining the respective flow rates of fuel and air corresponding to the degree; d: determining whether the flow rate of the fuel system requested to be set is within the upper / lower limit flow rate range determined in the above c. And e: when it is determined in step d that the flow rate is out of the range, a flow rate that is closer to the upper or lower flow rate is set as the next required fuel setting flow rate. F: the flow rate is determined to be out of the range in step d. When the next required fuel setting flow rate is corrected by the above e, the required setting flow rate of the air system corresponding to the corrected required fuel setting flow rate is obtained from the required air ratio setting value and the theoretical air amount required for combustion. And g: determining whether or not the set required flow rate of the air system determined in f is within the upper and lower limit flow rate range determined in c, and h: determining that the flow rate is out of the range in g. Setting the next lower limit flow rate to the next lower limit flow rate as the next required air setting flow rate; and i: determining that the flow rate is out of the range in the above g and correcting the next required air setting flow rate in the above h. Fix this Flow rate control method in the combustion control apparatus characterized by comprising determining a setting request flow of the fuel system corresponding to the air setting the required flow rate, and a theoretical amount of air required for combustion and set required air ratio, a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3279914A JP3020328B2 (en) | 1991-10-25 | 1991-10-25 | Flow control method in mixing ratio control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3279914A JP3020328B2 (en) | 1991-10-25 | 1991-10-25 | Flow control method in mixing ratio control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05118529A JPH05118529A (en) | 1993-05-14 |
JP3020328B2 true JP3020328B2 (en) | 2000-03-15 |
Family
ID=17617673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3279914A Expired - Lifetime JP3020328B2 (en) | 1991-10-25 | 1991-10-25 | Flow control method in mixing ratio control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3020328B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5243843B2 (en) * | 2008-05-20 | 2013-07-24 | 大阪瓦斯株式会社 | Combustion equipment and abnormality diagnosis method for combustion equipment |
-
1991
- 1991-10-25 JP JP3279914A patent/JP3020328B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05118529A (en) | 1993-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7922481B2 (en) | Method for setting the air ratio on a firing device and a firing device | |
US5634786A (en) | Integrated fuel/air ratio control system | |
US6095792A (en) | Flue gas recirculation system and method | |
JP3020328B2 (en) | Flow control method in mixing ratio control device | |
JPS60259823A (en) | Optimum burning control of induction type radiant tube burner furnace | |
JP2664007B2 (en) | Control device for combustion equipment | |
JP2551411B2 (en) | Multistage control type air-fuel ratio control method and apparatus in combustion apparatus | |
JPH07111268B2 (en) | Water heater controller | |
JPH07280256A (en) | In-furnace pressure controlling method for burning furnace | |
JPH02223724A (en) | Air fuel ratio control method of heater | |
JP2612985B2 (en) | Burner control device | |
KR910002734B1 (en) | Combustion control device | |
JP3077717B2 (en) | Water heater control device | |
JP3098143B2 (en) | Combustor | |
JP2710541B2 (en) | Combustion control device | |
JP2808736B2 (en) | Water heater control device | |
JPH06147472A (en) | Gas burner | |
JPH0942766A (en) | Combustion appliance having hot water supply function and correction data input device | |
JPH0745930B2 (en) | Air-fuel ratio controller for gas combustion equipment | |
JP2964844B2 (en) | Hot air heater | |
KR20030052912A (en) | Oxygen concentration control method in case of firing multiple fuels | |
JPH03175208A (en) | Automatic air/fuel ratio correction device | |
JPS6021639Y2 (en) | Furnace pressure control device for combustion equipment | |
JPH1047654A (en) | Air ratio automatic correcting system for combustion equipment | |
JPS63169424A (en) | Combustion controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090114 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100114 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110114 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110114 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120114 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120114 Year of fee payment: 12 |