JP3007493B2 - High speed and high load bearing device and screw compressor using the same - Google Patents
High speed and high load bearing device and screw compressor using the sameInfo
- Publication number
- JP3007493B2 JP3007493B2 JP4264129A JP26412992A JP3007493B2 JP 3007493 B2 JP3007493 B2 JP 3007493B2 JP 4264129 A JP4264129 A JP 4264129A JP 26412992 A JP26412992 A JP 26412992A JP 3007493 B2 JP3007493 B2 JP 3007493B2
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- contact
- speed
- thrust
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/16—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
- F16C19/163—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/02—Arrangements of bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/14—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C18/16—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/24—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
- F16C19/26—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/54—Systems consisting of a plurality of bearings with rolling friction
- F16C19/541—Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
- F16C19/542—Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/30—Angles, e.g. inclinations
- F16C2240/34—Contact angles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/43—Screw compressors
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rolling Contact Bearings (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は高速高荷重軸受装置、特
に乾燥空気の高速のスクリュー圧縮機における軸受の延
命化を図れる軸受装置及びこれを使用したスクリュー圧
縮機に関するものである。The present invention relates to relates to a high-speed and high-load bearing device, the bearing device and a screw compressor using the same, especially attained the survival of high-speed bearings in a screw compressor of the dry air.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】本発明
はスラスト荷重を受けるロータを支持する応用分野にて
有効的であり、特にスクリュー圧縮機にて優位性を発揮
する。乾燥回転スクリュー圧縮機においては、主ロータ
の回転は動力伝達の歯車を介して副ロータに伝達され
る。この組合せ体において、上記動力伝達用の歯車間の
クリアランスはスクリューロータの接触を防止するため
に該スクリューロータのクリアランスよりも小さくなっ
ている。非常に高速で回転し圧縮空気中に油分が進入す
ることのないような圧縮機は、化学あるいは食品加工の
分野にて特に用いられている。また、環境上の理由で、
上記油分の進入がない形式のものが次第に強く要望され
ている。これらのスクリュー圧縮機のロータのための軸
受組合せ体には、従来、正面組合せあるいは背面組合せ
の二つの単列アンギュラコンタクト玉軸受を含んでお
り、各軸受は同じ接触角を有している。この種のスラス
ト軸受の組合せ体そのものは新しいものではなく、例え
ば米国特許第4227755号そして米国特許第473
0995号にて知られている。BACKGROUND OF THE INVENTION The present invention is effective in the field of supporting a rotor subjected to a thrust load, and is particularly advantageous in a screw compressor. In the dry rotary screw compressor, the rotation of the main rotor is transmitted to the sub-rotor via a power transmission gear. In this combination, the clearance between the power transmission gears is smaller than the clearance of the screw rotor in order to prevent contact with the screw rotor. Compressors that rotate at very high speed and do not allow oil to enter the compressed air are particularly used in the chemical or food processing fields. Also, for environmental reasons,
There is a growing demand for a type in which the above-mentioned oil does not enter. The bearing combinations for the rotors of these screw compressors conventionally include two single row angular contact ball bearings, face-to-face or back-to-back, with each bearing having the same contact angle. This kind of thrust bearing combination itself is not new and is described, for example, in U.S. Pat. No. 4,227,755 and U.S. Pat.
No. 0995.
【0003】これらの公知の軸受組合せ体においては、
二つのアンギュラコンタクト玉軸受の接触角は30°な
いし40°の範囲にある。一方の軸受はスラスト軸受と
呼ばれ、圧縮機の定常運転時に一方向にのみ作用する軸
力を受けるように機能し、他方の軸受は補助軸受あるい
はバックアップ軸受と呼ばれてロータの遊びの調整に寄
与している。In these known bearing combinations,
The contact angles of the two angular contact ball bearings are in the range of 30 ° to 40 °. One bearing is called a thrust bearing and functions to receive an axial force acting only in one direction during steady operation of the compressor, and the other bearing is called an auxiliary bearing or a backup bearing to adjust the rotor play. Has contributed.
【0004】かかる従来装置にあっては、二つの軸受は
共に、圧縮機の運転中におけるロータのスラスト荷重を
有効に受けるように、同じ値の大きい接触角をもつよう
に設計されていた。In such a conventional device, both bearings are designed to have the same large contact angle so as to effectively receive the thrust load of the rotor during operation of the compressor.
【0005】また、上記従来装置では、スラスト軸受と
バックアップ軸受とを同じ値の大きな接触角とすること
は軸受系におけるスラスト荷重の能力に影響をもたらさ
ないと信じられていた。しかしながら、従来の軸受組合
せ体では、高速回転のもとで玉に作用する遠心力に起因
する内部軸力が増大するために、統計上寿命が短くなっ
ているいることが判明した。これは、これらの従来の軸
受組合せ体においては、荷重を支える軸受がロータによ
りもたらされる空気の圧縮力よりも大きな軸力を支持せ
ねばならないことを意味している。[0005] Further, in the above-mentioned conventional apparatus, it was believed that setting the contact angle between the thrust bearing and the backup bearing to the same large value did not affect the thrust load capability in the bearing system. However, it has been found that the life of the conventional bearing combination is statistically shortened because the internal axial force caused by the centrifugal force acting on the ball under high-speed rotation increases. This means that in these conventional bearing combinations, the load-bearing bearing must support an axial force greater than the air compression provided by the rotor.
【0006】軸受の寿命は、特にスクリュー圧縮機のよ
うな応用分野において、荷重が高いことそして回転が高
速であることに起因して短寿命である。この分野での軸
受寿命を延ばす試みは、図4に示されるように軸受間の
軸方向クリアランスを比較的大きくする等によりなされ
てきた。しかし、大きな軸方向クリアランスは圧縮機の
効率に逆効果であり、このような対策は満足のいくもの
ではない。軸受に軸方向クリアランスを与えると圧縮機
のハウジング内でのロータ同士の相対的な位置の精度に
影響をもたらす。軸受内の大きな軸方向クリアランス
(図4参照)は、いわゆる「ロータの擦り」を避けるた
めにロータとハウジングの間に大きなクリアランスを必
要とするし、又これらの大きなクリアランスは圧縮機の
高圧側の室あるいは空間から低圧側の空間への洩れを生
ずる原因となる。かくして、圧縮機は低効率のものとな
ってしまう。さらには、大きな軸方向クリアランスは軸
受の玉と軌道輪との間に滑りを生じ、寿命が短くなる。[0006] The life of the bearing is short, especially in applications such as screw compressors, due to the high load and high speed of rotation. Attempts to extend bearing life in this field have been made, such as by relatively increasing the axial clearance between bearings, as shown in FIG. However, large axial clearances have an adverse effect on compressor efficiency, and such measures are not satisfactory. Providing the bearings with axial clearance affects the accuracy of the relative positions of the rotors within the compressor housing. The large axial clearances in the bearings (see FIG. 4) require large clearances between the rotor and the housing to avoid so-called "rotor rubbing", and these large clearances are high on the high pressure side of the compressor. This may cause leakage from the room or space to the space on the low pressure side. Thus, the compressor is less efficient. Furthermore, large axial clearances cause slippage between the bearing balls and the bearing rings, shortening the service life.
【0007】本発明は、スラスト軸受、特にスクリュー
圧縮機に用いられるスラスト軸受を、上述の軸受延命化
そして圧縮機の高性能化を図れるように改善することを
目的とする。An object of the present invention is to improve a thrust bearing, particularly a thrust bearing used for a screw compressor, so as to extend the life of the bearing and improve the performance of the compressor.
【0008】本発明の他の目的は、外部からの荷重を支
持するように大きな接触角のスラスト軸受をもち、高速
回転においても遠心力による内部力に起因する誘導軸力
をきわめて小さくすることにある。Another object of the present invention is to provide a thrust bearing having a large contact angle so as to support an external load, and to minimize an induced axial force caused by an internal force due to a centrifugal force even at a high speed. is there.
【0009】[0009]
【課題を解決するための手段、作用及び効果】本発明に
よれば、上述の問題は、高速高荷重用軸受装置に関し、
異なる接触角をもつスラスト荷重のための第一及び第二
の二つのアンギュラコンタクト軸受が共通のハウジング
内に隣接して軸上に配設された高速高荷重用軸受装置に
おいて、第一のアンギュラコンタクト軸受は30°〜4
0°の範囲の接触角αをもつ主スラスト荷重のためのス
ラスト軸受として設けられ、第二のアンギュラコンタク
ト軸受は上記接触角αより小さい15°〜25°の範囲
の接触角βをもつバックアップ軸受として設けられ、第
一及び第二のアンギュラコンタクト軸受は、ハウジング
との間で周囲に半径方向隙間を形成してハウジングとは
該半径方向で非接触となっており、軸上には円筒ころ軸
受が半径方向でハウジングと接触して配設されていて、
転動体に作用する遠心力にもとづく内部力によって第二
のアンギュラコンタクト軸受に生じ第一のアンギュラコ
ンタクト軸受に作用する誘導軸力が最小となるようにな
っていることにより解決される。According to the present invention, the above problems relate to a high-speed and high-load bearing device,
A high-speed, high-load bearing device in which first and second two angular contact bearings for thrust loads having different contact angles are disposed on a shaft adjacent to each other in a common housing. Bearing is 30 ° -4
A second angular contact bearing is provided as a thrust bearing for a main thrust load having a contact angle α in the range of 0 ° and a backup bearing having a contact angle β in the range of 15 ° to 25 ° smaller than the contact angle α. is provided as, the
The first and second angular contact bearings are
To form a radial gap around the
Non-contact in the radial direction, cylindrical roller shaft on the shaft
A receiver is arranged in contact with the housing in the radial direction,
This problem can be solved by minimizing the induced axial force generated in the second angular contact bearing and acting on the first angular contact bearing due to the internal force based on the centrifugal force acting on the rolling element.
【0010】[0010]
【0011】また、スクリュー圧縮機に関しては、上記
の軸受装置を使用して一対のロータを回転自在に支持す
ることにより上述の問題は解決される。[0011] With respect to the screw compressor, the above-mentioned problems by rotatably supported to <br/> Rukoto a pair of rotors using the above bearing device is solved.
【0012】高速のスクリュー圧縮機にあっては、軸受
の玉に作用する遠心力が軸受内に軸力を生じ、その結果
スラスト軸受はロータによりもたらされる空気の圧縮力
とバックアップ軸受により誘導される軸力との両方に対
抗せねばならないということが判明した。さらに、誘導
軸力はバックアップ軸受において接触角を小さくするこ
よにより最小のものとすることができるということも判
明した。この誘導軸力はラジアル荷重の影響を受けない
状態で、スラスト軸受によって支持されるので、誘導軸
力が小さくなった分だけ、スラスト軸受の負担が軽減さ
れることとなり軸受の寿命が延びる。玉に作用する遠心
力は、従来軸受系の寿命には重大な影響をもたらすとは
考えられていなかった。本発明によると、接触角が30
°〜40°のスラスト軸受と15°〜25°の小さな接
触角の対向バックアップ軸受とを有する軸受組合せ体と
すると、荷重範囲が広く高速運転されるスクリュー圧縮
機のような応用分野では、軸受組合せ体の寿命が非常に
長くなることが判かった。以下、詳細に説明するよう
に、かかる軸受の組合せの結果、玉に作用する遠心力に
もとづく誘導軸力は最小なものとなる。こうして、軸受
組合せ体の寿命が長くなる。さらに、圧縮機の軸受組合
せ体に、予圧をもったアンギュラコンタクト軸受を用い
ることができる。かかる予圧は、圧縮機においては圧縮
機の性能を最良のものとするための正確な位置決めに求
められるものである。In high speed screw compressors, the centrifugal force acting on the bearing balls creates an axial force in the bearing, so that the thrust bearing is induced by the air compression provided by the rotor and the backup bearing. It turned out that both axial forces had to be countered. Furthermore, it has been found that the induced axial force can be minimized by reducing the contact angle in the backup bearing. This induced axial force is not affected by radial loads
In this state, the bearing is supported by the thrust bearing, so that the load on the thrust bearing is reduced and the life of the bearing is extended by an amount corresponding to the decrease in the induced axial force. Conventionally, the centrifugal force acting on the ball has not been considered to have a significant effect on the life of the bearing system. According to the invention, a contact angle of 30
A bearing combination having a thrust bearing of 40 ° to 40 ° and an opposing backup bearing of a small contact angle of 15 ° to 25 ° provides a bearing combination in an application field such as a screw compressor which has a wide load range and operates at high speed. It turns out that the life of the body is very long. As will be described in detail below, as a result of such a combination of bearings, the induced axial force based on the centrifugal force acting on the ball is minimized. Thus, the life of the bearing combination is prolonged. Furthermore, an angular contact bearing with a preload can be used for the bearing combination of the compressor. Such a preload is required for a compressor to accurately position the compressor in order to optimize its performance.
【0013】本発明によるスクリュー圧縮機のロータを
支持する組合せの軸受と、スラスト軸受とバックアップ
軸受が同じ接触角をもつような従来の組合せの軸受とを
比較検討した。その結果は、圧縮機の運転中に軸受に課
せられる通常の速度と荷重範囲における軸受寿命を非常
に長くするということを示した。このことは、図10に
見られる従来装置に比し、本発明では遠心力による誘導
軸力が図11に見られるように最小化されたことを明示
している。A comparison was made between a combination bearing that supports the rotor of the screw compressor according to the present invention and a conventional combination in which the thrust bearing and the backup bearing have the same contact angle. The results showed that the bearing life in the normal speed and load range imposed on the bearing during the operation of the compressor was greatly extended. This clearly indicates that the induced axial force due to the centrifugal force is minimized as shown in FIG. 11 in comparison with the conventional device shown in FIG.
【0014】[0014]
【実施例】以下、上述の目的を達成するための本発明に
ついて、実施例をもとに詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention for achieving the above-mentioned object will be described in detail based on embodiments.
【0015】既述のごとく、特定の圧縮機、例えば乾燥
空気ツインスクリュー型圧縮機は圧縮効率を最大とする
ために高速で運転される。この分野で広く用いられるス
ラスト軸受は、二つの単列アンギュラコンタクト軸受を
組合せて有しており、従来は、接触角が30°〜40°
と比較的大きなものを二つの軸受共に同じく採用してい
た。これらの軸受について接触角をこのように大きくす
る理由は、ロータにより生じる空気圧縮力(軸力)を支
持する能力を最大なものとするためにあった。As mentioned above, certain compressors, such as dry air twin screw compressors, operate at high speed to maximize compression efficiency. Thrust bearings widely used in this field have a combination of two single-row angular contact bearings, and conventionally have a contact angle of 30 ° to 40 °.
A relatively large one was also used for both bearings. The reason for such a large contact angle for these bearings was to maximize the ability to support the air compression force (axial force) generated by the rotor.
【0016】従来は、遠心力にもとづき生ずる内部軸力
は軸受組合せ体ではきわめて小さいと信じられていた。
しかしながら、従来の組合せ軸受が比較的短命であるの
は、上述の大きな接触角による玉の遠心力に起因してい
ることが判明した。玉の遠心力の誘導軸力への影響は小
さな接触角のアンギュラコンタクト軸受を用いることに
より最小化できる。しかし、接触角が小さい程、圧縮機
の軸力を支持する能力は低いものとなってしまう。In the past, it was believed that the internal axial force resulting from the centrifugal force was extremely small in the bearing combination.
However, it has been found that the conventional combination bearing has a relatively short life due to the centrifugal force of the ball due to the large contact angle described above. The effect of the centrifugal force of the ball on the induced axial force can be minimized by using an angular contact bearing with a small contact angle. However, the smaller the contact angle, the lower the ability of the compressor to support the axial force.
【0017】上述のように、本発明は組合せ軸受におい
て遠心力が誘導軸力に及ぼす影響を最小とし、しかも従
来の組合せ軸受と同じあるいはそれ以上の空気圧縮力を
支持できる軸受組合せ体を提供する。本発明の軸受組合
せ体における力と延命の関係を、以下図面にて示すと共
に検討する。As described above, the present invention provides a bearing combination that minimizes the effect of centrifugal force on the induced axial force in a combined bearing and that can support the same or greater air compression force as a conventional combined bearing. . The relationship between force and life extension in the bearing combination of the present invention will be described below with reference to the drawings.
【0018】特に図1と図2には、符号10で示される
本発明の組合せ軸受をもったいわゆる乾燥空気圧縮機と
してのスクリュー圧縮機が示されている。該圧縮機の軸
受組合せ体を除いた全体構造そして基本的な要素自体は
新しいものではなく、ハウジング12、主ロータ14そ
してこれと協働する副ロータ16を有している。駆動側
となる主ロータ14は適宜駆動手段からの駆動力を歯車
で受け回転し、その回転を副ロータ16に伝達する。一
般的な例として、ロータ14,16は互いに噛合する螺
旋状のスクリュー状になっている。歯車20と22が両
ロータ14,16を結合している。主ロータ14及び副
ロータ16はスタッブ軸24,26をそれぞれ有してお
り、ハウジング内にロータを回転可能に支持する軸受を
該スタッブ軸に組めるようになっている。In particular, FIGS. 1 and 2 show a screw compressor as a so-called dry air compressor having the combination bearing of the present invention indicated by reference numeral 10. The overall structure and the basic elements of the compressor, except for the bearing combination, are not new, but have a housing 12, a main rotor 14 and a co-rotor 16 cooperating therewith. The main rotor 14 on the driving side receives the driving force from the driving means by means of gears, rotates, and transmits the rotation to the sub-rotor 16. As a general example, the rotors 14, 16 are in the form of a spiral screw meshing with each other. Gears 20 and 22 connect both rotors 14,16. The main rotor 14 and the sub-rotor 16 have stub shafts 24 and 26, respectively, and a bearing for rotatably supporting the rotor can be assembled to the stub shaft in a housing.
【0019】圧縮機の運転とそのサイクルは一般的なも
のであり、圧縮機がこの一般的なサイクルを行っている
ときには、圧縮される媒体としての空気からの半径方向
そして軸方向の力をロータが受けることとなる。図示の
方向に作用する軸力は以下の各図でKにて示されてい
る。かくして、媒体からロータに作用する力が増大する
と軸力Kも大きくなる。さらに、図示の例では、ロータ
は約30,000RPMの一定した高速度で回転してい
る。図3、図4に示す従来の組合せ軸受では、軸受の玉
に作用する遠心力Fcによる力の軸方向成分たる内部軸
力Fbcが追加的に作用していることが判かった(図1
0参照)。この力の影響は速度と共に大きくなり、また
接触角が大きくなる程、内部軸力Fbcが大きくなるこ
とも判明した。同じ接触角をもつスラスト軸受30とバ
ックアップ軸受32を備えた従来の軸受組合せ体におい
て、圧縮空気により生ずる力よりも大きな軸力をスラス
ト軸受が支持できなくてはならないということは重大な
ことである。The operation and cycle of a compressor is typical, and when the compressor is performing this general cycle, radial and axial forces from air as the medium to be compressed are applied to the rotor. Will receive it. The axial force acting in the illustrated direction is indicated by K in the following figures. Thus, as the force acting on the rotor from the medium increases, the axial force K also increases. Further, in the illustrated example, the rotor is rotating at a constant high speed of about 30,000 RPM. In the conventional combination bearing shown in FIGS. 3 and 4, it has been found that an internal axial force Fbc, which is an axial component of the force due to the centrifugal force Fc acting on the bearing ball, additionally acts (FIG. 1).
0). It has also been found that the effect of this force increases with speed, and that as the contact angle increases, the internal axial force Fbc increases. It is important that in a conventional bearing combination with a thrust bearing 30 and a backup bearing 32 having the same contact angle, the thrust bearing must be able to support an axial force greater than the force generated by the compressed air. .
【0020】本発明によると、スラスト軸受は軸受に作
用する力を効果的に小さくし、これにより上述の従来の
アンギュラコンタクト軸受の組合せ軸受に比して寿命を
延ばすことができる。そうするために、本発明では、大
きな接触角αのアンギュラコンタクトスラスト軸受3
0’と小さな接触角のアンギュラコンタクトバックアッ
プ軸受32’とを組合せて採用している。これらの軸受
の個々は、それ自体従来より広く用いられているもの
で、内輪Riと外輪Roそしてこれら内外輪の間に配さ
れる玉Bを有している。スラスト軸受30の接触角αは
30°〜40°の範囲、バックアップ軸受32の接触角
βは15°〜25°の範囲であることが好ましい。本発
明によると、スラスト軸受とバックアップ軸受の接触角
の差は少なくとも5°、好ましくは、15°〜20°で
あるのが良い。かかる構成にあって、誘導軸力は最小値
をとるようになる。図8と図9そして図10と図11を
参照しても明らかなように、本発明による軸受の寿命
は、図12と図13のコンピュータによる比較シミュレ
ーションに見られるごとく長いものとなる。According to the present invention, the thrust bearing effectively reduces the force acting on the bearing, thereby extending the life as compared with the above-described conventional combination of angular contact bearings. In order to do so, in the present invention, the angular contact thrust bearing 3 having a large contact angle α is used.
0 'and an angular contact backup bearing 32' having a small contact angle are used in combination. Each of these bearings, which has been widely used in the past, has an inner ring Ri, an outer ring Ro, and a ball B disposed between the inner and outer rings. The contact angle α of the thrust bearing 30 is preferably in the range of 30 ° to 40 °, and the contact angle β of the backup bearing 32 is preferably in the range of 15 ° to 25 °. According to the invention, the difference between the contact angles of the thrust bearing and the backup bearing is at least 5 °, preferably between 15 ° and 20 °. In such a configuration, the guiding axial force takes a minimum value. As can be seen from FIGS. 8 and 9 and FIGS. 10 and 11, the life of the bearing according to the invention is long, as can be seen in the computer simulations of FIGS. 12 and 13.
【0021】さらに、本発明の構成によると、小さなク
リアランスあるいは予圧が与えられた軸受組合せ体が可
能となり、その結果、ロータの位置出しがより正確にな
り、圧縮機効率に逆効果をもたらす大きな軸方向クリア
ランスをもった従来の軸受組合せ体の場合に比して圧縮
機効率が向上する。Further, the arrangement of the present invention allows for a bearing assembly with a small clearance or preload, resulting in a more accurate positioning of the rotor and a large shaft which has a negative effect on compressor efficiency. The compressor efficiency is improved as compared with the conventional bearing combination having a directional clearance.
【0022】図10と図11のグラフの解析によると、
本発明による軸受組合せ体に作用する力は従来の軸受組
合せ体における場合よりも小さいことを示している。両
方の場合、軸受は図10と図11に示されるように予圧
を受けている。曲線は軸荷重と組合せ軸受の変位を表わ
すと共に、軸受組合せ体の二つの軸受での荷重の分配を
示している。軸受が外力Kを受けずまた回転もしていな
いときには、軸受組合せ体内の力は予圧力Foである。
代表的軸受組合せ体にあって、外力Kが作用したときに
は、スラスト軸受の変位は増加し、バックアップ軸受の
変位は減少する。そして、外力Kはスラスト軸受とバッ
クアップ軸受の荷重の差となる。According to the analysis of the graphs of FIG. 10 and FIG.
It shows that the forces acting on the bearing combination according to the invention are smaller than in a conventional bearing combination. In both cases, the bearing is preloaded as shown in FIGS. The curves represent the axial load and the displacement of the combined bearing and show the distribution of the load on the two bearings of the combined bearing. When the bearing is not subject to external force K and is not rotating, the force within the bearing combination is the preload Fo.
In a typical bearing combination, when an external force K is applied, the displacement of the thrust bearing increases and the displacement of the backup bearing decreases. The external force K is the difference between the load on the thrust bearing and the load on the backup bearing.
【0023】軸受が回転しているときには、破線の曲線
が力と変位との関係を示す。高変位のもとでは実線と破
線の曲線はほとんど一致し、低変位では両者の間に大き
な差がある。この差は接触角が小さい軸受では小さくな
っていることが注目される。また、他の差としては、接
触角の小さい軸受では曲線の傾斜が小さく、高速におい
てバックアップ軸受の荷重が与えられた力に対して小さ
くなる。スラスト軸受の荷重Fak,F'akがそれぞれ外
部からの荷重Kとバックアップ軸受の荷重Fbk,F'bk
の合計となっているので、同じ外部からの荷重Kのもと
において大きな同じ接触角αをもつ一対のアンギュラコ
ンタクト軸受を用いた従来の軸受系に比べて、本発明の
軸受系にあってはスラスト軸受の荷重F'akは小さくな
っている(図10と図11を参照)。When the bearing is rotating, the dashed curve shows the relationship between force and displacement. At high displacements, the solid and dashed curves almost coincide, and at low displacements there is a large difference between the two. It is noted that this difference is smaller for bearings with smaller contact angles. Another difference is that the bearing having a small contact angle has a small slope of the curve, and the load of the backup bearing is small at a high speed with respect to the applied force. The loads Fak and F'ak of the thrust bearing are the external load K and the loads Fbk and F'bk of the backup bearing, respectively.
In the bearing system of the present invention, compared with a conventional bearing system using a pair of angular contact bearings having the same large contact angle α under the same external load K, The load F'ak of the thrust bearing is small (see FIGS. 10 and 11).
【0024】かくして、本発明は、大きなほぼ等しい接
触角をもつスラスト軸受及びバックアップ軸受を有する
従来の軸受組合せ体に比し、玉の遠心力による内部力と
誘導軸方向力を最小とできるスクリュー圧縮機用の軸受
組合せ体を提供する。圧縮機の力に対する反力は図10
と図11に図示されている。Thus, the present invention provides a screw compression system which minimizes internal forces due to centrifugal force of the ball and induced axial forces as compared to conventional bearing combinations having a thrust bearing and a backup bearing having large and substantially equal contact angles. The present invention provides a bearing combination for a machine. The reaction force against the force of the compressor is shown in FIG.
FIG.
【0025】本発明は、アンギュラコンタクト軸受に作
用する主たる力が軸方向荷重(スラスト荷重)であり、
ラジアル荷重が円筒ころ軸受で支えられるような軸受組
合せ体について図示され説明されたが、本発明の原理は
ラジアル荷重と軸方向荷重の組合せ荷重を支えるアンギ
ュラコンタクト軸受のみによる軸受組合せ体にも適用さ
れ、同様の利点を得る。According to the present invention, the main force acting on the angular contact bearing is an axial load (thrust load),
Although illustrated and described with respect to bearing combinations in which radial loads are supported by cylindrical roller bearings, the principles of the present invention apply to bearing combinations with only angular contact bearings that support a combined load of radial and axial loads. , Get similar benefits.
【0026】かくして、本発明によると、異なる接触角
をもつアンギュラコンタクト軸受を組合せることによっ
て上述の効果を得る。上記接触角は、軸受が非回転時に
軽い計測用荷重を受けて計測される角度である。Thus, according to the present invention, the above effects can be obtained by combining angular contact bearings having different contact angles. The contact angle is an angle measured by receiving a light measurement load when the bearing is not rotating.
【0027】本発明は図示された実施例に限定されず、
本発明の範囲内において種々変形が可能である。The present invention is not limited to the illustrated embodiment,
Various modifications are possible within the scope of the present invention.
【図1】本発明にもとづくロータのための軸受もつ乾燥
空気圧縮機の部分破断側面図である。FIG. 1 is a partially broken side view of a dry air compressor having a bearing for a rotor according to the present invention.
【図2】図1の一点鎖線部分についての拡大断面図であ
る。FIG. 2 is an enlarged sectional view of a dashed-dotted line portion in FIG.
【図3】従来のロータのための軸受についての断面図で
ある。FIG. 3 is a cross-sectional view of a conventional bearing for a rotor.
【図4】図3の一点鎖線部分についての図で、ハウジン
グのエンドカバーを外した状態を示す図である。FIG. 4 is a view of a dashed line portion in FIG. 3, showing a state where an end cover of a housing is removed.
【図5】本発明のロータのための軸受の断面図で、ハウ
ジングのエンドカバーを外した状態を示す図である。FIG. 5 is a sectional view of a bearing for a rotor according to the present invention, showing a state in which an end cover of a housing is removed.
【図6】大きい接触角40°の玉に作用する遠心力Fc
の軸方向成分Facを示す図である。FIG. 6 shows a centrifugal force Fc acting on a ball having a large contact angle of 40 °.
3 is a diagram showing an axial component Fac of FIG.
【図7】小さな接触角15°〜25°の玉に作用する遠
心力Fcの軸方向成分Fbcを示す図である。FIG. 7 is a diagram showing an axial component Fbc of a centrifugal force Fc acting on a ball having a small contact angle of 15 ° to 25 °.
【図8】従来の組合せ軸受に作用する反力を示す図であ
る。FIG. 8 is a diagram showing a reaction force acting on a conventional combined bearing.
【図9】本発明の軸受組合せ体に作用する力を示す図で
ある。FIG. 9 is a view showing a force acting on the bearing assembly of the present invention.
【図10】従来の組合せ軸受における軸力と変位との関
係を示す図である。FIG. 10 is a diagram showing a relationship between axial force and displacement in a conventional combined bearing.
【図11】本発明の組合せ軸受における軸力と変位との
関係を示す図である。FIG. 11 is a diagram showing a relationship between axial force and displacement in the combination bearing of the present invention.
【図12】本発明と従来の組合せ軸受におけるスラスト
軸受の荷重を速度の関数として比較して示す図である。FIG. 12 is a diagram showing a comparison between the load of the thrust bearing in the present invention and the conventional combined bearing as a function of speed.
【図13】図12の荷重についての軸受寿命を示す図で
ある。FIG. 13 is a diagram showing the bearing life for the load of FIG.
30’ スラスト軸受 32’ バックアップ軸受 30 'thrust bearing 32' backup bearing
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−160621(JP,A) 西独国特許出願公開2746151(DE, A1) (58)調査した分野(Int.Cl.7,DB名) F04C 29/00 F04C 18/16 F16C 19/18 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-160621 (JP, A) West German Patent Application Publication No. 2746151 (DE, A1) (58) Fields investigated (Int. Cl. 7 , DB name) F04C 29/00 F04C 18/16 F16C 19/18
Claims (9)
の第一及び第二の二つのアンギュラコンタクト軸受が共
通のハウジング内に隣接して軸上に配設された高速高荷
重用軸受装置において、第一のアンギュラコンタクト軸
受は30°〜40°の範囲の接触角αをもつ主スラスト
荷重のためのスラスト軸受として設けられ、第二のアン
ギュラコンタクト軸受は上記接触角αより小さい15°
〜25°の範囲の接触角βをもつバックアップ軸受とし
て設けられ、第一及び第二のアンギュラコンタクト軸受
は、ハウジングとの間で周囲に半径方向隙間を形成して
ハウジングとは該半径方向で非接触となっており、軸上
には円筒ころ軸受が半径方向でハウジングと接触して配
設されていて、転動体に作用する遠心力にもとづく内部
力によって第二のアンギュラコンタクト軸受に生じ第一
のアンギュラコンタクト軸受に作用する誘導軸力が最小
となるようになっていることを特徴とする高速高荷重用
軸受装置。1. A high-speed, high-load bearing device in which first and second two angular contact bearings for thrust loads having different contact angles are disposed on a shaft adjacent to each other in a common housing. The first angular contact bearing is provided as a thrust bearing for a main thrust load having a contact angle α in the range of 30 ° to 40 °, and the second angular contact bearing is 15 ° smaller than the contact angle α.
First and second angular contact bearings provided as backup bearings having a contact angle β in the range of
Has a radial gap around it with the housing
Non-contact with the housing in the radial direction,
Cylindrical roller bearings are arranged in radial contact with the housing.
It is characterized in that an induced axial force acting on the first angular contact bearing which is generated in the second angular contact bearing by an internal force based on the centrifugal force acting on the rolling element is minimized. High speed and high load bearing device.
組合せとなっていることとする請求項1に記載の高速高
荷重用軸受装置。2. The high-speed high-speed high-speed bearing according to claim 1, wherein the thrust bearing and the backup bearing are a back-to-back combination.
Bearing device for load .
組合せとなっていることとする請求項1に記載の高速高
荷重用軸受装置。3. The high-speed high-speed high-speed bearing according to claim 1, wherein the thrust bearing and the backup bearing are combined in a frontal manner.
Bearing device for load .
角の差が少なくとも約5°であることとする請求項1に
記載の高速高荷重用軸受装置。4. The high-speed, high-load bearing device according to claim 1 , wherein a difference in a contact angle between the thrust bearing and the backup bearing is at least about 5 °.
角の差が15°〜25°の範囲にあることとする請求項
4に記載の高速高荷重用軸受装置。5. The contact angle difference between the thrust bearing and the backup bearing is in the range of 15 ° to 25 °.
4. The high-speed and high-load bearing device according to 4 .
角の差が約15°であることとする請求項5に記載の高
速高荷重用軸受装置。6. The height according to claim 5, wherein the difference in contact angle between the thrust bearing and the backup bearing is about 15 °.
Bearing device for high speed and high load .
ナルをもつ一対のロータと、該ジャーナルをハウジング
内で回転自在に支持する軸受装置とを有し、該軸受装置
は、異なる接触角をもつスラスト荷重のための第一及び
第二の二つのアンギュラコンタクト軸受が共通のハウジ
ング内に隣接して軸上に配設された高速高荷重用軸受装
置を有するスクリュー圧縮機において、第一のアンギュ
ラコンタクト軸受は30°〜40°の範囲の接触角αを
もつ主スラスト荷重のためのスラスト軸受として設けら
れ、第二のアンギュラコンタクト軸受は上記接触角αよ
り小さい15°〜25°の範囲の接触角βをもつバック
アップ軸受として設けられ、第一及び第二のアンギュラ
コンタクト軸受は、ハウジングとの間で周囲に半径方向
隙間を形成してハウジングとは該半径方向で非接触とな
っており、軸上には円筒ころ軸受が半径方向でハウジン
グと接触して配設されていて、転動体に作用する遠心力
にもとづく内部力によって第二のアンギュラコンタクト
軸受に生じ第一のアンギュラコンタクト軸受に作用する
誘導軸力が最小となるようになっていることを特徴とす
るスクリュー圧縮機。7. A housing, a pair of rotors having a journal in the housing, and a bearing device rotatably supporting the journal in the housing, wherein the bearing devices have thrust loads having different contact angles. In a screw compressor having a high-speed and high-load bearing device in which first and second two angular contact bearings are disposed on a shaft adjacently in a common housing, the first angular contact bearing is A thrust bearing for a main thrust load having a contact angle α in the range of 30 ° to 40 ° is provided. The second angular contact bearing has a contact angle β in the range of 15 ° to 25 ° smaller than the contact angle α. Provided as backup bearings with first and second angular
Contact bearings are radially circumferential around the housing
A gap is formed so that it does not contact the housing in the radial direction.
And a cylindrical roller bearing is mounted on the shaft in the radial direction.
And the internal force based on the centrifugal force acting on the rolling elements, which is generated in the second angular contact bearing and minimizes the induced axial force acting on the first angular contact bearing. A screw compressor.
組合せとなっていることとする請求項7に記載のスクリ
ュー圧縮機。8. The screw compressor according to claim 7 , wherein the thrust bearing and the backup bearing are a back-to-back combination.
組合せとなっていることとする請求項7に記載のスクリ
ュー圧縮機。9. The screw compressor according to claim 7 , wherein the thrust bearing and the backup bearing are in a front combination.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US84289492A | 1992-02-27 | 1992-02-27 | |
US07/842,894 | 1992-02-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05280482A JPH05280482A (en) | 1993-10-26 |
JP3007493B2 true JP3007493B2 (en) | 2000-02-07 |
Family
ID=25288507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4264129A Expired - Lifetime JP3007493B2 (en) | 1992-02-27 | 1992-09-08 | High speed and high load bearing device and screw compressor using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3007493B2 (en) |
DE (1) | DE4305289C2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1006534C2 (en) * | 1997-07-10 | 1999-01-12 | Skf Ind Trading & Dev | Asymmetrical angular contact ball bearing. |
US6048101A (en) * | 1998-12-09 | 2000-04-11 | Sullair Corporation | Thrust bearing arrangement |
DE29904411U1 (en) * | 1999-03-10 | 2000-07-20 | GHH-RAND Schraubenkompressoren GmbH & Co. KG, 46145 Oberhausen | Screw compressor |
DE10331936B4 (en) * | 2003-07-15 | 2017-01-26 | Schaeffler Technologies AG & Co. KG | Wheel bearing unit in angular ball bearing design |
DE10357109A1 (en) * | 2003-12-06 | 2005-07-07 | Fag Kugelfischer Ag | bearing arrangement |
DE202004001454U1 (en) * | 2004-01-31 | 2004-04-01 | Ab Skf | Double row rolling bearing |
ITTO20050486A1 (en) * | 2005-07-14 | 2005-10-13 | Dumitru Bucuresteanu | AIR OPERATING COMPRESSOR WITH CONTINUOUS PROPELLER IN A TURNTABLE TUBE |
DE102006044903A1 (en) * | 2006-09-22 | 2008-04-03 | Schaeffler Kg | Bearing unit for axial shaft positioning |
DE102007013940A1 (en) | 2007-03-23 | 2008-09-25 | Schaeffler Kg | Roller bearing arrangement for a shaft as a main spindle for processing tools comprises a radial bearing having a divided cylinder roll bearing formed so that a rolling body cage with rolling bodies can be sorted after assembly |
DE102012215795A1 (en) * | 2012-09-06 | 2014-03-06 | Aktiebolaget Skf | Roller bearing e.g. skew-angle roller bearing, for rotary screw compressor, has rolling elements arranged between inner- and outer bearing races, where inner bearing race is made of carbonitrided steel |
CN106194996A (en) * | 2016-07-26 | 2016-12-07 | 成都普瑞斯数控机床有限公司 | Screw mandrel bearing fixed mechanism |
US11067129B2 (en) * | 2019-09-18 | 2021-07-20 | Aktiebolaget Skf | Rolling bearing for refrigerant compressor |
JP2021188713A (en) * | 2020-06-03 | 2021-12-13 | 株式会社ジェイテクト | Touchdown bearing |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2746151A1 (en) | 1977-10-11 | 1979-04-12 | Universal Kugellager Gmbh | Dual race thrust ball bearing - has unequal outer ball tracks to increase radial load capacity |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2733967A (en) * | 1956-02-07 | Axial | ||
JPS5412656U (en) * | 1977-06-28 | 1979-01-26 | ||
SE422348B (en) * | 1977-10-24 | 1982-03-01 | Stal Refrigeration Ab | DEVICE FOR A COMPRESSOR OF ROTATION TYPE TO FIX A ROTOR SHAFT IN AXIAL LED |
JPS61103013A (en) * | 1984-10-24 | 1986-05-21 | Hitachi Ltd | Device for fixing outer race of thrust bearing or screw compressor |
US4730995A (en) * | 1986-09-25 | 1988-03-15 | American Standard Inc. | Screw compressor bearing arrangement with positive stop to accommodate thrust reversal |
US4798523A (en) * | 1986-12-19 | 1989-01-17 | Allied-Signal Inc. | Turbocharger bearing and lubrication system |
SE8701123L (en) * | 1987-03-19 | 1988-09-20 | Svenska Rotor Maskiner Ab | Screw machine |
-
1992
- 1992-09-08 JP JP4264129A patent/JP3007493B2/en not_active Expired - Lifetime
-
1993
- 1993-02-20 DE DE4305289A patent/DE4305289C2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2746151A1 (en) | 1977-10-11 | 1979-04-12 | Universal Kugellager Gmbh | Dual race thrust ball bearing - has unequal outer ball tracks to increase radial load capacity |
Also Published As
Publication number | Publication date |
---|---|
JPH05280482A (en) | 1993-10-26 |
DE4305289A1 (en) | 1993-09-02 |
DE4305289C2 (en) | 1995-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5273413A (en) | Thrust bearing for high speed screw compressors | |
JP3007493B2 (en) | High speed and high load bearing device and screw compressor using the same | |
US5540575A (en) | High speed rotating apparatus having face-to-face angular contact ball bearings | |
US10788018B2 (en) | Wind turbine rotor shaft arrangement | |
US6048101A (en) | Thrust bearing arrangement | |
JPH0585768B2 (en) | ||
JPH11210766A (en) | Three point contact ball bearing | |
US5211489A (en) | Radial spline assembly for antifriction bearings | |
JP2002339960A (en) | Rolling bearing device | |
JP3682998B2 (en) | Rolling bearing device | |
JPH0579514A (en) | Bearing construction and screw fluid machine therewith | |
US4142765A (en) | Rotor bearing assembly for rotary gas machine | |
JP2562581B2 (en) | Oil-free scroll compressor | |
JPH09133086A (en) | Scroll type compressor | |
JPS5928776B2 (en) | Ball spline with support bearing | |
JPS6114747Y2 (en) | ||
JPS6128121Y2 (en) | ||
JP3144409B2 (en) | Rolling bearing device | |
JPH08277837A (en) | Pre-load imparting method to radial ball bearing and pre-load imparted radial ball bearing device | |
RU2099606C1 (en) | Elastodamping support for rotor | |
JPS5853483Y2 (en) | Planetary roller type power transmission device | |
JP2562581C (en) | ||
JPS61103013A (en) | Device for fixing outer race of thrust bearing or screw compressor | |
JP2005003152A (en) | Ultrathin wall rolling bearing | |
JP3500705B2 (en) | Co-rotating scroll fluid machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 13 |