[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005003152A - Ultrathin wall rolling bearing - Google Patents

Ultrathin wall rolling bearing Download PDF

Info

Publication number
JP2005003152A
JP2005003152A JP2003169401A JP2003169401A JP2005003152A JP 2005003152 A JP2005003152 A JP 2005003152A JP 2003169401 A JP2003169401 A JP 2003169401A JP 2003169401 A JP2003169401 A JP 2003169401A JP 2005003152 A JP2005003152 A JP 2005003152A
Authority
JP
Japan
Prior art keywords
bearing
diameter
ball
rolling bearing
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003169401A
Other languages
Japanese (ja)
Inventor
Hiroaki Suzuki
裕明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2003169401A priority Critical patent/JP2005003152A/en
Publication of JP2005003152A publication Critical patent/JP2005003152A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2316/00Apparatus in health or amusement
    • F16C2316/10Apparatus in health or amusement in medical appliances, e.g. in diagnosis, dentistry, instruments, prostheses, medical imaging appliances

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the starting torque of an ultrathin wall rolling bearing in which the value of the ratio of the diameter dB of a ball 3 to a pitch circle diameter PCD is 0.03 or less without shortening a rolling fatigue life. <P>SOLUTION: The curvature of an orbital trench is set 104 to 108% of the diameter dB of the ball at both outer ring 1 and inner ring 2. Even under conventional pre-loading condition, a required starting torque and a rolling fatigue life are satisfied, and a steady, highly rigid and low vibration ultrathin wall rolling bearing is obtained. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、CTスキャナ装置を代表とする医療機器に使用される超薄肉形転がり軸受に関する。ここで、超薄肉形転がり軸受とは、内径650mm以上で、玉の直径とピッチ円径との比の値が0.03以下の超薄肉の大形転がり軸受をいう。
【0002】
【従来の技術】
図8に、医療機器の一種であるCTスキャナ装置の一例を示す。CTスキャナ装置は、X線管装置20で発生したX線を、その強度分布を一様ならしめるウェッジフィルタ21、強度分布を制限するスリット22を介して被写体23に照射するようになっている。被写体23を通過したX線は検出器24で受けられ、電気信号に変換されて図示しないコンピュータに送られる。X線管装置20、ウェッジフィルタ21、スリット22、検出器24などの各部品は、軸受25を介して固定架台26に回転自在に支持された略円筒状の回転架台27に装着され、この回転架台27の回転に伴って被写体23の周囲を回転する。互いに向かい合ったX線管装置20と検出器24が被写体23の周囲を回転することにより、被写体23の検査断面内のあらゆる点のすべての角度をカバーする投影データを得、これらのデータから予めプログラムされた再構成プログラムにより断層画像を得る。
【0003】
このCTスキャナ装置においては、固定架台26の内周面が、被写体23が入る程度の大径(概ね直径1m程度)に形成されるため、固定架台26と回転架台27との間の軸受25には、直径に対して断面が著しく小さい、いわゆる超薄肉形転がり軸受が使用される。
【0004】
【特許文献1】
特開2000−329143号公報(段落番号0002、図8)
【0005】
【発明が解決しようとする課題】
医療機器では、検査を受ける患者に対して不安感や恐怖感を与えないような配慮が必要とされ、特にCTスキャナ装置の場合、患者自身がガントリと呼ばれるトンネルの入口のような部分に入るため、機械的な運転音や電気的な励磁音が嫌われ、また、病院の診察室では限られたスペースに設置されることも相俟って、駆動モータ類は極力小型のものが使用される。その結果、軸受に対しては低騒音と低振動、低トルクが要求される。また、CTスキャナ装置は非常に高価な医療機器であることから、優れた耐久性が望まれ、軸受に対しては長寿命が要求される。
【0006】
一般に、玉軸受の内外軌道溝の横断面は、使用される玉よりわずかに大きな曲率半径の円弧形状に仕上げられている。軸受は大量生産される機械部品であることから、この曲率は量産性を考慮して最も汎用性のある一定の曲率直径に設定されている。
【0007】
CTスキャナ装置のガントリ部に120rpm程度以上の高速回転で使用される組合せアンギュラ玉軸受(背面配列)では、静粛かつ高剛性、低振動を目的として、軸受内部に適当な予圧(マイナスすきま)を付与するか、あるいは、極力小さなすきまを設定して使用されるが、駆動モータの小型軽量化に伴い、起動トルクの低減を図る必要がある。起動トルクの低減には、すきまを大きくしたり、軌道溝の曲率を小さく(曲率半径を大きく)したりするなどの方法があるが、前者には大形軸受で発生しやすい玉の落ち音の問題があり、後者には玉と軌道溝との接触面圧(ヘルツ圧力)が大きくなって転がり疲労寿命が短くなるという問題がある。
【0008】
本発明の目的は、これらの相反する要求を満足させつつ、超薄肉形転がり軸受の起動トルクを低減させることにある。より具体的には、本発明は、転がり疲労寿命を低下させることなく、起動トルクを低減させることを目的とする。
【0009】
【課題を解決するための手段】
本発明の超薄肉形転がり軸受は、玉の直径とピッチ円径との比の値が0.03以下の超薄肉形の大形転がり軸受であって、軌道溝の曲率直径を内輪、外輪とも玉直径の104%以上でかつ108%以下としたことを特徴とするものである。本発明によれば、従来の予圧条件下(小さなすきま条件下も含む)でも、要求される起動トルクと転がり疲労寿命を満足し、静粛かつ高剛性、低振動の超薄肉形転がり軸受を提供できる。
【0010】
軸受形式としてはアンギュラ玉軸受が好ましく、とりわけモーメント荷重を受けるのに適した組合せアンギュラ玉軸受(背面配列)、あるいは、外輪が二列の軌道を持った複列アンギュラ玉軸受が好ましい。また、本発明は四点接触玉軸受にも適用できる。120rpm程度以下のCTスキャナ装置では、コスト面で有利な四点接触玉軸受が一般的に使用される。ただし、四点接触玉軸受では、本アプリケーションのように自転軸が二本存在すると、すべり発熱が大きいという問題から、通常、組合せアンギュラ玉軸受(背面配列)より大きめのすきまを設定して使用される。したがって、組合せアンギュラ玉軸受(背面配列)に対して、音響、剛性、振動の点で不利になるが、低トルクで、かつ、要求される転がり疲労寿命を満足するという点で差異はない。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従って説明する。なお、以下に述べる実施の形態はいずれも、玉の直径dBとピッチ円径PCDとの比の値φを0.03以下(φ=dB/PCD≦0.03)とした超薄肉形転がり軸受であり、図8に示した既述のCTスキャナ装置における軸受25の詳細構造に該当する。
まず、図1に示す実施の形態は、二つのアンギュラ玉軸受X,Yを組み合わせたいわゆる組合せアンギュラ玉軸受の場合である。この組合せアンギュラ玉軸受は、二つのアンギュラ玉軸受X,Yの外輪の背面同士を接触させたいわゆる背面配列である。この配列は、ラジアル荷重と両方向のアキシアル荷重を負荷することができ、モーメント荷重が作用する場合に適している。軸受Xの内輪32と、双方の玉、外輪31を介して軸受Yの内輪32を互いに向かい合った方向の加圧力を作用させ、軸受内部に適正な予圧を付与して使用される。
【0012】
ここでは、図8に示したCTスキャナ装置の回転架台27に外環体33を、固定架台26に内環体34をそれぞれねじ止めし、さらに、外環体33の内周面に二つの軸受X,Yの各外輪31を、内環体34の外周面に二つの軸受X,Yの各内輪32をそれぞれ嵌合させて、回転架台27を回転自在に支持している。いま、軸受X,Yは無負荷では双方の外輪31が背面で接触し合うと、双方の内輪32の間には接触せずすきまが残る状態とし、内環体34の一端側と外環体33の他端側とにはそれぞれ締付けねじ35を用いて押え部材36が固定されており、この押え部材36で外輪31の端面や内輪32の端面を押圧し、かつ、その反対側の端面を外環体33および内環体34に設けた肩部33a,34aで受けることによって軸受内部に予圧が負荷される。
【0013】
内輪の軌道溝と外輪の軌道溝との間に複数の玉が転動自在に介在させてあり、これらの玉は樹脂製保持器によって所定間隔に保持される。この樹脂製保持器4は、図2(a)に示すように、複数の円弧状のセグメント40を円周方向につなぎ合わせて環状にした分割型(セグメントタイプ)である。図2(b)に示すように、各セグメント40の両端に凹状の嵌合部44aと凸状の嵌合部44bを設け、隣接するセグメントのうち、一方のセグメントの凹状嵌合部44a(もしくは凸状嵌合部44b)を他方のセグメントの凸状嵌合部44b(もしくは凹状嵌合部44a)と嵌合させることにより、円周方向に隣り合ったセグメント40を相互に連結するようになっている。
【0014】
図3はセグメント40を展開した平面図である。図示例のセグメント40は、環状体を円周方向の複数箇所で分割した円弧形状をなす基部41と、基部41から軸方向の一方に延びる柱部42と、隣り合った柱部42間に設けられた複数のポケット43a,43bとを備えている。柱部42は玉のピッチ円Pを超えて軸方向の一方に延びている。図示例のポケット43a,43bは二種類の形状をもっており、そのうちの一方はポケット中心よりもポケット開口側の壁面を平面視で凹状円弧面にした第一ポケット43aで、他方は当該壁面を軸方向のストレート面にした第二ポケット43bである。第一ポケット43aと第二ポケット43bは円周方向に交互に設けられる。どちらのポケット43a,43bの壁面も、半径方向の断面はポケット中心を曲率中心とする凹曲面である。ポケット43a,43bへの玉の収容は、ポケット43a,43bの軸方向開口部からポケット奥部側に玉を押し込むことによって行われる。このとき、第一ポケット43aでは、入口側の柱部42を押し広げながら玉を押し込む必要があるが、第二ポケット43bではそのような手間を必要としないので、保持器4への玉の組込み工程を簡略化することができる。なお、上述したポケット43a,43bの形状や構造は例示にすぎず、例えばポケットを単一形状とするなど、軸受の使用条件等に応じて種々の形状、構造のポケットが使用可能である。
【0015】
次に、図4に示す実施の形態の超薄肉形転がり軸受は複列アンギュラ玉軸受の場合であって、リング状の外輪1と、外輪1の内周側に同心配置した同じくリング状の内輪2と、外輪1と内輪2との間に介在する複数の玉3と、玉3を円周方向で所定間隔に保持する保持器4とを主要な構成要素とし、さらに、軸受の両端開口部を密封するシール5a,5bと、軸受内部に予圧を付与するための予圧付与手段Sとを備えている。この軸受25は、玉3が二列である点は図1の実施の形態と同じであるが、外輪1が二列の軌道を形成した一体型つまり複列外輪である点で相違する。両軸受部分の組合せは、図1の実施の形態における背面配列と同じであり、転動体荷重の作用線Qの交点はピッチ円Pの外側にある。両軸受部の接触角(転動体荷重の方向と軸受の中心軸に垂直な平面とのなす角)は、例えば30°とされる。
【0016】
外輪1は、図1の実施の形態における外輪31と外環体33とを一体化した構造であり、その内周面には玉3が転動する軌道溝1cが玉3の列数に対応して複列に形成されている。内輪2は、図1の実施の形態における一方の内輪32と内環体34とを一体化した構造の環状部材2aと、環状部材2aの外周に嵌合したリング状の嵌合部材2bとで構成される。環状部材2aの一端部外周面には他所より小径の段部2a1があり、この段部2a1に嵌合部材2bが嵌合させてある。環状部材2aおよび嵌合部材2bの外周面にはそれぞれ軌道溝2cが形成されており、この二つの軌道溝2cと外輪1の複列の軌道溝1cとの間にそれぞれ玉3が転動自在に介在している。
【0017】
予圧付与手段Sは、嵌合部材2bの軸受内部側への加圧により軸受内部に適正な予圧を付与するもので、例えば次のように構成される。嵌合部材2bは、環状部材2aに対し、後述する押え部材6の締込みで移動可能となる程度の緩いハメアイで嵌合させる。押え部材6の締込み前は、環状部材2aの肩部2a2と嵌合部材2bの他端側(図の左側)の端面2b1との間に軸方向のすきまtがあり、かつ、嵌合部材2bの一端側(図の右側)の端面2b2は、環状部材2aの一端側端面2a3よりも僅かに軸方向に突出している。この突出量は軸方向すきまtの幅と同じか、あるいはこれよりも僅かに大きい。
【0018】
外輪1の一端側の端面には、取付け孔8が形成され、この取付け孔8に図示しないボルト等をねじ込むことによって、外輪1がCTスキャナ装置(図8)の回転架台27に固定される。内方部材2の他端側の端面(この実施の形態では環状部材2aの他端側端面)にも同様に取付け孔9が設けられており、この取付け孔9に図示しないボルト等をねじ込むことによって内輪2が固定架台26に固定される。このようにして、外輪1が回転架台27と共に回転する回転部材となり、内輪2を構成する環状部材2aおよび嵌合部材2bが非回転の固定部材となる。CTスキャナ装置の構造によっては、上記とは逆に外輪1を非回転の固定側、内輪2を回転架台27と共に回転する回転側とすることもできる。
【0019】
環状部材2aの一端側の端面には、リング状の押え部材6がボルト等の締結手段7を用いて固定される。押え部材6の外径端は、嵌合部材2bの外周面とほぼ同一レベルにある。押え部材6の外径端の対向位置に一対のシールのうちの一端側のシール5aがある。
【0020】
以上の構成において、締結手段7を締め込むと、押え部材6が嵌合部材2bを加圧してこれを軸受内部側に押し込む。これにより予圧付与手段Sが機能し、軸方向すきまtが縮小するとともに、加圧力が玉3を介して外輪1に伝達され、外輪1を軸方向他端側に押し込む。したがって、双方の軸受部分で軸受すきまが殺され、予圧が付与される。軸方向すきまtが零になるまで嵌合部材2bを押し込んだところで所定の予圧量が得られるよう、当初の軸方向すきまtの幅を予め設定しておくことにより、予圧調整を高精度に、かつ、簡単な作業で行うことができる。この他、締結手段7の締付けトルクを管理する等の方法により、軸受部に定圧予圧を付与することもできる(この場合、予圧付与後の軸方向すきまtは零になるとは限らない)。
【0021】
上記の構造であれば、図1の実施の形態に比べて外輪31や一方の押え部材36の分だけ部品点数を削減できるので、部品コストや組立コストを削減することができる。また、部品数が少ないが故に高精度を出しやすく、そのような精度を出すための仕上げ加工を簡略化してさらなる低コスト化を図ることができる。
【0022】
図5に示す実施の形態は、環状部材2aの外周面に設けた段部2a1に一対の嵌合部材2bを嵌合させたもので、各嵌合部材2bの外周面にそれぞれ軌道溝2cが設けてある。他端側の嵌合部材2bは、環状部材2aの他端外周部に設けた肩部2a2で係止される。両嵌合部材2b間には軸方向のすきまtがあり、このすきまtが縮小するように押え部材6を締め込むことにより、予圧付与手段Sが機能し、軸受内部に所定の予圧が付与される。
【0023】
図5の実施の形態では、軸受の両端開口部を密封するシール5a,5bを、環状部材2aおよび押え部材6の外径端を外径側に延ばし、外輪1の内周面に近接させて非接触シールを構成した場合を図示しているが、図4の実施の形態と同様に外輪1にシールワッシャ5a,5bなどの非接触型シール部材を採用してもよい。もちろん接触型シールを採用することもできる。外輪1の内周面であってシール5a,5bと両軌道溝1cとの間には環状の油溝10が設けられ、この油溝10と対向する環状部材2aおよび押え部材6の各外周面には、肉取りにより油溜り11が形成されている。以上、図4の実施の形態との相違点を中心に説明したが、これ以外の構成、作用効果、および変形例等は図4の実施の形態と概ね同様であるので、共通部分に同一参照番号を付して重複説明を省略する。
【0024】
一般的なCTスキャナ装置に使用されている代表的なアンギュラ玉軸受ユニットとして、図4に示す構成を例にとって、軸受仕様と荷重を示すならば次のとおりである。
内径:820mm
外径:960mm(フランジ部含まず)
幅:60mm
玉直径:1/2インチ
玉数:110/列
ピッチ円径:914mm
モーメント荷重:750kgf×100mm
回転数:120rpm
【0025】
上述のすべての実施の形態において、軌道溝の曲率(直径)は、内外輪ともに、玉直径の104%以上108%以下である。実際のすきま条件でこの軸受の起動トルクを実測すると、起動トルクの上限値に対して約1/2のレベルであった。図6に計算値を示す。起動トルクに対する要求レベルを上限値とし、図6の「1」はこのレベルを示している。□印が実測値である。内外輪とも起動溝の曲率直径を玉直径の102%とした比較例1が推奨予圧レベルの上限値側で起動トルクの上限値を越えているのに対し、実施例1、実施例2、実施例3はいずれも起動トルクの上限値を満足する。なお、すきまの下限値(推奨予圧レベルの上限値)では、起動トルクが上限値の約8割に達することが予想される。今後、CTスキャナ装置の大形化(40インチサイズ以上もある)や駆動モータの小型軽量化により、起動トルクの低減の要求はますます厳しくなると思われ、軌道溝曲率をどこまで小さく設定できるかが重要になる。
【0026】
軌道溝の曲率を小さくすることのデメリットとして、転がり疲労寿命が短くなることが挙げられるため、その影響について検証し、図7にLundberg−Palmgrenの理論式から求めた寿命について示す。実機使用10年相当を要求レベルとし、図7の「1」はこのレベルを示している。図7より、推奨予圧レベルの範囲内では、実施例1、実施例2、実施例3はいずれも転がり疲労寿命の下限値を満足することが分かる。内外輪とも軌道溝の曲率直径を玉直径の110%とした比較例2は推奨予圧レベルの上限値側で転がり疲労寿命の下限値を下回っている。
【0027】
図6および図7より、起動トルクの上限値を満足するためには、軌道溝の曲率直径は内輪、外輪ともに玉直径の104%以上が必要であり、一方、転がり疲れ寿命の点では、内輪、外輪ともに玉直径の108%以下が必要であることが分かる。したがって、起動トルクと転がり疲れ寿命の双方を満足するためには、軌道溝の曲率直径は、内輪、外輪とも、玉直径の104%以上でかつ108%以下の範囲で設定する必要がある。
【0028】
【発明の効果】
本発明によれば、CTスキャナ装置等医療機器用の超薄肉形転がり軸受で重要な起動トルクの低減と長寿命化という相反する要求に対して、両者を満足することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す超薄肉形転がり軸受の断面図である。
【図2】aは保持器の側面図bはb矢視図である。
【図3】保持器を構成するセグメントの展開平面図である。
【図4】別の実施の形態を示す超薄肉形転がり軸受の断面図である。
【図5】別の実施の形態を示す超薄肉形転がり軸受の断面図である。
【図6】予圧と起動トルクの関係を示す線図である。
【図7】予圧と転がり疲労寿命の関係を示す線図である。
【図8】CTスキャナ装置の断面図である。
【符号の説明】
1 外輪
1c 軌道溝
2 内輪
2c 軌道溝
3 玉
4 保持器
dB 玉直径
PCD ピッチ円径
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultra-thin type rolling bearing used in a medical device represented by a CT scanner device. Here, the ultra-thin type rolling bearing means an ultra-thin type large rolling bearing having an inner diameter of 650 mm or more and a ratio of a ball diameter to a pitch circle diameter of 0.03 or less.
[0002]
[Prior art]
FIG. 8 shows an example of a CT scanner device which is a kind of medical equipment. The CT scanner device irradiates the subject 23 with X-rays generated by the X-ray tube device 20 through a wedge filter 21 for uniforming the intensity distribution and a slit 22 for limiting the intensity distribution. X-rays that have passed through the subject 23 are received by the detector 24, converted into electrical signals, and sent to a computer (not shown). Each component such as the X-ray tube device 20, the wedge filter 21, the slit 22, and the detector 24 is mounted on a substantially cylindrical rotary mount 27 that is rotatably supported by a fixed mount 26 via a bearing 25. As the gantry 27 rotates, the periphery of the subject 23 rotates. The X-ray tube device 20 and the detector 24 facing each other rotate around the subject 23 to obtain projection data covering all angles of every point in the inspection section of the subject 23, and pre-programmed from these data A tomographic image is obtained by the reconstructed program.
[0003]
In this CT scanner device, the inner peripheral surface of the fixed gantry 26 is formed to have a large diameter (approximately 1 m in diameter) enough for the subject 23 to enter, so that the bearing 25 between the fixed gantry 26 and the rotary gantry 27 is provided. Uses a so-called ultra-thin type rolling bearing having a remarkably small cross section with respect to its diameter.
[0004]
[Patent Document 1]
JP 2000-329143 A (paragraph number 0002, FIG. 8)
[0005]
[Problems to be solved by the invention]
In medical equipment, care must be taken so as not to give anxiety or fear to the patient undergoing the examination. Especially in the case of a CT scanner device, the patient himself enters a part of the tunnel entrance called a gantry. The drive motors are used as small as possible because they are disliked from mechanical operation sounds and electrical excitation sounds, and are installed in limited spaces in hospital examination rooms. . As a result, the bearings are required to have low noise, low vibration, and low torque. Further, since the CT scanner device is a very expensive medical device, excellent durability is desired, and a long life is required for the bearing.
[0006]
In general, the cross section of the inner and outer raceway grooves of the ball bearing is finished in an arc shape having a slightly larger radius of curvature than the ball used. Since the bearing is a machine part that is mass-produced, this curvature is set to a constant curvature diameter that is most versatile in consideration of mass productivity.
[0007]
In combination angular contact ball bearings (rear array) used in the gantry section of the CT scanner device at a high speed of about 120 rpm or higher, an appropriate preload (minus clearance) is given to the bearing for the purpose of quietness, high rigidity, and low vibration. Alternatively, the clearance is set as small as possible. However, as the drive motor becomes smaller and lighter, it is necessary to reduce the starting torque. There are methods to reduce the starting torque, such as increasing the clearance or decreasing the curvature of the raceway groove (increasing the radius of curvature). There is a problem, and the latter has a problem that the contact surface pressure (Hertz pressure) between the ball and the raceway groove is increased and the rolling fatigue life is shortened.
[0008]
An object of the present invention is to reduce the starting torque of an ultra-thin type rolling bearing while satisfying these conflicting requirements. More specifically, the present invention aims to reduce the starting torque without reducing the rolling fatigue life.
[0009]
[Means for Solving the Problems]
The ultra-thin type rolling bearing of the present invention is an ultra-thin type large-sized rolling bearing having a ratio of the ball diameter to the pitch circle diameter of 0.03 or less, wherein the curvature diameter of the raceway groove is set to the inner ring, The outer ring is characterized by being 104% or more and 108% or less of the ball diameter. According to the present invention, there is provided an ultra-thin type rolling bearing that satisfies the required starting torque and rolling fatigue life even under conventional preload conditions (including small clearance conditions), is quiet, has high rigidity, and has low vibration. it can.
[0010]
As a bearing type, an angular ball bearing is preferable, and a combined angular ball bearing (back surface arrangement) suitable for receiving a moment load, or a double-row angular ball bearing having an outer ring having two rows of raceways is particularly preferable. The present invention can also be applied to a four-point contact ball bearing. In a CT scanner apparatus of about 120 rpm or less, a four-point contact ball bearing that is advantageous in terms of cost is generally used. However, four-point contact ball bearings are usually used with a larger clearance than a combination angular contact ball bearing (rear array) due to the problem of large heat generation when there are two rotating shafts as in this application. The Therefore, although it is disadvantageous in terms of sound, rigidity, and vibration with respect to the combined angular contact ball bearing (rear arrangement), there is no difference in that the torque is low and the required rolling fatigue life is satisfied.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all of the embodiments described below, the ultra-thin type rolling in which the value φ of the ball diameter dB to the pitch circle diameter PCD is 0.03 or less (φ = dB / PCD ≦ 0.03). This is a bearing and corresponds to the detailed structure of the bearing 25 in the above-described CT scanner apparatus shown in FIG.
First, the embodiment shown in FIG. 1 is a case of a so-called combination angular ball bearing in which two angular ball bearings X and Y are combined. This combination angular contact ball bearing is a so-called back surface arrangement in which the back surfaces of the outer rings of the two angular contact ball bearings X and Y are brought into contact with each other. This arrangement can apply a radial load and an axial load in both directions, and is suitable when a moment load is applied. The inner ring 32 of the bearing X, both balls, and the inner ring 32 of the bearing Y are applied to the inner ring 32 through the outer ring 31 so as to act on each other so as to apply an appropriate preload to the inside of the bearing.
[0012]
Here, the outer ring body 33 is screwed to the rotary frame 27 of the CT scanner apparatus shown in FIG. The outer rings 31 of X and Y are fitted into the inner rings 32 of the two bearings X and Y, respectively, on the outer peripheral surface of the inner ring body 34, so that the rotary base 27 is rotatably supported. Now, when the bearings X and Y are unloaded and both the outer rings 31 come into contact with each other on the back surface, the inner rings 32 do not come into contact with each other and a gap remains, so that one end side of the inner ring body 34 and the outer ring body remain. A pressing member 36 is fixed to the other end side of 33 by using a tightening screw 35. The pressing member 36 presses the end face of the outer ring 31 and the end face of the inner ring 32, and the opposite end face is pressed. Preload is applied to the inside of the bearing by receiving the shoulder portions 33a and 34a provided on the outer ring body 33 and the inner ring body 34.
[0013]
A plurality of balls are rollably interposed between the raceway grooves of the inner ring and the raceway of the outer ring, and these balls are held at predetermined intervals by a resin cage. As shown in FIG. 2A, the resin cage 4 is a split type (segment type) in which a plurality of arc-shaped segments 40 are connected in the circumferential direction to form an annular shape. As shown in FIG.2 (b), the concave fitting part 44a and the convex fitting part 44b are provided in the both ends of each segment 40, and the concave fitting part 44a (or one segment) of adjacent segments is provided. By fitting the convex fitting portion 44b) with the convex fitting portion 44b (or the concave fitting portion 44a) of the other segment, the segments 40 adjacent in the circumferential direction are connected to each other. ing.
[0014]
FIG. 3 is a plan view in which the segment 40 is developed. The segment 40 in the illustrated example is provided between a base portion 41 having an arc shape obtained by dividing an annular body at a plurality of locations in the circumferential direction, a column portion 42 extending from the base portion 41 in the axial direction, and an adjacent column portion 42. A plurality of pockets 43a, 43b. The column part 42 extends to one side in the axial direction beyond the pitch circle P of the balls. The pockets 43a and 43b in the illustrated example have two shapes, one of which is a first pocket 43a in which the wall surface on the pocket opening side from the pocket center is a concave arc surface in plan view, and the other is the wall surface in the axial direction. The second pocket 43b has a straight surface. The first pockets 43a and the second pockets 43b are alternately provided in the circumferential direction. The wall surfaces of both pockets 43a and 43b are concave curved surfaces having a curvature center at the pocket center. The balls are accommodated in the pockets 43a and 43b by pushing the balls from the axial openings of the pockets 43a and 43b toward the back of the pocket. At this time, in the first pocket 43a, it is necessary to push the ball while expanding the column part 42 on the inlet side, but in the second pocket 43b, such trouble is not required, so that the ball is incorporated into the cage 4. The process can be simplified. Note that the shapes and structures of the pockets 43a and 43b described above are merely examples, and pockets having various shapes and structures can be used according to the use conditions of the bearing, such as a single pocket.
[0015]
Next, the ultra-thin type rolling bearing of the embodiment shown in FIG. 4 is a case of a double-row angular ball bearing, and the ring-shaped outer ring 1 and the ring-shaped outer ring 1 are arranged concentrically on the inner peripheral side of the outer ring 1. The inner ring 2, the plurality of balls 3 interposed between the outer ring 1 and the inner ring 2, and the cage 4 that holds the balls 3 at a predetermined interval in the circumferential direction are main components, and further, both ends of the bearing are opened. Seals 5a and 5b for sealing the portion, and preload applying means S for applying a preload to the inside of the bearing. This bearing 25 is the same as the embodiment of FIG. 1 in that the balls 3 are arranged in two rows, but differs in that the outer ring 1 is an integral type, that is, a double row outer ring in which two rows of raceways are formed. The combination of both bearing parts is the same as the rear arrangement in the embodiment of FIG. 1, and the intersection of the rolling element load action lines Q is outside the pitch circle P. The contact angle (the angle formed by the rolling element load direction and the plane perpendicular to the center axis of the bearing) of both bearing portions is, for example, 30 °.
[0016]
The outer ring 1 has a structure in which the outer ring 31 and the outer ring body 33 in the embodiment of FIG. 1 are integrated, and the raceway groove 1c on which the ball 3 rolls corresponds to the number of rows of the balls 3 on the inner peripheral surface thereof. And formed in a double row. The inner ring 2 includes an annular member 2a having a structure in which one inner ring 32 and an inner ring body 34 in the embodiment of FIG. 1 are integrated, and a ring-shaped fitting member 2b fitted to the outer periphery of the annular member 2a. Composed. On the outer peripheral surface of one end of the annular member 2a, there is a step portion 2a1 having a smaller diameter than the other portion, and a fitting member 2b is fitted to the step portion 2a1. A raceway groove 2c is formed on each of the outer peripheral surfaces of the annular member 2a and the fitting member 2b, and the balls 3 can freely roll between the two raceway grooves 2c and the double row raceway grooves 1c of the outer ring 1. Is intervening.
[0017]
The preload applying means S applies an appropriate preload to the inside of the bearing by pressurizing the fitting member 2b toward the inside of the bearing, and is configured as follows, for example. The fitting member 2b is fitted to the annular member 2a with a loose eye that can be moved by tightening a pressing member 6 described later. Before the presser member 6 is tightened, there is an axial clearance t between the shoulder 2a2 of the annular member 2a and the end face 2b1 on the other end side (left side in the figure) of the fitting member 2b, and the fitting member An end surface 2b2 on one end side (right side in the drawing) of 2b protrudes slightly in the axial direction from the one end side end surface 2a3 of the annular member 2a. This protrusion amount is the same as or slightly larger than the width of the axial clearance t.
[0018]
A mounting hole 8 is formed on one end face of the outer ring 1, and a bolt or the like (not shown) is screwed into the mounting hole 8 to fix the outer ring 1 to the rotary mount 27 of the CT scanner device (FIG. 8). Similarly, a mounting hole 9 is provided in the end face on the other end side of the inner member 2 (in this embodiment, the end face on the other end side of the annular member 2a), and a bolt or the like (not shown) is screwed into the mounting hole 9. Thus, the inner ring 2 is fixed to the fixed mount 26. In this way, the outer ring 1 becomes a rotating member that rotates together with the rotary mount 27, and the annular member 2a and the fitting member 2b that constitute the inner ring 2 become non-rotating fixed members. Depending on the structure of the CT scanner device, contrary to the above, the outer ring 1 may be a non-rotating fixed side and the inner ring 2 may be a rotating side rotating together with the rotary base 27.
[0019]
A ring-shaped pressing member 6 is fixed to the end surface on the one end side of the annular member 2a by using fastening means 7 such as a bolt. The outer diameter end of the pressing member 6 is substantially at the same level as the outer peripheral surface of the fitting member 2b. A seal 5 a on one end side of the pair of seals is located at a position opposite to the outer diameter end of the pressing member 6.
[0020]
In the above configuration, when the fastening means 7 is fastened, the presser member 6 pressurizes the fitting member 2b and pushes it into the bearing inside. As a result, the preload applying means S functions, the axial clearance t is reduced, and the applied pressure is transmitted to the outer ring 1 via the balls 3 to push the outer ring 1 toward the other end in the axial direction. Therefore, the bearing clearance is killed at both bearing portions, and a preload is applied. By setting the width of the initial axial clearance t in advance so that a predetermined amount of preload is obtained when the fitting member 2b is pushed in until the axial clearance t becomes zero, the preload adjustment can be performed with high accuracy. And it can be done by simple work. In addition, a constant pressure preload can be applied to the bearing portion by a method such as managing the tightening torque of the fastening means 7 (in this case, the axial clearance t after the preload is not always zero).
[0021]
With the above structure, the number of parts can be reduced by the amount corresponding to the outer ring 31 and the one pressing member 36 as compared with the embodiment of FIG. 1, so that part costs and assembly costs can be reduced. In addition, since the number of parts is small, high accuracy can be easily obtained, and finishing processing for obtaining such accuracy can be simplified to further reduce costs.
[0022]
In the embodiment shown in FIG. 5, a pair of fitting members 2b are fitted to a step portion 2a1 provided on the outer circumferential surface of the annular member 2a, and the raceway grooves 2c are formed on the outer circumferential surfaces of the respective fitting members 2b. It is provided. The fitting member 2b on the other end side is locked by a shoulder portion 2a2 provided on the outer peripheral portion of the other end of the annular member 2a. There is an axial clearance t between the two fitting members 2b. By tightening the presser member 6 so that the clearance t is reduced, the preload applying means S functions and a predetermined preload is applied to the inside of the bearing. The
[0023]
In the embodiment of FIG. 5, the seals 5 a and 5 b that seal the opening at both ends of the bearing are extended to the outer diameter side of the annular member 2 a and the pressing member 6, and are brought close to the inner peripheral surface of the outer ring 1. Although a case where a non-contact seal is configured is shown, non-contact type seal members such as seal washers 5a and 5b may be employed for the outer ring 1 as in the embodiment of FIG. Of course, a contact-type seal can also be adopted. An annular oil groove 10 is provided between the seals 5a, 5b and both raceway grooves 1c on the inner peripheral surface of the outer ring 1, and the outer peripheral surfaces of the annular member 2a and the pressing member 6 facing the oil groove 10 are provided. An oil sump 11 is formed by meat removal. The above description has focused on the differences from the embodiment of FIG. 4, but other configurations, operational effects, modifications, etc. are generally the same as those of the embodiment of FIG. Numbers are assigned and duplicate explanations are omitted.
[0024]
As a typical angular contact ball bearing unit used in a general CT scanner apparatus, taking the configuration shown in FIG. 4 as an example, the bearing specifications and loads are as follows.
Inner diameter: 820mm
Outer diameter: 960 mm (excluding flange)
Width: 60mm
Ball diameter: 1/2 inch Number of balls: 110 / row pitch circle diameter: 914 mm
Moment load: 750kgf x 100mm
Rotation speed: 120rpm
[0025]
In all the embodiments described above, the curvature (diameter) of the raceway groove is 104% or more and 108% or less of the ball diameter for both the inner and outer rings. When the starting torque of this bearing was measured under actual clearance conditions, it was about a half of the upper limit of the starting torque. FIG. 6 shows the calculated values. The required level for the starting torque is the upper limit value, and “1” in FIG. 6 indicates this level. The □ mark is the actual measurement value. In Comparative Example 1 where the curvature diameter of the starting groove is 102% of the ball diameter for both the inner and outer rings, the upper limit value of the starting torque is exceeded on the upper side of the recommended preload level. In all cases, the upper limit value of the starting torque is satisfied. It should be noted that the starting torque is expected to reach about 80% of the upper limit value at the lower limit value of the clearance (the upper limit value of the recommended preload level). In the future, the demands for reducing the starting torque will become more severe due to the increase in the size of CT scanner devices (there are more than 40-inch size) and the reduction in the size and weight of the drive motor. Become important.
[0026]
The disadvantage of reducing the curvature of the raceway groove is that the rolling fatigue life is shortened. Therefore, the influence is verified, and FIG. 7 shows the life obtained from the Lundberg-Palmgren theoretical formula. The level equivalent to 10 years of actual machine use is the required level, and “1” in FIG. 7 indicates this level. From FIG. 7, it can be seen that within the range of the recommended preload level, Example 1, Example 2, and Example 3 all satisfy the lower limit value of the rolling fatigue life. In both the inner and outer rings, Comparative Example 2 in which the curvature diameter of the raceway groove is 110% of the ball diameter is lower than the lower limit value of the rolling fatigue life on the upper limit side of the recommended preload level.
[0027]
6 and 7, in order to satisfy the upper limit of the starting torque, the curvature diameter of the raceway groove needs to be 104% or more of the ball diameter for both the inner ring and the outer ring. On the other hand, in terms of rolling fatigue life, the inner ring It can be seen that both outer rings require 108% or less of the ball diameter. Therefore, in order to satisfy both the starting torque and the rolling fatigue life, it is necessary to set the curvature diameter of the raceway groove within the range of 104% or more and 108% or less of the ball diameter for both the inner ring and the outer ring.
[0028]
【The invention's effect】
According to the present invention, it is possible to satisfy both of the conflicting demands of reduction of the starting torque and long life that are important in an ultra-thin type rolling bearing for medical equipment such as a CT scanner device.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an ultra-thin type rolling bearing showing an embodiment of the present invention.
FIG. 2 a is a side view of the cage, and b is a view as seen from the arrow b.
FIG. 3 is a developed plan view of segments constituting the cage.
FIG. 4 is a cross-sectional view of an ultra-thin type rolling bearing showing another embodiment.
FIG. 5 is a cross-sectional view of an ultra-thin type rolling bearing showing another embodiment.
FIG. 6 is a diagram showing the relationship between preload and starting torque.
FIG. 7 is a diagram showing the relationship between preload and rolling fatigue life.
FIG. 8 is a cross-sectional view of a CT scanner device.
[Explanation of symbols]
1 outer ring 1c raceway groove 2 inner ring 2c raceway groove 3 ball 4 cage dB ball diameter PCD pitch circle diameter

Claims (3)

玉の直径とピッチ円径との比の値が0.03以下の超薄肉形の大形転がり軸受であって、軌道溝の曲率直径を内輪、外輪とも玉直径の104%以上でかつ108%以下としたことを特徴とする超薄肉形転がり軸受。An ultra-thin type large-sized rolling bearing having a ratio of the ball diameter to the pitch circle diameter of 0.03 or less, and the curvature diameter of the raceway groove is 104% or more of the ball diameter for both the inner ring and the outer ring, and 108 An ultra-thin type rolling bearing characterized by being less than%. アンギュラ玉軸受であることを特徴とする請求項1の超薄肉形転がり軸受。2. The ultra-thin type rolling bearing according to claim 1, which is an angular ball bearing. 複列アンギュラ玉軸受であることを特徴とする請求項2の超薄肉形転がり軸受。The ultra-thin type rolling bearing according to claim 2, wherein the bearing is a double-row angular ball bearing.
JP2003169401A 2003-06-13 2003-06-13 Ultrathin wall rolling bearing Pending JP2005003152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169401A JP2005003152A (en) 2003-06-13 2003-06-13 Ultrathin wall rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169401A JP2005003152A (en) 2003-06-13 2003-06-13 Ultrathin wall rolling bearing

Publications (1)

Publication Number Publication Date
JP2005003152A true JP2005003152A (en) 2005-01-06

Family

ID=34094550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169401A Pending JP2005003152A (en) 2003-06-13 2003-06-13 Ultrathin wall rolling bearing

Country Status (1)

Country Link
JP (1) JP2005003152A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065805A (en) * 2007-09-07 2009-03-26 Nsk Ltd Method of manufacturing electric motor
JP2011214661A (en) * 2010-03-31 2011-10-27 Talk System Co Ltd Bearing with multiple degree of freedom
JP2016048096A (en) * 2014-08-28 2016-04-07 株式会社ジェイテクト Bearing device
CN106662145A (en) * 2014-09-16 2017-05-10 Ntn株式会社 Double row angular ball bearing for ct scanning device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065805A (en) * 2007-09-07 2009-03-26 Nsk Ltd Method of manufacturing electric motor
JP2011214661A (en) * 2010-03-31 2011-10-27 Talk System Co Ltd Bearing with multiple degree of freedom
JP2016048096A (en) * 2014-08-28 2016-04-07 株式会社ジェイテクト Bearing device
CN106662145A (en) * 2014-09-16 2017-05-10 Ntn株式会社 Double row angular ball bearing for ct scanning device
EP3196490A4 (en) * 2014-09-16 2018-01-31 NTN Corporation Double row angular ball bearing for ct scanning device
US10208789B2 (en) 2014-09-16 2019-02-19 Ntn Corporation Double row angular ball bearing for CT scanning device

Similar Documents

Publication Publication Date Title
JP3892989B2 (en) Ultra-thin type rolling bearing and its cage
JP6180723B2 (en) Double row rolling bearing
JP3144033B2 (en) Rolling bearing device
JP2002081442A (en) Super thin-wall rolling bearing
US10208789B2 (en) Double row angular ball bearing for CT scanning device
US6464397B2 (en) Ultrathin walled rolling bearing
JPWO2004055399A1 (en) 4-point contact ball bearing
WO2010032577A1 (en) Retainer for rolling bearing and rolling bearing with same
JP3007493B2 (en) High speed and high load bearing device and screw compressor using the same
JP2005003152A (en) Ultrathin wall rolling bearing
JP6348203B2 (en) Double row rolling bearing
JP2004218745A (en) Super-thin wall type rolling bearing and its holder
US7217038B2 (en) Fixing structure for rolling bearing
JP2004286116A (en) Double row rolling bearing
JP2006132670A (en) Super-thin roller bearing
WO2006087861A1 (en) Rolling bearing and resin retainer for the rolling bearing
JP2003013964A (en) Super-thin-walled rolling bearing and its retainer
WO2021199873A1 (en) Roller bearing
JP2004125088A (en) Super-thin rolling bearing, and retainer for the same
JP2006177559A (en) Extremely thin rolling bearing and its retainer
JP2006234098A (en) Bearing device
JP2006170335A (en) Ball bearing for ct scanner device and ct scanner device
JP2006220174A (en) Double row ball bearing
JP2020101259A (en) Double row rolling bearing
JP3144409B2 (en) Rolling bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060324

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081224

A521 Written amendment

Effective date: 20090223

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20090223

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090415

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090508