[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2913219B2 - Urine sediment test result management method - Google Patents

Urine sediment test result management method

Info

Publication number
JP2913219B2
JP2913219B2 JP3063837A JP6383791A JP2913219B2 JP 2913219 B2 JP2913219 B2 JP 2913219B2 JP 3063837 A JP3063837 A JP 3063837A JP 6383791 A JP6383791 A JP 6383791A JP 2913219 B2 JP2913219 B2 JP 2913219B2
Authority
JP
Japan
Prior art keywords
particles
urine
marker
marker particles
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3063837A
Other languages
Japanese (ja)
Other versions
JPH04278460A (en
Inventor
秀夫 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMA KENKYUSHO KK
Original Assignee
SHIMA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMA KENKYUSHO KK filed Critical SHIMA KENKYUSHO KK
Priority to JP3063837A priority Critical patent/JP2913219B2/en
Publication of JPH04278460A publication Critical patent/JPH04278460A/en
Application granted granted Critical
Publication of JP2913219B2 publication Critical patent/JP2913219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は尿沈渣検査成績管理方法
にかかるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a urine sediment inspection result management method.

【0002】[0002]

【従来の技術】尿中には、毛細管出血による赤血球、血
管外遊走による白血球、腎臓や尿生殖器官に並ぶ上皮細
胞、ある状況下で腎尿細管において形成される円柱、そ
してしばしば局所感染や全身感染による細菌、真菌、原
虫、寄生虫等の微生物等の有形成分が含まれる。又、尿
には腎不全の場合、化学成分、医薬品や遊離の脂肪から
なる結晶が含まれることがある。
BACKGROUND OF THE INVENTION In the urine, red blood cells due to capillary bleeding, white blood cells due to extravasation, epithelial cells lining the kidney and genitourinary organs, under certain circumstances casts formed in the renal tubules, and often local infections and systemic Includes the formation of microorganisms such as bacteria, fungi, protozoa, and parasites due to infection. Also, in the case of renal failure, urine may contain crystals composed of chemical components, pharmaceuticals and free fat.

【0003】従って、尿の顕微鏡検査によって、その存
在の有無、形態及び数が臨床的に意味を持つこれらの成
分、及び他の成分の濃度を知ることができ、患者の病状
に対し明確な判断を与えることができることから、尿沈
渣の顕微鏡検査は世界的に広く普及している。
[0003] Therefore, by microscopic examination of urine, it is possible to know the concentration of these components and other components whose presence, presence and form and number are clinically significant, and to make a clear judgment on the condition of the patient. Therefore, microscopic examination of urine sediment is widely spread worldwide.

【0004】従来から行われている尿沈渣顕微鏡検査法
Conventional urine sediment microscopy is

【図1】に示すように、採尿カップ1の中の尿検体2を
よく混和して成分を均一にしてからスピッツ管3の10
m1の標線4まで正確に採取し、遠心分離機5により1
500r.p.m.5分間遠心分離し、上清をデカント
又は吸引により除去して200μl(濃縮率50倍)の
尿沈渣6を得る。次いで、尿沈渣6を均一に懸濁して約
15μlをスライドグラス7に移し、カバーグラス8を
かけて顕微鏡9のステージにセットし、倍率400倍で
粒子の形態を観察し、分類・計数すると共に記録用紙に
結果を手で記録している。
As shown in FIG. 1, the urine sample 2 in the urine collection cup 1 is mixed well to make the components uniform, and
The sample is accurately collected up to the mark line 4 of
500r. p. m. After centrifugation for 5 minutes, the supernatant is removed by decantation or suction to obtain 200 μl (concentration ratio: 50 times) of urine sediment 6. Next, the urine sediment 6 is uniformly suspended, and about 15 μl is transferred to a slide glass 7, covered with a cover glass 8, set on a stage of a microscope 9, observed at 400 × magnification for particle morphology, and classified and counted. The results are manually recorded on a recording sheet.

【0005】しかしながら、尿検体2は尿沈渣量におい
て個体差が大きく、非常に薄くて尿沈渣量が僅かしかな
いものから、粘液成分を多量に含み尿沈渣量が200μ
l(尿10ml当り)を大幅に超える場合がある。又、
尿沈渣量の多い尿検体2は混和が不十分になりやすい。
However, the urine sample 2 has a large individual difference in the amount of urinary sediment, and is extremely thin and has only a small amount of urinary sediment.
1 (per 10 ml of urine). or,
The urine specimen 2 having a large amount of urine sediment tends to be insufficiently mixed.

【0006】又、操作法においても検査施設により使用
するスピッツ管3にメーカー差があり、遠心分離におい
ても回転数、遠心時間は統一されてはいても使用する遠
心分離機5により負荷される遠心力は夫々異なり、尿中
の各粒子の回収率も検査施設により異なってしまう。
In the operation method, there is a difference in the manufacturer of the Spitz tube 3 used by the inspection facility, and the centrifugal force applied by the centrifugal separator 5 used in the centrifugal separation is constant even though the rotation speed and the centrifugation time are unified. Forces vary, and the recovery of each particle in urine varies from laboratory to laboratory.

【0007】更に、上清を除去する際に吸引除去により
行えば尿沈渣量を正確に200μlとすることは可能で
あるが、この方法では手間と時間がかかることから、検
体数の多い検査施設でばデカントで行うのが一般的であ
り、そのため尿沈渣量が個体差を大きく反映してしま
い、200μlよりも少なかったり、200μlよりも
多くなったりして、濃縮率が大きく変動してしまう。
[0007] Further, if the supernatant is removed by suction removal, the amount of urine sediment can be accurately set to 200 µl. However, this method is troublesome and time-consuming. In general, decanting is performed, and the amount of urinary sediment largely reflects individual differences. For example, the amount of urinary sediment is less than 200 μl or more than 200 μl, and the concentration ratio fluctuates greatly.

【0008】又更に、尿沈渣6をスライドグラス7に移
す場合、
Further, when urine sediment 6 is transferred to slide glass 7,

【図1】に示すようにスポイト10で尿沈渣6を懸濁し
15μl採取すればよいが、手間とコストがかかるの
で、検体数の多い検査施設ではスポイト10を使用せ
ず、スピッツ管3を軽く振って尿沈渣6の混和を行い、
スピッツ管3を逆さにし、スライドグラス7上にたたき
つけるようにして尿沈渣6を一滴採取しているところが
多い。しかし、このようなたたきつけ法では、尿沈渣6
の懸濁が不十分となったり、滴下する容量も基準量であ
る15μlよりも少なくなったり、多くなったりしてば
らついてしまう。
As shown in FIG. 1, it is sufficient to suspend the urine sediment 6 with the dropper 10 and collect 15 μl of the urine sediment. However, since labor and cost are required, the spitz tube 3 is lightened without using the dropper 10 in an inspection facility having a large number of samples. Shake to mix urine sediment 6,
In many cases, the Spitz tube 3 is turned upside down, and one drop of urine sediment 6 is collected by striking it on a slide glass 7. However, in such a knocking method, urine sediment 6
Suspension becomes insufficient, and the volume of the solution dropped is less than or larger than the reference volume of 15 μl, and thus varies.

【0009】このように尿は、簡単に得られ、これらか
ら得られる診断情報が多い反面、含有成分が変性し易
く、何がどれだけ含まれているかの予測がつきにくく、
判定に検体の個体差、検査施設間差、検査担当者間差等
が入り易いことが難点とされている。そのため尿沈渣の
標準化の必要性が認識されている。
As described above, urine can be easily obtained, and much diagnostic information can be obtained from the urine. On the other hand, the components are easily denatured, and it is difficult to predict what and how much is contained.
It is a difficult point that the determination easily includes an individual difference of a sample, a difference between test facilities, a difference between test personnel, and the like. Therefore, the necessity of standardization of urine sediment is recognized.

【0010】従来は尿沈渣の標準化の方法は定められて
おらず、精度管理を目的として尿沈渣用コントロール尿
を使用する方法が提案されている。すなわち、健常人血
液をNaCl加リン酸緩衝液(PBS)で洗浄し、2.
5%グルタルアルデヒドで固定した赤血球と、前記血液
から分取した白血球を同様にグルタルアルデヒドで固定
した白血球とを、正常尿をプールしてホルマリンを0.
5%濃度に加え、4℃で一夜以上放置した後沈殿物を除
き、アジ化ナトリウムを加えて得たプール尿に一定濃度
となるよう加えてなるコントロール尿を、日常の検査の
際に同時に赤血球及び白血球数を検査し検査成績を管理
しようとするものである。(衛生検査、39巻、1号、
1990、55〜61)
Conventionally, a method for standardizing urine sediment has not been determined, and a method using control urine for urine sediment for the purpose of quality control has been proposed. That is, healthy human blood is washed with NaCl-added phosphate buffer solution (PBS), and
Erythrocytes fixed with 5% glutaraldehyde, and leukocytes collected from the blood, similarly fixed with glutaraldehyde, were pooled with normal urine to remove formalin.
In addition to the 5% concentration, the mixture was allowed to stand overnight at 4 ° C. for over night to remove the precipitate, and a control urine was added to the pool urine obtained by adding sodium azide so as to have a constant concentration. In addition, the number of white blood cells is inspected to control the test results. (Hygiene inspection, 39 volumes, No. 1,
1990, 55-61)

【0011】[0011]

【発明が解決しようとする課題】しかしながら、かかる
コントロール尿を用いる管理方法では、同一検査施設内
において検査担当者間差をなくし再現性を高める手段と
しては有効であるが、尿検体の個体差すなわち尿沈渣量
の多少によるばらつきば是正できない。
However, such a control method using control urine is effective as a means for eliminating differences between test personnel and improving reproducibility in the same laboratory, but it is effective for individual differences in urine specimens. It cannot be corrected if the amount of urine sediment varies.

【0012】又、前記コントロール尿を使用し、全国の
58検査施設において各検査施設のルーチン法で検査し
たところ、固定赤血球33個/μl(1視野当りの理論
値12.1個/HPF)の調整表示値に対し、1視野当
り2.0〜52.7個、平均18.8個、CV59.6
%という成績が得られ、施設間変動が極めて大きく、標
準化の必要性が再認識されている(医学検査、40巻、
1号、1991、75〜79)。
When the control urine was used and tested at 58 laboratories nationwide by the routine method of each laboratory, it was found that fixed erythrocytes were 33 cells / μl (theoretical value per field of view: 12.1 cells / HPF). 2.0 to 52.7 pieces per visual field, 18.8 on average, CV 59.6 per adjusted display value
%, The inter-facility variability is extremely large, and the need for standardization is reaffirmed (Medical Examination, Volume 40,
No. 1, 1991, 75-79).

【0013】従って、各検査施設は前記コントロール尿
を用いた検査成績が表示値の33個/μl(12.1個
/HPF)となるよう検査法の改善に取り組まなければ
ならないが、前述のように変動の要因の多い尿沈渣の検
査成績の精度を高めるためにば、手間と時間をかけざる
を得ず、高コスト化すると共に多数検体の処理能力に限
界を生じてしまう。
Therefore, each laboratory must work on improving the test method so that the test result using the control urine becomes the indicated value of 33 / μl (12.1 / HPF), as described above. In order to improve the accuracy of the test results of urine sediment, which often causes fluctuations, it is necessary to take time and effort, increase the cost, and limit the throughput of many samples.

【0014】[0014]

【課題を解決するための手段】本発明は上述の従来の課
題を解決するためになしたもので、尿にマーカー粒子を
加えて遠心分離し、得られる尿沈渣中の目的粒子及びマ
ーカー粒子を計数し、マーカー粒子の回収率により目的
粒子の数を補正することを特徴とする尿沈渣検査成績管
理方法にかかるものである。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and comprises adding marker particles to urine and centrifuging the urine to remove target particles and marker particles in the obtained urine sediment. The present invention relates to a urine sediment test result management method, which comprises counting and correcting the number of target particles based on the recovery rate of marker particles.

【0015】ここにおいて、前記補正の方法は以下の3
通りである。
Here, the correction method is as follows.
It is on the street.

【0016】(計数された目的粒子の数)×(理論的回
収マーカー粒子数÷計数されたマーカー粒子の数)・・
・(式1)
(Number of target particles counted) × (Number of theoretically recovered marker particles / Number of counted marker particles)
・ (Equation 1)

【0017】(計数された目的粒子の数)×(実験的回
収マーカー粒子数÷計数されたマーカー粒子の数)・・
・(式2)
(Number of counted target particles) × (number of experimentally recovered marker particles / number of counted marker particles)
・ (Equation 2)

【0018】(計数された目的粒子の数÷計数されたマ
ーカー粒子の数)×(添加されたマーカー粒子の尿中濃
度)・・・(式3)
(Number of counted target particles / Number of counted marker particles) × (Urine concentration of added marker particles) (Equation 3)

【0019】更に、尿にマーカー粒子を加えて遠心分離
し、得られる尿沈渣中の目的粒子及びマーカー粒子を計
数し、マーカー粒子に対する目的粒子の比率により尿検
体をランク分けすることも可能である。以上の補正の方
法は複数併用してもよい。
Furthermore, it is also possible to add marker particles to urine and centrifuge the urine, count the target particles and marker particles in the resulting urine sediment, and rank urine samples according to the ratio of target particles to marker particles. . A plurality of the above correction methods may be used in combination.

【0020】以上の尿沈渣検査成績管理方法に使用する
マーカー粒子としては、粒子径が1〜20μm、比重が
1.040〜1.20のマーカー粒子、好ましくは粒子
径2〜10μm、比重1.05〜1.20のマーカー粒
である。又、マーカー粒子の粒子径は尿沈渣中の目的
粒子と粒子径を異にすることが好ましい。ここで、目的
粒子とは、尿沈渣中に認められる粒子のうちの一つ又は
二つ以上をいう。例えば、赤血球、白血球、組織球等の
血球成分、へん平、移行、尿細管(小円形)、脂肪含有
細胞、封入体細胞、多核巨細胞、異型細胞等の上皮細
胞、硝子、顆粒、ろう様、赤血球、白血球、血液、上
皮、脂肪、類円柱等の円柱、シュウ酸カルシウム、リン
酸アンモニウムマグネシウム、リン酸カルシウム、炭酸
カルシウム、尿酸アンモニウム、尿酸、ビリルビン等の
結晶、細菌、酵母様真菌、脂肪球、無晶性塩類等その他
の粒子がある。
The marker particles used in the urine sediment test result management method described above have a particle size of 1 to 20 μm and a specific gravity of
It is a marker particle having a particle diameter of 1.040 to 1.20 , preferably a particle diameter of 2 to 10 μm and a specific gravity of 1.05 to 1.20 . Further, the particle size of the marker particles is preferably different from the target particles in the urine sediment. Here, the target particles refer to one or more of the particles found in the urine sediment. For example, blood cell components such as red blood cells, white blood cells, histiocytes, squamous cells, migration, tubules (small circles), fat-containing cells, epithelial cells such as inclusion body cells, multinucleated giant cells, atypical cells, glass, granules, wax-like Erythrocytes, leukocytes, blood, epithelium, fat, casts such as casts, calcium oxalate, ammonium magnesium phosphate, calcium phosphate, calcium carbonate, ammonium urate, uric acid, bilirubin and other crystals, bacteria, yeast-like fungi, fat globules, There are other particles such as amorphous salts.

【0021】マーカー粒子としては動物、植物等の細
胞、微生物等の菌体、ラテックス粒子、マイクロカプセ
ル、デンプン粒子、ゼラチン粒子等を使用することがで
きる。
As the marker particles, cells of animals and plants, cells of microorganisms and the like, latex particles, microcapsules, starch particles, gelatin particles and the like can be used.

【0022】前記のマーカー粒子は粒子径を1〜20μ
m好ましくは粒子径2〜10μmとすると、目視又は自
動セルカウンター等の自動粒子カウンターによる計数に
適し、比重を1.040〜1.20好ましくは1.05
〜1.20とすると、尿中に添加して遠心分離により回
収する際に尿中の目的粒子と同様の回収率となる。
The marker particles have a particle size of 1 to 20 μm.
When the particle diameter is preferably 2 to 10 μm, the particle diameter is suitable for visual observation or counting by an automatic particle counter such as an automatic cell counter, and the specific gravity is 1.040 to 1.20, preferably 1.05 to 1.05.
When it is set to 1.21.20 , when the compound is added to urine and collected by centrifugation, the recovery rate is the same as that of target particles in urine.

【0023】又マーカー粒子の色調は目的粒子の色調と
異なるものを選択すると、識別、計数が容易となる。マ
ーカー粒子の色調としては、検査施設により目的粒子を
スターンハイマー法、スターンハイマー=マルビン法等
により染色することもあるため、これらにより染色され
た目的粒子の色調とも異なる色調が好ましく、検鏡下に
黒色、褐色、緑色、金色等の赤、紫、青系統以外に観察
される色調とするとよい。具体的には、固定染色血球、
染色細胞、固定染色細胞、染色菌体、固定染色菌体、着
色ラテックス粒子、着色マイクロカプセル、着色デンプ
ン粒子、着色ゼラチン粒子等があげられる。
When the color tone of the marker particles is different from the color tone of the target particles, identification and counting become easy. As the color tone of the marker particles, the target particles may be stained by an inspection facility by the Sternheimer method, the Sternheimer-Malvin method, etc., and therefore, a color tone different from that of the target particles stained by these is preferable. The color may be a color observed in a color other than red, purple, and blue, such as black, brown, green, and gold. Specifically, fixed stained blood cells,
Examples include stained cells, fixed stained cells, stained cells, fixed stained cells, colored latex particles, colored microcapsules, colored starch particles, colored gelatin particles, and the like.

【0024】以上のマーカー粒子は尿の比重1.003
〜1.030に比べて若干比重が大きいため、長時間静
置しておくと沈降することもあるので、浮遊液の比重を
マーカー粒子の比重と同等以上とするとよい。浮遊液の
比重を調整するためには、一般的に使用されている緩衝
液を高濃度に使用してもよく、無機、有機の塩類、サッ
カロース、ラクトース、マンニット、ソルビット等の糖
類を加えてもよく、更にはプロピレングリコール(比重
1.036〜1.040)、ジメチルスルホキシド(比
重1.100〜1.105)、ジエチレングリコール
(比重1.113〜1.123)、エチレングリコール
(比重1.114〜1.117)、グリセリン(比重
1.260以上)等の有機溶媒を使用することもでき
る。すなわち、尿沈渣中の目的粒子の性状及び遠心上清
の尿検査に影響を与えない限り、各種の物質を併用して
比重調整することができる。又、非イオン性界面活性剤
を添加することによりマーカー粒子の分散性を高めるこ
ともできる。
The above marker particles have a specific gravity of urine of 1.003.
Since the specific gravity is slightly larger than 1.030, sedimentation may occur when left standing for a long time. Therefore, the specific gravity of the suspension is preferably equal to or higher than the specific gravity of the marker particles. In order to adjust the specific gravity of the suspension, a commonly used buffer may be used at a high concentration, and inorganic and organic salts, saccharose, lactose, mannitol, saccharides such as sorbitol are added. Furthermore, propylene glycol (specific gravity 1.036 to 1.040), dimethyl sulfoxide (specific gravity 1.100 to 1.105), diethylene glycol (specific gravity 1.113 to 1.123), ethylene glycol (specific gravity 1.114) To 1.117) and glycerin (specific gravity of 1.260 or more). That is, the specific gravity can be adjusted by using various substances in combination, as long as the properties of the target particles in the urine sediment and the urine test of the centrifuged supernatant are not affected. Further, the dispersibility of the marker particles can be enhanced by adding a nonionic surfactant.

【0025】マーカー粒子の製法としては、例えば固定
赤血球とpH8〜10の緩衝液中に3,3′−ジアミノ
ベンチジン、過酸化水素水及び界面活性剤を含む反応液
とを混合し、一定時間後洗浄する。
As a method for producing marker particles, for example, fixed erythrocytes and a reaction solution containing 3,3'-diaminobenzidine, hydrogen peroxide solution and a surfactant in a buffer solution having a pH of 8 to 10 are mixed for a certain period of time. After washing.

【0026】赤血球としてはヒトの他ウサギ、ウシ、ブ
タ、ヒツジ等の動物の赤血球を使用することができ、こ
れらの赤血球の固定はグルタルアルデヒド、ホルマリン
等により行うことができる。
As the erythrocytes, erythrocytes of animals such as rabbits, cows, pigs, and sheep can be used in addition to humans. Fixation of these erythrocytes can be performed with glutaraldehyde, formalin, or the like.

【0027】pH8〜10の緩衝液の緩衝剤は、pH8
〜10の間に緩衝力のある種々の緩衝剤を使用すること
ができ、トリス−塩酸系、グリシン−NaOH系、ホウ
酸系等を使用することができる。
The buffer of the buffer having pH 8 to 10 is pH 8
Various buffering agents having a buffering power between 10 and 10 can be used, and tris-hydrochloric acid type, glycine-NaOH type, boric acid type and the like can be used.

【0028】 緩衝液中には3,3′−ジアミノベンチ
ジン、過酸化水素水を加えるが、これらの他に非イオン
性界面活性剤を添加することができる。
In the buffer, 3,3′-diaminobenzidine and aqueous hydrogen peroxide are added, and in addition to these, a nonionic surfactant can be added.

【0029】前記マーカー粒子の添加濃度は、少なすぎ
るとマーカー粒子のC.V.値が大きくなりすぎ、又多
すぎると計数に時間がかかるので、尿1μl当り5〜5
00個の範囲が適当である。この範囲であればマーカー
粒子の計数に要する時間は短くて済み、全体の操作時間
に大きな変動はなく、多数の検体処理においても支障と
ならない。
If the concentration of the marker particles is too low, the C.I. V. If the value is too large, or if the value is too large, it takes time to count.
A range of 00 is appropriate. Within this range, the time required for the counting of marker particles can be short, and there is no large variation in the overall operation time, which does not hinder the processing of many samples.

【0030】[0030]

【作用】マーカー粒子を尿中に5〜500個/μl例え
ば50個/μlの濃度に加えて遠心分離すると、尿中の
80〜90%の目的粒子及びマーカー粒子が沈降回収さ
れる。デカントにより上清を吸引除去し振盪により尿沈
渣を均一にした後たたきつけ法によりスライドグラスに
一滴(約15μl)採取し、カバーグラスをかけて検鏡
し、目的粒子及びマーカー粒子を1視野毎に計数し、複
数視野計数して目的粒子及びマーカー粒子を夫々平均す
る。
When marker particles are added to urine at a concentration of 5 to 500 particles / μl, for example, 50 particles / μl and centrifuged, 80 to 90% of target particles and marker particles in urine are sedimented and collected. After removing the supernatant by decantation and homogenizing the urine sediment by shaking, one drop (about 15 μl) is collected on a slide glass by a tapping method, covered with a cover glass, and inspected by microscopy. The target particles and the marker particles are averaged respectively by counting and multiple fields of view.

【0031】マーカー粒子の回収率を100%とする
と、理論的回収マーカー粒子数は1視野当り18.4個
(日本臨床検査技師会推奨法:尿10ml,1500
r.p.m.、5分、上清吸引除去、尿沈渣量200μ
l、尿沈渣採取量15μl)であり、平均マーカー粒子
数が18.4個であれば回収率は100%である。例え
ば、尿沈渣量が200μlを超えるような場合、濃縮率
が50倍以下となり、平均マーカー粒子数は18.4個
/HPF以下となり、回収率は100%以下ということ
になるが、目的粒子の回収率も同一であるので、式1に
より補正すれば、理論的回収粒子数を基準として補正さ
れる。又、尿沈渣量が200μlよりも少ない場合、デ
カントでは濃縮率が50倍以上となり、平均マーカー粒
子数は18.4個/HPF以上となり、回収率が100
%以上ということになるが、目的粒子の回収率も同一で
あるので式1により補正すれば、同様に理論的回収粒子
数を基準として補正される。
Assuming that the recovery rate of marker particles is 100%, the theoretical number of recovered marker particles is 18.4 per visual field (recommended method by the Japan Society of Clinical Laboratory Engineers: urine 10 ml, 1500
r. p. m. 5 minutes, aspirate supernatant, urine sediment volume 200μ
1, the amount of urine sediment collected is 15 μl), and if the average number of marker particles is 18.4, the recovery rate is 100%. For example, when the amount of urinary sediment exceeds 200 μl, the enrichment rate becomes 50 times or less, the average number of marker particles becomes 18.4 particles / HPF or less, and the recovery rate becomes 100% or less. Since the recovery is also the same, if the correction is made by the equation 1, the correction is made based on the theoretical number of recovered particles. When the amount of urine sediment is less than 200 μl, the concentration is 50 times or more in decant, the average number of marker particles is 18.4 particles / HPF or more, and the recovery is 100%.
%, But the recovery rate of the target particles is also the same, so if the correction is made by the equation 1, the correction is similarly made based on the theoretical number of recovered particles.

【0032】これにより、尿検体の個体差と検査方法、
検査機器、検査担当者等の検査施設間差とが是正される
と共に再現性も向上し、1視野当りの平均目的粒子数が
理論回収粒子数を基準として補正され、標準化される。
As a result, the individual differences of the urine specimen and the test method
Differences between inspection facilities such as inspection equipment and inspection staff are corrected and reproducibility is improved. The average number of target particles per visual field is corrected based on the theoretical number of recovered particles and standardized.

【0033】又、各検査施設において実験により回収マ
ーカー粒子数の平均値を予め求めておくことにより、各
検査施設における従来の平均的回収粒子数を補正の基準
とすることができるため、式2により各検査施設におけ
る検査結果の判断基準を変更することなく、尿検体の個
体差が是正され、再現性等の測定精度が向上する。
Further, since the average value of the number of collected marker particles in each laboratory is determined in advance by experiment at each laboratory, the conventional average number of collected particles in each laboratory can be used as a correction standard. Thereby, the individual difference of the urine sample is corrected without changing the criterion of the test result in each test facility, and the measurement accuracy such as reproducibility is improved.

【0034】更に、例えばマーカー粒子を尿検体中に5
0個/μlの濃度に加えておいた場合、複数視野におけ
る目的粒子とマーカー粒子の比率に50を乗ずることに
より、尿検体中の目的粒子の数を濃度表示することがで
き、しかも尿検体の個体差及び検査施設間差が是正され
ることから直接法にも対応できる。
Further, for example, marker particles may be added
When the concentration is 0 particles / μl, the number of target particles in the urine sample can be displayed by multiplying the ratio of the target particles and the marker particles in a plurality of visual fields by 50, and the urine sample can be displayed. Since the differences between individuals and differences between laboratories are corrected, it is possible to deal with the direct method.

【0035】更に又、尿にマーカー粒子を加えて遠心分
離し、得られた尿沈渣中の目的粒子及びマーカー粒子を
計数し、マーカー粒子に対する目的粒子の比率により尿
検体をランク分けすると、尿沈渣の検査を更に合理的に
且つ迅速化することができる。すなわち、近年は尿沈渣
中の各目的粒子の数を連続的数値で表現するよりも、目
的粒子に応じてその数に適当な区間を設定し、尿検体中
の目的粒子数をランク分けして検査成績の判断を容易に
すると共に検査を合理化する傾向にあり、特に検査成績
をコンピューターを用いてオンラインで報告するシステ
ムにおいてはランク分けする場合が多い。
Further, marker particles are added to urine and centrifuged. The target particles and marker particles in the obtained urine sediment are counted, and the urine specimen is ranked according to the ratio of target particles to marker particles. Inspection can be further reasonably and quickly performed. That is, in recent years, rather than expressing the number of each target particle in the urine sediment with a continuous numerical value, an appropriate section is set for the number according to the target particle, and the number of target particles in the urine sample is ranked. There is a tendency to make it easier to judge the test results and to streamline the test. Particularly, a system that reports the test results online using a computer often ranks.

【0036】加えるマーカー粒子としては粒子径が1〜
20μmの範囲であれば検鏡時に認識が容易で計数可能
であり目的粒子と大きさを異にすれば識別が更に容易と
なると共に自動粒子カウンターによる計数も可能とな
る。マーカー粒子の、比重が1.04以上であれば遠心
分離により回収可能であり、1.06〜1.20の範囲
であれば遠心分離の際尿検体中の目的粒子と挙動を共に
するので回収率がほぼ同じになる。又、マーカー粒子が
目的粒子と検鏡下の色調を異にしていると、マーカー粒
子との識別が更に容易となる。更に、マーカー粒子の比
重と同等以上の液体にマーカー粒子を浮遊することによ
り、マーカー粒子の長期保存による沈降が防止され、添
加前の浮遊均一化が容易となり、直ちに使用でき、尿検
体への分散性も良好となる。
The marker particles to be added have a particle size of 1 to
Within the range of 20 μm, recognition and counting are easy at the time of microscopy, and if the size is different from that of the target particles, identification becomes easier and counting by an automatic particle counter becomes possible. If the specific gravity of the marker particles is 1.04 or more, the marker particles can be collected by centrifugation. If the specific gravity is in the range of 1.06 to 1.20, the marker particles can behave together with the target particles in the urine sample during centrifugation. The rates are almost the same. Further, when the marker particles have a different color tone from the target particles under the microscope, it is easier to distinguish the marker particles from the marker particles. Further, by suspending the marker particles in a liquid having a specific gravity equal to or higher than the specific gravity of the marker particles, sedimentation due to long-term storage of the marker particles is prevented, and the suspension can be easily homogenized before addition, and can be used immediately and dispersed in urine samples. The property is also good.

【0037】[0037]

【実施例】【Example】

実施例1 平均粒子径5μm、比重1.100のラテックス粒子を
緑色に着色したマーカー粒子を、10000個/μlに
調整し、尿10mlに対し50μlを添加すると、尿1
μl当りのマーカー粒子は50個となる。1500r.
p.m.で5分間遠心分離し、デカントにより上清を除
去し、尿沈渣を均一に懸濁した後たたきつけ法によりス
ライドグラス上に一滴(約15μl)とり、18×18
mmのカバーグラスをかけて400倍で検鏡し、目的粒
子である赤血球とマーカー粒子であるラテックス粒子を
夫々計数し、複数視野の平均値を夫々算出した。
Example 1 When marker particles obtained by coloring latex particles having an average particle diameter of 5 μm and specific gravity of 1.100 to green were adjusted to 10,000 particles / μl, and 50 μl was added to 10 ml of urine, urine 1
The number of marker particles per μl is 50. 1500r.
p. m. , Centrifuged for 5 minutes at, and the supernatant was removed by decanting. After urine sediment was suspended uniformly, a drop (approximately 15 μl) was taken on a slide glass by tapping method, and
The sample was examined under a 400-fold magnification with a cover glass of mm, and red blood cells as target particles and latex particles as marker particles were counted, respectively, and the average value of a plurality of visual fields was calculated.

【0038】10視野の平均赤血球数は15.2個/1
視野(HPF)であり、平均マーカー粒子数は14.5
個/HPFであった。式1により補正した検体尿中の赤
血球数は、日本臨床検査技師会法による理論的回収マー
カー粒子数を18.4個/HPFとすると、19.3個
/HPFとなった。
The average number of red blood cells in 10 visual fields is 15.2 cells / 1.
Field of view (HPF), average marker particle number is 14.5
/ HPF. The red blood cell count in the sample urine corrected by the formula 1 was 19.3 / HPF, where the theoretical collection marker particle count by the Japanese Society of Clinical Laboratory Engineers was 18.4 / HPF.

【0039】 実施例2 平均粒子径2μl、比重1.080のマイクロカプセル
を用いて前記実施例1と同様に操作したところ、平均白
血球数は1視野当り14.3個で、平均マーカー粒子数
は12.3個であった。
Example 2 The same operation as in Example 1 was performed using microcapsules having an average particle diameter of 2 μl and a specific gravity of 1.080. The average number of leukocytes was 14.3 per visual field, and the average number of marker particles was 12.3.

【0040】予め10例の尿検体を用いて同様に操作し
て得られた1視野ごとの平均回収マーカー粒子数は1
1.6個であったので、式2により補正した尿検体中の
白血球数は13.5個/HPFとなった。
The average number of collected marker particles per field obtained by the same operation using 10 urine samples in advance is 1
Since the number was 1.6, the white blood cell count in the urine sample corrected by the expression 2 was 13.5 / HPF.

【0041】 実施例3 平均粒子径8μm、比重1.110のラッテクス粒子を
黒色に着色したマーカー粒子を用い、尿1μl当りのマ
ーカー粒子数を40個として、前記実施例1と同様に操
作したところ、平均赤血球数は27.8個/HPF、平
均マーカー粒子数は19.3個/HPFであった。式3
により補正した尿検体中の赤血球数は1μl当り57.
6個となった。
Example 3 The same operation as in Example 1 was performed using marker particles in which latex particles having an average particle diameter of 8 μm and a specific gravity of 1.110 were colored black, and the number of marker particles per μl of urine was 40. The average number of red blood cells was 27.8 / HPF, and the average number of marker particles was 19.3 / HPF. Equation 3
The red blood cell count in the urine sample corrected by
There were six.

【0042】 実施例4 前記実施例1と同様に操作し、赤血球数とマーカー粒子
の平均比率を計算したところ、15.2:14.5であ
り、赤血球数はマーカー粒子数の1.05倍であった。
予め、1視野当りの理論的回収マーカー粒子数を18.
4個としてランク分けすると、1視野当りの赤血球の数
が1〜5個の場合、マーカー粒子に対する赤血球の比率
は、0.054〜0.272であり、同様に赤血球数が
6〜10個の場合0.326〜0.543であり、11
〜20個の場合0.611〜1.087であり、21〜
50個の場合1.141〜2.717であり、51〜1
00個の場合2.771〜5.435であり、101個
以上の場合5.489以上となる。従って、前記尿検体
は赤血球数比率が1.05であるので、赤血球数11〜
20個/HPFの範囲にランクされた。
Example 4 The same operation as in Example 1 was performed to calculate the average ratio of the number of red blood cells to the number of marker particles. The result was 15.2: 14.5, and the number of red blood cells was 1.05 times the number of marker particles. Met.
In advance, the theoretical number of recovered marker particles per visual field is 18.
When the number of erythrocytes per field is 1 to 5, the ratio of erythrocytes to marker particles is 0.054 to 0.272, and similarly, the number of erythrocytes is 6 to 10. In this case, it is 0.326 to 0.543, and 11
0.611 to 1.087 in the case of ~ 20 pieces,
In the case of 50 pieces, it is 1.141 to 2.717 and 51 to 1
In the case of 00 pieces, it is 2.771 to 5.435, and in the case of 101 pieces or more, it becomes 5.489 or more. Therefore, since the urine sample has a red blood cell count ratio of 1.05, the red blood cell count
Rank 20 / HPF.

【0043】 実施例5 ヒト赤血球をグルタルアルデヒドで固定し、pH9のト
リス塩酸緩衝液に浮遊する。pH9のトリス塩酸緩衝液
50mlに3,3´−ジアミノベンチジンを250m
g、3%過酸化水素水を1.5ml、及びツイーン80
を1.0mlを加えて反応液とする。該反応液と前記固
定赤血球とを等量混合し10分後PBSにて洗浄し、防
腐剤を加えたPBSに10000個/μlに調整、浮遊
して冷蔵保存した。
Example 5 Human erythrocytes are fixed with glutaraldehyde and suspended in a pH 9 Tris-HCl buffer. 250 ml of 3,3'-diaminobenzidine in 50 ml of Tris-HCl buffer of pH 9
g, 1.5 ml of 3% aqueous hydrogen peroxide, and Tween 80
Was added to make a reaction solution. The reaction solution and the fixed erythrocytes were mixed in equal amounts, washed 10 minutes later with PBS, adjusted to 10,000 cells / μl in PBS containing a preservative, floated, and stored refrigerated.

【0044】 実施例6 プラスチック製標線付きスピッツ管に尿を10ml採取
し、実施例5で調製した固定染色血球を50μl添加
し、尿1μl当り50個の濃度とした。1500r.
p.m.5分間遠心分離し、上清をアスピレーターで吸
引除去し、沈渣量を200μlとし、マイクロピペット
で均一に混和後スライドグラス上に15μl採取し、カ
バーグラスをかけて赤血球及び固定染色血球を計算し、
10視野を平均した。以上の操作を10回同時に繰り返
したところ、平均赤血球数は12.3個/HPFであり
C.V.は8.5%であった。又、平均固定染色血球数
は11.2個/HPFでありC.V.は8.3%であっ
た。固定染色血球の理論回収値を18.4個/HPFと
して式1により補正すると、尿検体中の赤血球数は2
0.2個/HPFとなった。
Example 6 10 ml of urine was collected into a plastic Spitz tube with a marked line, and 50 μl of the fixed stained blood cells prepared in Example 5 was added to a concentration of 50 cells per 1 μl of urine. 1500r.
p. m. After centrifugation for 5 minutes, the supernatant was removed by suction with an aspirator, the sediment volume was adjusted to 200 μl, mixed uniformly with a micropipette, 15 μl was collected on a slide glass, covered with a cover glass, and red blood cells and fixed stained blood cells were calculated.
Ten fields of view were averaged. When the above operation was repeated 10 times at the same time, the average number of red blood cells was 12.3 / HPF. V. Was 8.5%. The average number of fixed stained blood cells was 11.2 / HPF, and C.I. V. Was 8.3%. When the theoretical recovery value of fixed-stained blood cells is corrected to 18.4 cells / HPF according to Equation 1, the number of red blood cells in a urine sample is 2
0.2 / HPF.

【0045】 実施例7 尿検体30例を用いて実施例6と同様の操作により、各
尿検体の1視野当りの平均赤血球数及び平均固定染色血
球数を求めた。固定染色血球の30例の平均値は13.
3個/HPFで、C.V.は22.2%であった。実験
的に得られた平均値13.3個/HPFを用いて式2に
より、各尿検体の赤血球数を補正した。
Example 7 The average number of red blood cells and the average number of fixed stained blood cells per visual field of each urine sample were determined by the same operation as in Example 6 using 30 urine samples. The average of 30 cases of fixed stained blood cells was 13.
3 / HPF, C.I. V. Was 22.2%. The erythrocyte count of each urine sample was corrected by Equation 2 using an average value of 13.3 / HPF obtained experimentally.

【0046】 実施例8 実施例6において、スピッツ管をガラス製とし、上清の
除去をデカントとし、尿沈渣の採取をたたきつけ法で行
った。1視野当りの平均赤血球数の10回平均値は3
8.8個で、C.V.は24.3%、又固定染色血球は
平均値39.5個、C.V.は22.1%であった。理
論回収値を18.4個/HPFとして式1により補正し
たところ、平均赤血球数は18.1個/HPFとなっ
た。
Example 8 In Example 6, the Spitz tube was made of glass, the supernatant was decanted, and the urine sediment was collected by tapping. The average value of 10 red blood cell counts per visual field is 3
8.8, C.I. V. Is 24.3%, the average value of fixed stained blood cells is 39.5, C.I. V. Was 22.1%. When the theoretical recovery value was corrected to 18.4 cells / HPF using Equation 1, the average red blood cell count was 18.1 cells / HPF.

【0047】 実施例9 実施例7で使用した尿検体30例を用いて、実施例8と
同様の操作により、各尿検体の1視野当りの平均赤血球
数及び平均固定染色血球数を求めた。固定染色血球の3
0例の平均値は38.5個/HPFで、C.V.は4
4.8%であった。実験的に得られた平均値38.5個
/HPFを用いて、式2により各尿検体の赤血球数を補
正したところ、実施例7で得られた30例の尿検体の赤
血球数と近似した補正値が夫々得られた。
Example 9 The average number of red blood cells and the average number of fixed stained blood cells per visual field of each urine sample were determined by the same operation as in Example 8 using 30 urine samples used in Example 7. 3 of fixed stained blood cells
The average of 0 cases was 38.5 / HPF. V. Is 4
It was 4.8%. When the red blood cell count of each urine sample was corrected using Equation 2 using the average value of 38.5 / HPF obtained experimentally, it was approximated to the red blood cell count of 30 urine samples obtained in Example 7. Correction values were obtained respectively.

【0048】 実施例10 実施例8において、尿沈渣の採取をスポイトで15μl
採取することにより行った。平均赤血球数の10回平均
値は35.2個/HPFでC.V.は11.5%、又固
定染色血球は平均値34.0個/HPFでC.V.は1
0.6%であった。理論回収値を18.4個/HPFと
して式1により補正したところ、平均赤血球数は19.
0個/HPFとなった。
Example 10 In Example 8, collection of urine sediment was performed using a dropper with 15 μl.
Performed by sampling. The average value of the average of 10 red blood cell counts was 35.2 cells / HPF. V. Is 11.5%, and fixed stained blood cells have an average value of 34.0 cells / HPF and C.I. V. Is 1
0.6%. When the theoretical recovery value was corrected to Equation 1 with 18.4 cells / HPF, the average red blood cell count was 19.
0 / HPF.

【0049】 実施例11 実施例7で使用した尿検体30例を用いて、実施例10
と同様の操作により、各尿検体の1視野当りの平均赤血
球数及び平均固定染色血球数を求めた。固定染色血球の
30例の平均値は26.2個/HPFで、C.V.は3
9.4%であった。実験的に得られた平均値26.2個
/HPFを用いて、式2により各尿検体の赤血球数を補
正したところ、実施例7及び9で得られた30例の尿検
体の赤血球数と近似した補正値が夫々得られた。
Example 11 Using the 30 urine samples used in Example 7, Example 10
By the same operation as described above, the average number of red blood cells and the average number of fixed stained blood cells per visual field of each urine sample were determined. The average value of 30 cases of fixed-stained blood cells was 26.2 cells / HPF. V. Is 3
It was 9.4%. When the erythrocyte count of each urine sample was corrected according to Equation 2 using the average value 26.2 / HPF obtained experimentally, the erythrocyte count of the 30 urine samples obtained in Examples 7 and 9 was Approximate correction values were obtained respectively.

【0050】 実施例12 採尿カップに採取された尿の液量を採尿カップの目盛り
を利用して読みとり、尿10ml当り、ヨードデンプン
反応により着色したデンプン粒子(18500個/μ
l)を10Aμl加え、(18.5個/μl尿)、採尿
カップを揺り動かすと青色のデンプン粒子が均一に浮遊
され内容物が均一に混和されたことが確認できた。この
尿をスピッツ管に10ml採取し、実施例1と同様に操
作した。
Example 12 The amount of urine collected in a urine collection cup was read using the scale of the urine collection cup, and starch particles colored by an iodostarch reaction per 18 ml of urine (18500 particles / μm)
l) was added (18.5 cells / μl urine) and the urine collection cup was shaken to confirm that the blue starch particles were uniformly suspended and the contents were uniformly mixed. 10 ml of this urine was collected in a Spitz tube, and operated in the same manner as in Example 1.

【0051】10視野の着色デンプン粒子ば5個/HP
F前後であったので尿の均一化が裏付けられた。又平均
赤血球数は20.4個/HPF、平均ラテックス粒子数
は13.7個であった。理論的回収ラテックス数を1
8.4個/HPFとして、式1により補正すると赤血球
数は27.4個/HPFとなった。
5 starch particles / HP in 10 visual fields
Since it was around F, the uniformity of urine was supported. The average number of red blood cells was 20.4 / HPF, and the average number of latex particles was 13.7. 1 theoretical recovered latex
When corrected according to Equation 1 as 8.4 / HPF, the red blood cell count was 27.4 / HPF.

【0052】本実施例によれば、大きさ及び又は色調の
異なる二種類のマーカー粒子を採尿カップとスピッツ管
に加えることにより、尿採取時の成分の均一化が容易且
つ確実に確認できると共に目的粒子の補正も行えるの
で、尿検体の個体差が改善されるばかりでなく、再現性
が向上し検査成績の質が著しく高められた。
According to this embodiment, by adding two types of marker particles having different sizes and / or color to the urine collection cup and the Spitz tube, it is possible to easily and surely confirm the uniformity of the components at the time of urine collection and to achieve the object. Since the particles can be corrected, not only the individual differences of the urine samples were improved, but also the reproducibility was improved and the quality of the test results was remarkably improved.

【0053】 実施例13 平均粒子径3μm、比重1.050のラテックス粒子を
10000個/μlに調整し、尿10ml当り50μl
を添加してよく混和した。これを、直接に自動粒子カウ
ンターにより、粒子径7μmの赤血球と3μmのマーカ
ー粒子とを区別して計数した。マーカー粒子は表示濃度
が50個/μlであるのに対し、測定値が49個/μl
であったので、尿の混和が充分行われたことが確認され
た。
Example 13 Latex particles having an average particle diameter of 3 μm and a specific gravity of 1.050 were adjusted to 10,000 particles / μl, and 50 μl per 10 ml of urine
Was added and mixed well. This was directly counted by an automatic particle counter while distinguishing between red blood cells having a particle diameter of 7 μm and marker particles having a particle diameter of 3 μm. Marker particles have a display concentration of 50 particles / μl, whereas measured values are 49 particles / μl.
Therefore, it was confirmed that the urine was sufficiently mixed.

【0054】[0054]

【発明の効果】以上述べたように本発明によれば下記の
種々の優れた効果が得られる。
As described above, according to the present invention, the following various excellent effects can be obtained.

【0055】 1.本発明の方法によれば尿沈渣の検査成績を測定者間
差、施設間差ばかりでなく尿検体の個体差も是正するこ
とができ、精度管理に有用である。
1. ADVANTAGE OF THE INVENTION According to the method of this invention, the test result of a urine sediment can correct not only the difference between measurement persons, the difference between facilities, but also the individual difference of a urine sample, and is useful for quality control.

【0056】 2.マーカー粒子の1視野当りの理論的回収値を基準
に、式1により目的粒子数を補正すれば、日本臨床検査
技師会法に合致した検査成績が得られ、検査施設内はも
ちろん検査施設間の標準化が全国的規模で可能になる。
[0056] 2. If the number of target particles is corrected using Equation 1 based on the theoretical recovery value of marker particles per visual field, a test result that conforms to the Japanese Society of Clinical Laboratory Engineers can be obtained. Standardization becomes possible on a nationwide scale.

【0057】 3.マーカー粒子の1視野当りの実験的回収平均値を基
準に、式2により目的粒子数を補正すれば、各検査施設
における従来の判断基準を変更することなく、尿検体の
個体差を是正することができる。
[0057] 3. Correcting the number of target particles using Equation 2 based on the average value of the experimental collection of marker particles per field of view can correct individual differences in urine samples without changing the conventional criteria at each laboratory. Can be.

【0058】 4.1視野当りの平均目的粒子数と平均マーカー粒子と
を求め式3により補正すれば、目的粒子の尿中の濃度
(個/μl尿)が得られ、尿中の目的粒子数を直接濃度
表示することができる。更に、式2による補正と併用す
ることにより各検査施設における従来の判断基準を変更
することなく、濃度表示により検査施設間の標準化が可
能になる。
4. If the average number of target particles per visual field and the average marker particles are determined and corrected by Equation 3, the urine concentration of target particles (units / μl urine) is obtained, and the number of target particles in urine is obtained. Can be directly displayed. Further, by using the correction in accordance with Equation 2, it is possible to standardize among the laboratories by displaying the concentration without changing the conventional judgment standard in each laboratory.

【0059】 5.1視野当りの平均目的粒子数と平均マーカー粒子数
との比率により、尿検体を目的粒子ごとにランク分けす
ることができるので、計数及び報告が容易となり、合理
化できる。
5. The urine samples can be ranked for each target particle based on the ratio between the average number of target particles and the average number of marker particles per visual field, so that counting and reporting are facilitated and rationalized.

【0060】 6.マーカー粒子の径を1〜20μm、比重を1.04
〜1.20とすれば、尿検体からの回収率が目的粒子と
略同一となり、検鏡の際にも容易に計数できる。
[0060] 6. Marker particle diameter is 1-20 μm, specific gravity is 1.04
If it is set to 1.20, the recovery rate from the urine sample becomes substantially the same as that of the target particles, and it can be easily counted at the time of microscopy.

【0061】 7.マーカー粒子の径を目的粒子の径と異ならせれば識
別は更に容易となり、更にマーカー粒子と目的粒子の色
調を異ならせると識別、計数がより一層容易となる。
[0061] 7. If the diameter of the marker particle is different from the diameter of the target particle, the identification becomes easier, and if the color tone of the marker particle is different from that of the target particle, the identification and the counting become easier.

【図面の簡単な説明】[Brief description of the drawings]

【図1】尿沈渣検査方法を示した説明図である。FIG. 1 is an explanatory view showing a urine sediment inspection method.

【符号の説明】[Explanation of symbols]

1 採尿カップ 2 尿検体 3 スピッツ管 4 標線 5 遠心分離機 6 尿沈渣 9 顕微鏡 10 スポイト DESCRIPTION OF SYMBOLS 1 Urine collection cup 2 Urine specimen 3 Spitz tube 4 Marking line 5 Centrifuge 6 Urine sediment 9 Microscope 10 Dropper

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 尿にマーカー粒子を加えて遠心分離し、
得られる尿沈渣中の目的粒子及びマーカー粒子を計数
し、マーカー粒子の回収率により目的粒子の数を補正す
ることを特徴とする尿沈渣検査成績管理方法。
1. Addition of marker particles to urine and centrifugation,
A urine sediment test result management method, wherein the target particles and marker particles in the obtained urine sediment are counted, and the number of target particles is corrected based on the recovery rate of the marker particles.
【請求項2】 (計数された目的粒子の数)×(理論的
回収マーカー粒子数÷計数されたマーカー粒子の数)…
(式1)により補正する請求項1記載の尿沈渣検査成績
管理方法。
2. (Number of target particles counted) × (Number of theoretically recovered marker particles / Number of marker particles counted)
The method according to claim 1, wherein the correction is performed according to (Equation 1).
【請求項3】 (計数された目的粒子の数)×(実験的
回収マーカー粒子数÷計数されたマーカー粒子の数)…
(式2)により補正する請求項1記載の尿沈渣検査成績
管理方法。
3. (Number of target particles counted) × (Number of experimentally recovered marker particles / Number of counted marker particles)
The method according to claim 1, wherein the correction is performed according to (Equation 2).
【請求項4】 (計数された目的粒子の数÷計数された
マーカー粒子の数)×(添加されたマーカー粒子の尿中
濃度)…(式3)により補正する請求項1記載の尿沈渣
検査成績管理方法。
4. The urine sediment test according to claim 1, wherein the correction is performed by (number of counted target particles / number of counted marker particles) × (urine concentration of added marker particles) (Equation 3). Grade management method.
【請求項5】 尿にマーカー粒子を加えて遠心分離し、
得られる尿沈渣中の目的粒子及びマーカー粒子を計数
し、マーカー粒子に対する目的粒子の比率により尿検体
をランク分けすることを特徴とする尿沈渣検査成績管理
方法。
5. Addition of marker particles to urine and centrifugation,
A urine sediment test result management method comprising counting target particles and marker particles in the obtained urine sediment, and ranking urine samples according to a ratio of the target particles to the marker particles.
【請求項6】 マーカー粒子が粒子径1〜20μm、比
1.040〜1.20である請求項1、2、3、4又
は5記載の尿沈渣検査成績管理方法。
6. The urine sediment test result management method according to claim 1, wherein the marker particles have a particle size of 1 to 20 μm and a specific gravity of 1.040 to 1.20 .
【請求項7】 マーカー粒子が目的粒子と粒子径を異に
する請求項1、2、3、4又は5記載の尿沈渣検査成績
管理方法。
7. The urine sediment test result management method according to claim 1, wherein the marker particles have a particle diameter different from that of the target particles.
【請求項8】 マーカー粒子が目的粒子と粒子径を異に
し、計数を自動粒子カウンターで行う請求項1、2、
3、4又は5記載の尿沈渣検査成績管理方法。
8. The method according to claim 1, wherein the marker particles have different particle diameters from the target particles, and the counting is performed by an automatic particle counter.
3. The method for managing results of urine sediment inspection according to 3, 4, or 5.
【請求項9】 マーカー粒子が細胞、菌体、ラテックス
粒子、マイクロカプセル、デンプン粒子、ゼラチン粒
子、花粉である請求項1、2、3、4又は5記載の尿沈
渣検査成績管理方法。
9. The method of claim 1, 2, 3, 4 or 5, wherein the marker particles are cells, bacterial cells, latex particles, microcapsules, starch particles, gelatin particles, pollen.
【請求項10】 マーカー粒子が目的粒子と検鏡下の色
調を異にする請求項1、2、3、4又は5記載の尿沈渣
検査成績管理方法。
10. The urine sediment test result management method according to claim 1, wherein the marker particles have a different color tone under the microscope from the target particles.
【請求項11】 マーカー粒子が固定染色血球、染色細
胞、固定染色細胞、染色菌体、固定染色菌体、着色ラテ
ックス粒子、着色マイクロカプセル、着色デンプン粒
子、着色ゼラチン粒子である請求項1、2、3、4又は
5記載の尿沈渣検査成績管理方法。
11. The marker particles are fixed stained blood cells, stained cells, fixed stained cells, stained cells, fixed stained cells, colored latex particles, colored microcapsules, colored starch particles, and colored gelatin particles. 7. The method for managing results of urine sediment inspection described in 3, 4, or 5.
JP3063837A 1991-03-06 1991-03-06 Urine sediment test result management method Expired - Fee Related JP2913219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063837A JP2913219B2 (en) 1991-03-06 1991-03-06 Urine sediment test result management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063837A JP2913219B2 (en) 1991-03-06 1991-03-06 Urine sediment test result management method

Publications (2)

Publication Number Publication Date
JPH04278460A JPH04278460A (en) 1992-10-05
JP2913219B2 true JP2913219B2 (en) 1999-06-28

Family

ID=13240864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063837A Expired - Fee Related JP2913219B2 (en) 1991-03-06 1991-03-06 Urine sediment test result management method

Country Status (1)

Country Link
JP (1) JP2913219B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3875754B2 (en) * 1995-11-17 2007-01-31 シスメックス株式会社 Standard solution for flow cytometer
CN106104270B (en) 2014-02-28 2019-08-02 希森美康株式会社 Urine sample analysis method, urine sample analysis reagent and urine sample analysis kit
CN111175099B (en) * 2019-12-09 2024-06-25 湖北泰康医疗设备有限公司 Extraction and tabletting method for body fluid cells for detecting bladder cancer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520402A (en) * 1978-07-18 1980-02-13 Isao Inagaki Urine dregs counter
JPS5851295B2 (en) * 1978-11-21 1983-11-15 オムロン株式会社 Urine sediment classification counter
JPS6179163A (en) * 1984-09-26 1986-04-22 Toa Medical Electronics Co Ltd Reagent for measuring blood cell
JPS61281967A (en) * 1985-06-07 1986-12-12 Terumo Corp Inspecting tube for urine sediment
JPS6283965U (en) * 1985-11-14 1987-05-28
US4704891A (en) * 1986-08-29 1987-11-10 Becton, Dickinson And Company Method and materials for calibrating flow cytometers and other analysis instruments
JPS63243879A (en) * 1987-03-31 1988-10-11 Nippon Koden Corp Standard solution for calibrating hemocytometer
JPS63317098A (en) * 1987-06-15 1988-12-26 アースレツクス・コーポレイシヨン Detection of bacteria in urine and treatment of diseases relating to rheumatoid arthritis, essential hypertensive disease and other bacteriuria
JPH01301166A (en) * 1988-05-30 1989-12-05 Japan Synthetic Rubber Co Ltd Standard liquid for calibrating blood cell counter
IE76732B1 (en) * 1990-08-07 1997-11-05 Becton Dickinson Co One step test for absolute counts

Also Published As

Publication number Publication date
JPH04278460A (en) 1992-10-05

Similar Documents

Publication Publication Date Title
Hannemann-Pohl et al. Automation of urine sediment examination: a comparison of the Sysmex UF-100 automated flow cytometer with routine manual diagnosis (microscopy, test strips, and bacterial culture)
Fenili et al. The automation of sediment urinalysis using a new urine flow cytometer (UF-100™)
JP3017291B2 (en) Density gradient medium for cell separation
US20140315242A1 (en) Microfluidic Chamber Assembly for Mastitis Assay
JP2003526379A (en) Method for preparing control samples of particles such as microorganisms and cells
Saniabadi et al. Platelet aggregation studies in whole human blood
US6803208B2 (en) Automated epifluorescence microscopy for detection of bacterial contamination in platelets
EP1066516B1 (en) METHOD and KIT FOR THE DETECTION AND IDENTIFICATION OF CRYSTALS IN BIOLOGICAL FLUIDS
US5945340A (en) Reticulocyte assay control
JPH02502487A (en) Preparation method for preserved whole blood samples
JP2001174456A (en) Device and method for subclassification of leukocyte
JP2913219B2 (en) Urine sediment test result management method
US6444471B1 (en) Reticulocyte containing complete blood control
Freni et al. Centrifugation techniques and reagent strips in the assessment of microhaematuria.
JPS6360862B2 (en)
Free et al. Studies with a simple test for the detection of occult blood in urine
US4659656A (en) Method of detecting mastitis in cows
Akhtar et al. A simple method for processing fine-needle aspiration biopsy specimens for electron microscopy.
EP0260315B1 (en) Separation and method of use of density specific blood cells
Schumann et al. Comparing slide systems for microscopic urinalysis
US4228148A (en) Heterophil antibody differentiation (HAD) test
Glass et al. Automated platelet counting
JP3631203B2 (en) Hemolytic anemia test method
Marcone et al. A-153 Study of the evaluation of fragment flag and percentage schistocyte count in MINDRAY® BC-6800 PLUS in a public pediatric hospital in Argentina
Bamaniya Various pathological test for identification of diseases

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees