JP3087924B2 - Method of manufacturing piezoelectric ceramic - Google Patents
Method of manufacturing piezoelectric ceramicInfo
- Publication number
- JP3087924B2 JP3087924B2 JP04124511A JP12451192A JP3087924B2 JP 3087924 B2 JP3087924 B2 JP 3087924B2 JP 04124511 A JP04124511 A JP 04124511A JP 12451192 A JP12451192 A JP 12451192A JP 3087924 B2 JP3087924 B2 JP 3087924B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric
- sintering
- piezoelectric ceramic
- strain constant
- curie temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000005245 sintering Methods 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 20
- 239000000843 powder Substances 0.000 claims description 11
- 239000002994 raw material Substances 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 description 29
- 239000010955 niobium Substances 0.000 description 27
- 238000005452 bending Methods 0.000 description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000010936 titanium Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、PbTiO3 −PbZ
rO3 系(以下、PZT系という)の圧電磁器の製造方
法に関する。本発明により製造される圧電磁器は、特に
高い機械的強度を必要とされる自動車用の圧電アクチュ
エータなどに利用できる。BACKGROUND OF THE INVENTION This invention is, PbTiO 3 -PbZ
The present invention relates to a method for manufacturing an rO 3 (hereinafter, referred to as PZT) piezoelectric ceramic. The piezoelectric ceramic manufactured according to the present invention can be used for a piezoelectric actuator for an automobile which requires particularly high mechanical strength.
【0002】[0002]
【従来の技術】PZT系の圧電磁器は優れた圧電特性を
示し、圧電アクチュエータとして広く用いられている。
このPZT系の圧電磁器を製造するには、先ず主として
PbO,TiO2 ,ZrO2 からなる原料粉末をボール
ミルなどで混合する。その混合粉末を仮焼してPZT粉
末とし、粉砕後所定形状の成形体を形成する。そして、
その成形体を焼結し、その後機械加工や分極処理などの
後加工を行って圧電磁器を形成するのが一般的な方法で
ある。2. Description of the Related Art PZT piezoelectric ceramics exhibit excellent piezoelectric characteristics and are widely used as piezoelectric actuators.
In order to manufacture this PZT-based piezoelectric ceramic, first, a raw material powder mainly composed of PbO, TiO 2 and ZrO 2 is mixed by a ball mill or the like. The mixed powder is calcined to form a PZT powder, and after pulverization, a compact having a predetermined shape is formed. And
It is a general method to sinter the molded body and then perform post-processing such as machining or polarization to form a piezoelectric ceramic.
【0003】PZT系の圧電磁器を圧電アクチュエータ
として利用する場合、圧電特性が良好なこと、すなわち
圧電歪み定数(d33)が大きいことが望ましい。また自
動車の部品として用いられる場合には、使用温度が10
0℃付近になることから、分極劣化を防止するためには
キュリー温度(Tc)が180℃以上であることが望ま
しい。この圧電歪み定数とキュリー温度は、圧電磁器を
構成する金属元素の種類とその組成割合により大きく変
動することがわかってきている。When a PZT piezoelectric ceramic is used as a piezoelectric actuator, it is desirable that the piezoelectric characteristics be good, that is, the piezoelectric distortion constant (d 33 ) be large. When used as parts of automobiles, the operating temperature is 10
Since the temperature is around 0 ° C., the Curie temperature (Tc) is desirably 180 ° C. or higher in order to prevent polarization deterioration. It has been found that the piezoelectric strain constant and the Curie temperature vary greatly depending on the type of metal element constituting the piezoelectric ceramic and its composition ratio.
【0004】例えばPZT系固溶体にNbを加えると、
K定数誘電率が向上し、それに伴って圧電歪み定数も大
きくなることが知られている。またPbをSrで置換す
ることにより、誘電率が高くなることも知られている。
さらに特開平2−288381号公報には、式(Pb
1-x Srx )(Zry Ti1-y-z Nbz )O3 〔式中、
0.08≦x≦0.14、0.49≦y−0.5 x≦0.51、0.005 ≦z
≦0.02〕で表される組成とすることで、400×10
-12 m/V以上の圧電歪み定数と、200℃以上のキュ
リー温度が達成できた圧電磁器組成物が開示されてい
る。For example, when Nb is added to a PZT-based solid solution,
It is known that the dielectric constant of the K constant increases, and the piezoelectric strain constant increases accordingly. It is also known that replacing Pb with Sr increases the dielectric constant.
Further, JP-A-2-288381 discloses a formula (Pb
1-x Sr x) (Zr y Ti 1-yz Nb z) O 3 wherein
0.08 ≦ x ≦ 0.14, 0.49 ≦ y−0.5 x ≦ 0.51, 0.005 ≦ z
≦ 0.02], 400 × 10
A piezoelectric ceramic composition that can achieve a piezoelectric strain constant of −12 m / V or more and a Curie temperature of 200 ° C. or more is disclosed.
【0005】ところで近年、PZT系の圧電磁器の利用
範囲が拡大し、例えばフューエルインジェクタなど自動
車のエンジン制御部品への利用も検討されている。しか
しこのような部品に利用した場合には高温条件下で20
0〜400kgの荷重が加わるため、駆動耐久性が大き
な問題となる。この駆動耐久性を向上させるためには、
高いキュリー温度と高い強度を有する圧電磁器とするこ
とが必要である。[0005] In recent years, the range of use of PZT-based piezoelectric ceramics has been expanded, and the use of PZT-based piezoelectric ceramics in automobile engine control parts such as fuel injectors has been studied. However, when it is used for such a part, it can be used under high temperature conditions.
Since a load of 0 to 400 kg is applied, driving durability is a major problem. In order to improve the driving durability,
It is necessary to provide a piezoelectric ceramic having a high Curie temperature and high strength.
【0006】セラミックス焼結体の強度を向上させる方
法として、焼結密度を向上させる方法、Al,Siなど
を混入して粒界を補強する方法の2つの方法が有効であ
ることが知られている。しかし圧電磁器においては、混
入する材料の種類やその状態、混入方法、分散状態など
により圧電特性に大きな影響があるため、後者の方法は
利用できない。そこで前者の方法として、特公昭60−
9352号、特開昭63−100075号などの公報に
開示されているように、成形体を高温高圧のガス雰囲気
中で熱間静水圧プレスする方法(以下HIP処理とい
う)が有用であることが知られている。このHIP処理
法によれば、ホットプレス法などに比べて加圧力や大き
さの制限がなく、容器や圧力媒体から不純物が混入する
こともないため、品質や生産性に優れ容易に焼結密度を
向上させることができる。It is known that two methods are effective as methods for improving the strength of a ceramic sintered body: a method for improving the sintered density, and a method for reinforcing grain boundaries by mixing Al, Si or the like. I have. However, in piezoelectric ceramics, the type of material to be mixed, its state, mixing method, dispersion state, and the like have a great effect on the piezoelectric characteristics, and therefore the latter method cannot be used. Therefore, as the former method,
As disclosed in JP-A-9352 and JP-A-63-100075, a method of hot isostatic pressing of a compact in a high-temperature and high-pressure gas atmosphere (hereinafter referred to as HIP treatment) may be useful. Are known. According to this HIP processing method, since there is no limitation on the pressing force and size as compared with the hot press method and the like, and no impurities are mixed from the container or the pressure medium, the HIP processing method is excellent in quality and productivity, and the sintering density easily Can be improved.
【0007】[0007]
【発明が解決しようとする課題】ところが、特開平2−
288381号公報に開示された圧電磁器組成物では、
圧電歪み定数とキュリー温度は満足されるものの、HI
P処理法を用いて製造しても強度面で不満が残ってい
た。本発明はこのような事情に鑑みてなされたものであ
り、圧電歪み定数とキュリー温度は従来とほぼ同等の高
い値を維持するとともに、強度を代表する抗折強度を一
段と向上させることを目的とする。SUMMARY OF THE INVENTION However, Japanese Patent Laid-Open No.
In the piezoelectric ceramic composition disclosed in JP-A-288381,
Although the piezoelectric strain constant and Curie temperature are satisfactory, HI
Even when manufactured using the P treatment method, dissatisfaction in strength was left. The present invention has been made in view of such circumstances, and it is an object of the present invention to maintain the piezoelectric distortion constant and the Curie temperature at almost the same high values as in the past, and further improve the transverse rupture strength representing the strength. I do.
【0008】[0008]
【課題を解決するための手段】上記課題を解決する本発
明の圧電磁器の製造方法は、式(Pb1-x Srx )(Z
ry Ti1-y-z Nbz )O3 〔式中、0.08≦x≦0.14、
0.49≦y−0.5 x≦0.51、0.02<z≦0.06〕で表される
組成となるように調合された原料粉末から所定形状の成
形体を形成する成形工程と、成形体を所定温度で焼結し
て一次焼結体とする一次焼結工程と、一次焼結体を高温
高圧のガス下で焼結するHIP処理工程と、からなるこ
とを特徴とする。A method for manufacturing a piezoelectric ceramic according to the present invention for solving the above-mentioned problems is represented by the formula (Pb 1-x Sr x ) (Z
r y Ti 1-yz Nb z ) O 3 wherein, 0.08 ≦ x ≦ 0.14,
0.49 ≦ y−0.5 x ≦ 0.51, 0.02 <z ≦ 0.06], a molding step of forming a molded body of a predetermined shape from the raw material powder prepared so as to have a composition represented by: And a HIP processing step of sintering the primary sintered body under a high temperature and high pressure gas.
【0009】本発明者らは、特開平2−288381号
公報に開示された組成物の抗折強度を向上させるために
鋭意研究した結果、Nbの含有量を規定範囲より多くし
た組成物について一次焼結を行い、次いでHIP処理す
ることにより、得られる圧電磁器の抗折強度が著しく向
上することを発見し本発明を完成した。Nbの含有量を
増すと圧電歪み定数及びキュリー温度は低下するため
に、前記公報ではz≦0.02としていた。しかしNbを増
すと確かに圧電歪み定数とキュリー温度は低下するが、
その低下度合いは僅かで充分使用可能な範囲にあり、そ
れよりも適切な焼結による抗折強度向上の度合いの方が
極めて大きいことを見出したのである。The present inventors have conducted intensive studies to improve the transverse rupture strength of the composition disclosed in JP-A-2-288381. The inventors have found that the sintering and the subsequent HIP treatment significantly improve the transverse rupture strength of the obtained piezoelectric ceramic, and completed the present invention. When the content of Nb is increased, the piezoelectric strain constant and the Curie temperature are decreased. Therefore, in the above publication, z ≦ 0.02. However, as Nb increases, the piezoelectric strain constant and Curie temperature decrease,
It has been found that the degree of the decrease is small and in a sufficiently usable range, and the degree of improvement in the transverse rupture strength by appropriate sintering is much larger than that.
【0010】Srの組成割合xを0.08≦x≦0.14とした
のは、この範囲を外れると圧電歪み定数が400×10
-12 m/Vより小さくなり、0.14より大きくなるとキュ
リー温度も180℃未満となるからである。Zrの組成
割合yは、Srの組成割合xとの関連で0.49≦y−0.5
x≦0.51とする必要がある。y−0.5 xがこの範囲を外
れると、圧電歪み定数及び抗折強度が不足する。The reason why the composition ratio x of Sr is set to 0.08 ≦ x ≦ 0.14 is that if it is out of this range, the piezoelectric strain constant becomes 400 × 10
This is because the Curie temperature becomes lower than 180 ° C. when it is lower than −12 m / V and higher than 0.14. The composition ratio y of Zr is 0.49 ≦ y−0.5 in relation to the composition ratio x of Sr.
It is necessary to satisfy x ≦ 0.51. If y-0.5x is out of this range, the piezoelectric strain constant and the bending strength become insufficient.
【0011】Nbの組成割合zは、0.02<z≦0.06の範
囲とされる。zが0.02より小さいと抗折強度の増大が望
めず、0.06を超えると圧電歪み定数及びキュリー温度が
不足する。0.03≦z≦0.05の範囲が特に好ましい。P
b,Sr,Zr,Ti及びNbの組成割合がx,y,z
が上記範囲となるように構成された素原料粉末は、均一
に混合後仮焼される。この仮焼はPZT固溶体を形成す
るものであり、従来と同様一般に800〜900℃の温
度で行われる。得られたPZT原料粉末は再びボールミ
ルなどで粉砕され、従来と同様に成形されて成形体とさ
れる。The composition ratio z of Nb is in the range of 0.02 <z ≦ 0.06. If z is less than 0.02, an increase in bending strength cannot be expected, and if it exceeds 0.06, the piezoelectric strain constant and Curie temperature become insufficient. The range of 0.03 ≦ z ≦ 0.05 is particularly preferred. P
The composition ratio of b, Sr, Zr, Ti and Nb is x, y, z
Is uniformly mixed and calcined. This calcination forms a PZT solid solution, and is generally performed at a temperature of 800 to 900 ° C. as in the prior art. The obtained PZT raw material powder is pulverized again by a ball mill or the like, and formed into a molded body in the same manner as in the related art.
【0012】本発明の一つの特色をなす一次焼結工程で
は、上記成形体が理想密度より低い密度となるように焼
結される。ここで理想密度とは得られる焼結体中の各元
素の濃度から算出される理論密度でもよいし、理論密度
より若干低い現実に得られる最大焼結密度も含む概念で
ある。理想密度の91%以上の密度となるように焼結す
るのが好ましい。一次焼結体の密度が理想密度の91%
未満であると、HIP処理の効果が小さくなる。この一
次焼結工程は、鉛成分の揮散を防止するためにPZT原
料粉末などに埋設した状態で行うことが好ましい。In the primary sintering step, which is one of the features of the present invention, the compact is sintered so as to have a density lower than an ideal density. Here, the ideal density may be a theoretical density calculated from the concentration of each element in the obtained sintered body, or a concept including the actually obtained maximum sintered density slightly lower than the theoretical density. It is preferable to perform sintering so as to have a density of 91% or more of the ideal density. The density of the primary sintered body is 91% of the ideal density
If it is less than the above, the effect of the HIP processing is reduced. This primary sintering step is preferably performed in a state of being buried in PZT raw material powder or the like in order to prevent volatilization of the lead component.
【0013】本願の第二の発明は、一次焼結工程を酸素
富化状態で行うところに最大の特徴を有する。酸素富化
状態で焼結することにより、PbOの溶融温度が低下し
て一層緻密に焼結できる。そして一次焼結体内の空孔内
は酸素で置換されるため、HIP処理工程において酸素
が固溶し、空孔内のガスが減少するためHIP処理によ
り空孔を一層小さくすることができる。The second invention of the present application is most characterized in that the primary sintering step is performed in an oxygen-enriched state. By sintering in an oxygen-enriched state, the melting temperature of PbO is lowered, and sintering can be performed more densely. Then, since the inside of the pores in the primary sintered body is replaced with oxygen, oxygen is dissolved in the HIP treatment step, and the gas in the pores is reduced, so that the pores can be further reduced by the HIP treatment.
【0014】一次焼結工程の条件としては、焼結温度が
1250±50℃、焼結時間が10分〜5時間、酸素濃
度は50%以上が推奨される。HIP処理工程は、温度
が1250±50℃、処理時間10分〜5時間、圧力が
100〜200MPa、昇温速度が200〜500℃/
hrの条件で行うことが望ましい。As the conditions of the primary sintering step, it is recommended that the sintering temperature is 1250 ± 50 ° C., the sintering time is 10 minutes to 5 hours, and the oxygen concentration is 50% or more. In the HIP processing step, the temperature is 1250 ± 50 ° C., the processing time is 10 minutes to 5 hours, the pressure is 100 to 200 MPa, and the heating rate is 200 to 500 ° C. /
It is desirable to carry out under the condition of hr.
【0015】そして上記のように一次焼結工程及びHI
P処理工程を行うことにより、圧電歪み定数が400×
10-12 m/Vより大きく、キュリー温度が180℃以
上となり、かつ抗折強度が90MPa以上の圧電磁器を
製造することができる。As described above, the primary sintering step and the HI
By performing the P treatment step, the piezoelectric strain constant becomes 400 ×
It is possible to produce a piezoelectric ceramic having a Curie temperature of more than 10 −12 m / V, a Curie temperature of 180 ° C. or more, and a bending strength of 90 MPa or more.
【0016】[0016]
【作用】本第一発明の製造方法に用いられる原料粉末
は、Nbの組成割合zが0.02<z≦0.06の範囲とされ、
従来に比べてNbが多く含まれている。これにより圧電
磁器結晶の粒径が小さくなる。例えば、Nbが1モル%
の場合には平均粒径が約10μm、密度95%である
が、Nbを4モル%とすると平均粒径が約2μmに低下
し、密度が99%に向上することが明らかとなってい
る。したがって、圧電磁器内部に生成する空孔径が小さ
くなり抗折強度が向上する。The raw material powder used in the production method of the first invention has a composition ratio z of Nb in the range of 0.02 <z ≦ 0.06,
Nb is contained more than before. Thereby, the grain size of the piezoelectric ceramic crystal becomes small. For example, Nb is 1 mol%
In this case, the average particle size is about 10 μm and the density is 95%, but it is clear that when Nb is 4 mol%, the average particle size is reduced to about 2 μm and the density is improved to 99%. Therefore, the diameter of the holes generated inside the piezoelectric ceramic is reduced, and the bending strength is improved.
【0017】なおNbの組成割合を増すことにより、圧
電歪み定数とキュリー温度は低下するが、zが0.06以下
であれば圧電歪み定数及びキュリー温度の低下度合いが
小さく、自動車部品用としても十分利用可能な範囲にあ
る。そして、Nbを増した原料粉末を用いて一次焼結及
びHIP処理を行うため、空孔が一層縮小され密度が向
上する。さらに、一次焼結工程を酸素富化状態で行え
ば、PbOの溶融温度の低下により緻密に焼結できると
ともに、酸素ガスで置換された空孔内では酸素ガスが周
壁に固溶するため空孔内のガス量が低下し、HIP処理
時の空孔容積の圧縮が助長されるので、一層緻密な焼結
体とすることができる。By increasing the composition ratio of Nb, the piezoelectric strain constant and the Curie temperature decrease, but when z is 0.06 or less, the degree of decrease in the piezoelectric strain constant and the Curie temperature is small, and the piezoelectric material is sufficiently used for automobile parts. It is in the possible range. Then, since the primary sintering and the HIP treatment are performed using the raw material powder in which Nb is increased, the pores are further reduced and the density is improved. Furthermore, if the primary sintering step is performed in an oxygen-enriched state, the sintered body can be densely sintered by lowering the melting temperature of PbO, and the oxygen gas is solid-dissolved in the peripheral wall in the void replaced by the oxygen gas. The amount of gas in the inside is reduced, and the compression of the pore volume during the HIP process is promoted, so that a more dense sintered body can be obtained.
【0018】[0018]
【実施例】以下、試験例により本発明を具体的に説明す
る。 (1)試験例1:Nbの組成割合の検討 主成分の成分比が式(Pb1-x Srx )(Zry Ti
1-y-z Nbz )O3 で表される場合に、x=0.11,y=
0.55で固定とし、0.005 ≦z≦0.07の範囲でzを選ん
で、酸化鉛(PbO)、酸化ジルコニウム(Zr
O2 )、酸化チタン(TiO2 )及び五酸化ニオブ(N
b2 O5 )粉末を調合し、ボールミルにて48時間湿式
混合した。これを脱水乾燥後、空気中で800℃・5時
間仮焼した。その後再びボールミルにて48時間湿式粉
砕し、脱水乾燥した。Hereinafter, the present invention will be described in detail with reference to test examples. (1) Test Example 1: ratio of components considered the main component of the composition ratio of Nb has the formula (Pb 1-x Sr x) (Zr y Ti
1-yz Nb z ) When represented by O 3 , x = 0.11, y =
It is fixed at 0.55, z is selected in the range of 0.005 ≦ z ≦ 0.07, and lead oxide (PbO), zirconium oxide (Zr
O 2 ), titanium oxide (TiO 2 ) and niobium pentoxide (N
b 2 O 5 ) powder was prepared and wet-mixed in a ball mill for 48 hours. After dehydration and drying, this was calcined in air at 800 ° C. for 5 hours. Thereafter, wet grinding was performed again in a ball mill for 48 hours, followed by dehydration and drying.
【0019】得られた混合粉末にバインダとしてポリビ
ニルアルコール(PVA)を1重量%加えて造粒し、成
形圧力1000kg/cm2 で直径20mm、厚さ1m
mの円板状の成形体を形成した。得られたそれぞれの成
形体を大気下にて1250℃で1時間焼成し、Nbの含
有量が異なるそれぞれの圧電磁器を得た。The obtained mixed powder is granulated by adding 1% by weight of polyvinyl alcohol (PVA) as a binder, and is granulated at a molding pressure of 1000 kg / cm 2 and a diameter of 20 mm and a thickness of 1 m.
m was formed into a disk-shaped molded body. Each of the obtained compacts was fired at 1250 ° C. for 1 hour in the atmosphere to obtain piezoelectric ceramics having different Nb contents.
【0020】それぞれの圧電磁器は、両表面にそれぞれ
銀電極が形成され、50KV/cmの印加電圧により1
00℃のシリコンオイル中で30分の分極処理を行っ
た。そして24時間放置後、それぞれの圧電磁器につい
て圧電歪み定数(d33)、キュリー温度及び抗折強度を
測定した。結果を図1〜図3に示す。圧電歪み定数(d
33)は、圧電磁器に印加する電圧を0Vと500Vで切
替え、圧電磁器の歪み量を表面粗さ計にて直接計測して
求めた。またキュリー温度は誘電率の温度変化から求め
た。そして抗折強度は、スパン10mmの治具により圧
電磁器をそのまま抗折して求めた。Each piezoelectric ceramic has two
A silver electrode is formed, and a voltage of 1 KV / cm is applied.
Perform polarization treatment for 30 minutes in silicone oil at 00 ° C
Was. After standing for 24 hours, each piezoelectric ceramic
And the piezoelectric strain constant (d33), Curie temperature and flexural strength
It was measured. The results are shown in FIGS. Piezoelectric distortion constant (d
33) Turns off the voltage applied to the piezoelectric ceramic at 0V and 500V.
And measure the distortion of the piezoelectric ceramic directly with a surface roughness meter.
I asked. The Curie temperature is calculated from the temperature change of the dielectric constant.
Was. The bending strength is measured with a 10 mm span jig.
It was obtained by bending the porcelain as it was.
【0021】図1及び図2より、Nbの含有量が増加す
るにつれてd33とキュリー温度は低下していることがわ
かる。しかしNbの含有量が6モル%以下(z≦0.06)
であれば、圧電歪み定数(d33)は400×10-12 m
/V以上の値を示し、キュリー温度は180℃以上であ
って、十分な使用可能範囲にある。一方図3より、Nb
の含有量が2モル%を超える(0.02<z)と、抗折強度
が著しく増大し、6モル%で飽和してそれ以上含有して
も抗折強度はむしろ低下傾向にあることが明らかであ
る。 (2)試験例2:Nb以外の成分の組成割合の検討 次に、Nbの含有量を4モル%(z=0.04)に固定し、
PbをSrで6〜16モル%置換しZr/(Zr+T
i)を0.51〜0.60の範囲で変化させた組成(x=0.06〜
0.16、y=0.51〜0.60)で粉末を調合した。それぞれの
調合粉末の組成を図4に丸数字で示す。なお、Sr源と
しては炭酸ストロンチウム(SrCO3 )を用いた。そ
して試験例1と同様にしてそれぞれの圧電磁器を作製
し、同様に圧電歪み定数(d33)、キュリー温度及び抗
折強度を測定した。結果を表1に示す。[0021] From FIG. 1 and FIG. 2, d 33 and a Curie temperature as the content of Nb is increased it can be seen that the decrease. However, the content of Nb is 6 mol% or less (z ≦ 0.06)
Then, the piezoelectric strain constant (d 33 ) is 400 × 10 −12 m
/ V or more, and the Curie temperature is 180 ° C. or more, which is in a sufficiently usable range. On the other hand, from FIG.
When the content exceeds 2 mol% (0.02 <z), it is apparent that the transverse rupture strength is remarkably increased. is there. (2) Test Example 2: Examination of composition ratio of components other than Nb Next, the content of Nb was fixed to 4 mol% (z = 0.04),
Substituting 6-16 mol% of Pb with Sr, Zr / (Zr + T
i) changed in the range of 0.51 to 0.60 (x = 0.06 to
0.16, y = 0.51-0.60). The composition of each prepared powder is shown in FIG. 4 by circled numbers. Note that strontium carbonate (SrCO 3 ) was used as the Sr source. Each piezoelectric ceramic was produced in the same manner as in Test Example 1, and the piezoelectric strain constant (d 33 ), Curie temperature, and bending strength were measured in the same manner. Table 1 shows the results.
【0022】表1より、圧電歪み定数(d33)が400
×10-12 m/V以上、キュリー温度が180℃以上、
さらに抗折強度が80MPa以上のものを選んで図4中
に表示すると、図4の斜線域が求められた。この斜線域
をxとyを用いた数式で示すと、0.08≦x≦0.14かつ0.
49≦y−0.5 x≦0.51となる。すなわち、式(Pb1-x
Srx )(Zry Ti1-y-z Nbz )O3 式においてz
が0.04のときに、0.08≦x≦0.14かつ0.49≦y−0.5 x
≦0.51であれば、圧電歪み定数(d33)とキュリー温度
を最適な範囲に維持しつつ、高い抗折強度が得られ、ア
クチュエータ材料として最適であることがわかる。According to Table 1, the piezoelectric strain constant (d 33 ) is 400
× 10 −12 m / V or more, Curie temperature of 180 ° C. or more,
Further, when a material having a transverse rupture strength of 80 MPa or more was selected and displayed in FIG. 4, the hatched area in FIG. 4 was obtained. When this shaded area is represented by a mathematical expression using x and y, 0.08 ≦ x ≦ 0.14 and 0.
49 ≦ y−0.5 x ≦ 0.51. That is, the equation (Pb 1-x
Z In Sr x) (Zr y Ti 1 -yz Nb z) O 3 Formula
Is 0.04, 0.08 ≦ x ≦ 0.14 and 0.49 ≦ y−0.5 x
If ≦ 0.51, it can be seen that a high bending strength is obtained while maintaining the piezoelectric strain constant (d 33 ) and the Curie temperature in the optimum ranges, and it is optimum as an actuator material.
【0023】[0023]
【表1】 [Table 1]
【0024】(3)試験例3:焼結条件の検討(その
1) そこで試験例1で形成されたそれぞれの成形体につい
て、先ず大気中1250℃で1時間加熱する一次焼結を
行い、次いでO2 /Ar=1/5の混合比のガスを用
い、100MPaの圧力下で400℃/hrの昇温速度
で加熱し、1250℃で1時間保持するHIP処理を行
った。(3) Test Example 3: Examination of Sintering Conditions (Part 1) Therefore, each of the compacts formed in Test Example 1 was first subjected to primary sintering by heating at 1250 ° C. for 1 hour in the air, and then Using a gas having a mixture ratio of O 2 / Ar = 1/5, HIP treatment was performed at a heating rate of 400 ° C./hr under a pressure of 100 MPa and holding at 1250 ° C. for 1 hour.
【0025】得られたそれぞれの圧電磁器について圧電
歪み定数(d33)、キュリー温度及び抗折強度を測定し
た。圧電歪み定数(d33)及びキュリー温度について
は、試験例1で得られたものとほとんど同様の結果が得
られた。一方、抗折強度については、図3に示すように
試験例1に比べて一段と向上していることが明らかとな
った。 (4)試験例4:焼結条件の検討(その2) 試験例1で形成されたそれぞれの成形体を、PbZrO
3 が入れられたアルミナ製坩堝に入れ、PbO雰囲気を
保ちながら、焼結炉内に100%の酸素ガスを一定量導
入した状態で、1250℃で1時間加熱して一次焼結し
た。For each of the obtained piezoelectric ceramics, the piezoelectric strain constant (d 33 ), the Curie temperature and the bending strength were measured. With respect to the piezoelectric strain constant (d 33 ) and the Curie temperature, almost the same results as those obtained in Test Example 1 were obtained. On the other hand, it was revealed that the transverse rupture strength was further improved as compared with Test Example 1 as shown in FIG. (4) Test Example 4: Examination of Sintering Conditions (Part 2) Each of the compacts formed in Test Example 1 was subjected to PbZrO
3 was placed in an alumina crucible and heated at 1250 ° C. for 1 hour in a sintering furnace while a constant amount of 100% oxygen gas was introduced, while maintaining a PbO atmosphere, to perform primary sintering.
【0026】得られた一次焼結体について試験例3と同
様にHIP処理を行い、それぞれの圧電磁器を得た。得
られたそれぞれの圧電磁器について圧電歪み定数
(d33)、キュリー温度及び抗折強度を測定した。圧電
歪み定数(d33)及びキュリー温度については、試験例
1で得られたものとほとんど同様の結果が得られた。一
方、抗折強度については、図3に示すように試験例1及
び試験例3に比べて格段に向上していることが明らかと
なった。The obtained primary sintered body was subjected to the HIP treatment in the same manner as in Test Example 3 to obtain each piezoelectric ceramic. For each of the obtained piezoelectric ceramics, the piezoelectric strain constant (d 33 ), the Curie temperature, and the bending strength were measured. With respect to the piezoelectric strain constant (d 33 ) and the Curie temperature, almost the same results as those obtained in Test Example 1 were obtained. On the other hand, it became clear that the transverse rupture strength was remarkably improved as compared with Test Examples 1 and 3 as shown in FIG.
【0027】また、試験例2で形成されたそれぞれの成
形体を上記と同様に酸素雰囲気下で一次焼結し、次いで
HIP処理して得られた圧電磁器について、圧電歪み定
数(d33)、キュリー温度及び抗折強度を測定し、結果
を表2に示す。表2より、圧電歪み定数(d33)が40
0×10-12 m/V以上、キュリー温度が180℃以
上、さらに抗折強度が110MPa以上のものを選ぶ
と、図4と同様の斜線域が求められた。The piezoelectric ceramics obtained by primary sintering each of the molded bodies formed in Test Example 2 in an oxygen atmosphere in the same manner as described above and then performing HIP treatment were used to obtain a piezoelectric strain constant (d 33 ), The Curie temperature and flexural strength were measured, and the results are shown in Table 2. From Table 2, the piezoelectric strain constant (d 33 ) is 40
0 × 10 -12 m / V or more, a Curie temperature of 180 ° C. or higher, further bending strength Selecting more than 110 MPa, the hatched area similar to that of FIG. 4 is obtained.
【0028】すなわち、酸素雰囲気下で一次焼結し、さ
らにHIP処理する方法においても、式(Pb1-x Sr
x )(Zry Ti1-y-z Nbz )O3 式においてzが0.
04のときに、0.08≦x≦0.14かつ0.49≦y−0.5 x≦0.
51の組成とすることにより、圧電歪み定数(d33)とキ
ュリー温度を最適な範囲に維持しつつ、抗折強度が11
0MPa以上と著しく向上することが明らかである。That is, in the method of performing primary sintering in an oxygen atmosphere and further performing HIP treatment, the formula (Pb 1-x Sr
x) (Zr y Ti 1- yz Nb z) at O 3 formula z is 0.
At the time of 04, 0.08 ≦ x ≦ 0.14 and 0.49 ≦ y−0.5 x ≦ 0.
With the composition of 51, the bending strength is 11 while maintaining the piezoelectric strain constant (d 33 ) and the Curie temperature in the optimum ranges.
It is clear that the improvement is remarkably increased to 0 MPa or more.
【0029】[0029]
【表2】 [Table 2]
【0030】(5)試験例5:圧電特性の耐久性 試験例1においてNb量が5モル%の組成を選び、試験
例1の方法により得られた圧電磁器(HIP処理無し)
と、試験例4の方法により得られた圧電磁器(酸素中焼
結後HIP処理)について、300kgfの荷重を加
え、100℃の雰囲気温度で−100〜600Vの電圧
を繰り返し印加する耐久試験を行った。そして耐久試験
中の圧電歪み定数(d33)を測定し、結果を図5に示
す。(5) Test Example 5: Durability of Piezoelectric Characteristics A composition having a Nb content of 5 mol% was selected in Test Example 1, and a piezoelectric ceramic obtained by the method of Test Example 1 (without HIP treatment)
And a piezoelectric ceramic (HIP treatment after sintering in oxygen) obtained by the method of Test Example 4 was subjected to a durability test in which a load of 300 kgf was applied, and a voltage of −100 to 600 V was repeatedly applied at an ambient temperature of 100 ° C. Was. Then, the piezoelectric strain constant (d 33 ) during the durability test was measured, and the results are shown in FIG.
【0031】図5より、耐久試験の進行に伴って圧電歪
み定数が低下することが分かる。これは、印加された電
圧や荷重、温度により、圧電磁器の分極方向が歪方向
(分極方向)からずれること、すなわち90度ドメイン
スイッチングが多く起こることに起因している。そして
図5より、試験例4の方法により得られた圧電磁器によ
ればその低下度合いが従来に比べて小さいことが分か
る。これは、90度ドメインスイッチングの際にドメイ
ン間に結晶格子の歪みが繰り返し作用し、微細クラック
が発生する可能性があるが、強度が高い方が微細クラッ
クの発生の可能性が小さいからであろうと考えられる。 (6)試験例6:圧電歪み定数の保持率 また、試験例5の2種類の圧電磁器と、試験例1におけ
るNb量が1モル%の組成で試験例1の方法により得ら
れた圧電磁器(HIP処理無し)について、圧電磁器の
初期の抗拆強度と、上記耐久試験を108 回繰り返した
耐久試験前後の圧電歪み定数から圧電歪み定数の保持率
を算出した。結果を図6に示す。図6より、初期抗折強
度と圧電歪み定数の保持率との間には相関関係があり、
初期抗折強度が高くなるほど圧電歪み定数の保持率が大
きくなっていることが分かる。すなわち、従来は圧電歪
み定数の低下は電気的特性と考えられていたが、この結
果より、抗折強度を高くすることで圧電歪み定数の低下
までも防止できることが明らかとなった。FIG. 5 shows that the piezoelectric strain constant decreases as the durability test progresses. This is because the polarization direction of the piezoelectric ceramic is shifted from the strain direction (polarization direction) due to the applied voltage, load, and temperature, that is, 90-degree domain switching frequently occurs. FIG. 5 shows that the piezoelectric ceramic obtained by the method of Test Example 4 has a smaller degree of reduction than the conventional one. This is because the distortion of the crystal lattice repeatedly acts between the domains during the 90-degree domain switching, which may cause a fine crack. However, the higher the strength, the smaller the possibility of the occurrence of the fine crack. It is thought. (6) Test Example 6: Retention Ratio of Piezoelectric Strain Constant The two types of piezoelectric ceramics of Test Example 5 and the piezoelectric ceramics obtained by the method of Test Example 1 with the composition of Test Example 1 having a Nb content of 1 mol%. for (HIP without treatment), and the initial anti拆強of the piezoelectric ceramic was calculated retention of piezoelectric strain constant of a piezoelectric strain constant before and after the durability test described above was repeated durability test 10 8 times. FIG. 6 shows the results. From FIG. 6, there is a correlation between the initial bending strength and the retention rate of the piezoelectric strain constant,
It can be seen that the higher the initial bending strength, the higher the retention of the piezoelectric strain constant. That is, conventionally, a decrease in the piezoelectric strain constant was considered to be an electrical characteristic. From this result, it has been clarified that a decrease in the piezoelectric strain constant can be prevented by increasing the bending strength.
【0032】[0032]
【発明の効果】すなわち本発明の圧電磁器の製造方法に
よれば、圧電歪み定数、キュリー温度を高く維持しつ
つ、従来に比べて格段に高い抗折強度をもつ圧電磁器が
得られる。したがって得られた圧電磁器は、高温高荷重
時であっても割れが生じにくいので、自動車部品用の圧
電アクチュエータに特に適している。According to the method for manufacturing a piezoelectric ceramic of the present invention, a piezoelectric ceramic having a significantly higher bending strength than conventional ones can be obtained while maintaining a high piezoelectric strain constant and Curie temperature. Therefore, the obtained piezoelectric ceramic is hardly cracked even under high temperature and high load, and is particularly suitable for a piezoelectric actuator for automobile parts.
【図1】Nb添加量と圧電歪み定数(d33)の関係を示
すグラフである。FIG. 1 is a graph showing the relationship between the amount of Nb added and the piezoelectric strain constant (d 33 ).
【図2】Nb添加量とキュリー温度の関係を示すグラフ
である。FIG. 2 is a graph showing the relationship between the amount of Nb added and the Curie temperature.
【図3】Nb添加量と抗折強度の関係を示すグラフであ
る。FIG. 3 is a graph showing the relationship between the amount of Nb added and bending strength.
【図4】x値とy値の最適範囲を説明するグラフであ
る。FIG. 4 is a graph illustrating an optimal range of an x value and a y value.
【図5】耐久試験回数と圧電歪み定数の関係を示すグラ
フである。FIG. 5 is a graph showing the relationship between the number of endurance tests and the piezoelectric strain constant.
【図6】抗折強度と圧電歪み定数の保持率の関係を示す
グラフである。FIG. 6 is a graph showing a relationship between a bending strength and a holding ratio of a piezoelectric strain constant.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/49 C04B 35/64 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/49 C04B 35/64 CA (STN) REGISTRY (STN)
Claims (2)
1-y-z Nbz )O3 〔式中、0.08≦x≦0.14、0.49≦y
−0.5 x≦0.51、0.02<z≦0.06〕で表される組成とな
るように調合された原料粉末から所定形状の成形体を形
成する成形工程と、 該成形体を所定温度で焼結して一次焼結体とする一次焼
結工程と、 該一次焼結体を高温高圧のガス下で焼結するHIP処理
工程と、からなることを特徴とする圧電磁器の製造方
法。1. The formula (Pb 1-x Sr x ) (Zr y Ti
1-yz Nb z ) O 3 [wherein 0.08 ≦ x ≦ 0.14, 0.49 ≦ y
−0.5 x ≦ 0.51, 0.02 <z ≦ 0.06], a forming step of forming a molded body of a predetermined shape from the raw material powder prepared so as to have a composition represented by the following formula, and sintering the molded body at a predetermined temperature. A method for manufacturing a piezoelectric ceramic, comprising: a primary sintering step of forming a primary sintered body; and a HIP processing step of sintering the primary sintered body under a high-temperature and high-pressure gas.
1-y-z Nbz )O3 〔式中、0.08≦x≦0.14、0.49≦y
−0.5 x≦0.51、0.005 ≦z≦0.06〕で表される組成と
なるように調合された原料粉末から所定形状の成形体を
形成する成形工程と、 該成形体を大気以上の酸素を含む酸素富化状態で所定温
度で焼結して一次焼結体とする一次焼結工程と、 該一次焼結体を高温高圧のガス下で焼結するHIP処理
工程と、からなることを特徴とする圧電磁器の製造方
法。2. The formula (Pb 1-x Sr x ) (Zr y Ti
1-yz Nb z ) O 3 [wherein 0.08 ≦ x ≦ 0.14, 0.49 ≦ y
−0.5 x ≦ 0.51, 0.005 ≦ z ≦ 0.06], a molding step of forming a molded body of a predetermined shape from the raw material powder prepared so as to have a composition represented by the following formula: A primary sintering step of sintering the enriched state at a predetermined temperature to obtain a primary sintered body, and a HIP treatment step of sintering the primary sintered body under a high-temperature and high-pressure gas. Manufacturing method of piezoelectric ceramic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04124511A JP3087924B2 (en) | 1992-05-18 | 1992-05-18 | Method of manufacturing piezoelectric ceramic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04124511A JP3087924B2 (en) | 1992-05-18 | 1992-05-18 | Method of manufacturing piezoelectric ceramic |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05319926A JPH05319926A (en) | 1993-12-03 |
JP3087924B2 true JP3087924B2 (en) | 2000-09-18 |
Family
ID=14887304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04124511A Expired - Fee Related JP3087924B2 (en) | 1992-05-18 | 1992-05-18 | Method of manufacturing piezoelectric ceramic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3087924B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005150694A (en) * | 2003-10-23 | 2005-06-09 | Seiko Epson Corp | Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet recording head, ink-jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus |
JP7267154B2 (en) * | 2018-09-12 | 2023-05-01 | 三井金属鉱業株式会社 | Ion-conducting oxide, battery using the same, and method for producing ion-conducting oxide |
JP7267155B2 (en) * | 2018-09-12 | 2023-05-01 | 三井金属鉱業株式会社 | Ion-conducting oxide, battery using the same, and method for producing ion-conducting oxide |
-
1992
- 1992-05-18 JP JP04124511A patent/JP3087924B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05319926A (en) | 1993-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101158444B1 (en) | Piezoelectric ceramic, process for producing the piezoelectric ceramic, and piezoelectric device | |
JP2002308672A (en) | Method for manufacturing piezoelectric ceramic, piezoelectric ceramic and piezoelectric ceramic device | |
JP3108724B2 (en) | High durability piezoelectric composite ceramics and its manufacturing method | |
JP3087924B2 (en) | Method of manufacturing piezoelectric ceramic | |
JP3295871B2 (en) | Piezoelectric ceramic composition | |
JP2000072539A (en) | Piezoelectric material | |
JP5216319B2 (en) | Method for producing lead zirconate titanate sintered body | |
JP3032761B1 (en) | Piezoelectric ceramics | |
JPH05139828A (en) | Production of piezoelectric ceramic | |
JP2936828B2 (en) | Method for manufacturing piezoelectric element for laminated piezoelectric actuator | |
JP3699599B2 (en) | Piezoelectric ceramic | |
JP3981221B2 (en) | Piezoelectric ceramic | |
EP0698587B1 (en) | Piezoelectric porcelain | |
JP3087443B2 (en) | Piezoelectric ceramic composition | |
JPH06224486A (en) | Polarizing method for piezoelectric ceramics | |
JPH08259320A (en) | Perovskite compound sintered compact | |
JPH0741363A (en) | Piezoelectric ceramics composition | |
US11812665B1 (en) | Hard piezoelectric ceramic composition for multilayer piezoelectric transformers | |
JP3061224B2 (en) | Bismuth layered compound polarization method | |
JP2000264733A (en) | Piezoelectric ceramics | |
JPH11209173A (en) | Dielectric porcelain | |
JP2000264732A (en) | Piezoelectric ceramics | |
JPH06116010A (en) | Production of bismuth laminar compound | |
JPWO2003051789A1 (en) | Piezoelectric / electrostrictive material and manufacturing method thereof | |
JP3261356B2 (en) | Piezoelectric ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080714 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080714 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090714 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |