JP2960186B2 - Pipe moving device - Google Patents
Pipe moving deviceInfo
- Publication number
- JP2960186B2 JP2960186B2 JP3066851A JP6685191A JP2960186B2 JP 2960186 B2 JP2960186 B2 JP 2960186B2 JP 3066851 A JP3066851 A JP 3066851A JP 6685191 A JP6685191 A JP 6685191A JP 2960186 B2 JP2960186 B2 JP 2960186B2
- Authority
- JP
- Japan
- Prior art keywords
- elastic body
- pipe
- cylindrical elastic
- pressure
- cylindrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Manipulator (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は管内移動装置に係り、特
に筒状弾性体の湾曲動作により管内壁と接触して管内を
進むようにした管内移動装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-pipe moving apparatus, and more particularly, to an in-pipe moving apparatus that contacts a pipe inner wall by a bending operation of a tubular elastic body so as to advance in the pipe.
【0002】[0002]
【従来の技術】近年、原子力発電所や化学プラント等に
おいて、配管内を点検修理するために各種の移動装置が
開発され、実用化されてきている。この種の管内移動装
置では走行車輪を備えたものが多いが、実際の配管は複
雑な配管レイアウトがなされており、垂直管や多くのT
字形分岐部や屈曲部が設けられている。また、管内壁に
堆積物が付着して断面の一部が閉塞したりレジューサの
ように管径が変化する部分もある。このため走行車輪で
走行するような管内移動装置では通過が困難な部位も多
く適用範囲が限られている。2. Description of the Related Art In recent years, various types of moving devices have been developed and put to practical use in nuclear power plants and chemical plants for checking and repairing the inside of piping. Many of these types of in-pipe moving devices have traveling wheels, but the actual piping has a complicated piping layout, such as vertical pipes and many T pipes.
A character-shaped branch portion and a bent portion are provided. In addition, there is also a portion in which a deposit adheres to the inner wall of the pipe, a part of the cross section is closed, and the pipe diameter changes like a reducer. For this reason, in an in-pipe moving apparatus that travels with traveling wheels, there are many parts that are difficult to pass, and the applicable range is limited.
【0003】また、管径の変化や垂直管を上昇できるよ
うな管内移動装置として、管内壁に支持をとりながら進
行する機構の管内移動装置も提案されている。この種の
管内移動装置は複数の支持用の弾性バッグと、移動用の
筒状弾性体とから構成されている。このうち筒状弾性体
は内部に圧力室を有し、この圧力室に図示しない外部の
圧力源から作動流体を供給することにより管軸方向に伸
縮するようになっている。また、筒状弾性体に固着され
た弾性バッグは他の圧力源から供給される作動流体の作
用により管径方向に膨張して管内周面に当接し、装置本
体を支持できるようになっている。したがって、各圧力
室に図示しない制御部で制御しながら作動流体を供給す
ることで移動装置に所定の動作をさせて管内を移動させ
るようになっている。[0003] Further, as an in-pipe moving apparatus capable of changing the pipe diameter and ascending the vertical pipe, an in-pipe moving apparatus having a mechanism for moving while supporting the inner wall of the pipe has been proposed. This type of in-pipe moving device is composed of a plurality of supporting elastic bags and a moving cylindrical elastic body. Of these, the cylindrical elastic body has a pressure chamber inside, and expands and contracts in the tube axis direction by supplying a working fluid from an external pressure source (not shown) to the pressure chamber. In addition, the elastic bag fixed to the cylindrical elastic body expands in the tube radial direction by the action of a working fluid supplied from another pressure source, abuts against the inner peripheral surface of the tube, and can support the apparatus main body. . Accordingly, by supplying a working fluid to each pressure chamber while being controlled by a control unit (not shown), the moving device is caused to perform a predetermined operation and move in the pipe.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述の
走行車輪で走行するような管内移動装置は走行機構の構
造が複雑であるうえ、適用範囲が限られるという欠点が
ある。また、内部に圧力室を有する筒状弾性体と弾性バ
ッグを操作する管内移動装置では各圧力室に作動流体を
供給する複数の圧力源を必要とし、さらに各動作に応じ
て圧力を制御しなければならず操作手順が複雑になると
いう問題がある。そこで、本発明の目的は上述した従来
の技術が有する問題点を解消し、簡単な構造で管内を自
由に移動できる管内移動装置を提供することにある。However, the in-pipe moving device which travels on the traveling wheels described above has a drawback that the structure of the traveling mechanism is complicated and its application range is limited. In addition, a tubular elastic body having a pressure chamber therein and an in-pipe moving device for operating an elastic bag require a plurality of pressure sources for supplying a working fluid to each pressure chamber, and furthermore, the pressure must be controlled according to each operation. The operation procedure must be complicated. Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional technology and to provide an in-pipe moving apparatus that can freely move in a pipe with a simple structure.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、軸線方向に連結された複数の筒状弾性体
を備え、各筒状弾性体は、隔壁により内部が複数の圧力
室に区分されるとともに、これら各圧力室への圧力を調
整することで各筒状弾性体の軸線が湾曲自在となってお
り、これら複数の筒状弾性体のうち隣接する各筒状弾性
体の湾曲動作に位相差を与えることにより、複数の筒状
弾性体を全体として蛇行するように動作させ、各筒状弾
性体の表面と管内壁との接触により管内を移動するよう
にしたことを特徴とするものである。In order to achieve the above-mentioned object, the present invention comprises a plurality of cylindrical elastic bodies connected in an axial direction, and each of the cylindrical elastic bodies has a plurality of internal pressures formed by partition walls. The chambers are divided into chambers, and by adjusting the pressure applied to each of the pressure chambers, the axis of each cylindrical elastic body can be freely bent. By giving a phase difference to the bending operation of the cylindrical elastic body, the plurality of cylindrical elastic bodies are operated to meander as a whole, and the inside of the pipe is moved by the contact between the surface of each cylindrical elastic body and the inner wall of the pipe. It is a feature.
【0006】[0006]
【作用】本発明によれば、複数の筒状弾性体を軸線方向
に連結し、各筒状弾性体の湾曲動作に位相差を与えるこ
とにより、複数の筒状弾性体を全体として蛇行するよう
に動作させ、各筒状弾性体の表面と管内壁との接触によ
り管内を移動するようにしたので、筒状弾性体の連続的
な湾曲動作により、管内壁に沿って押圧接触しながら移
動することができる。According to the present invention, by connecting a plurality of cylindrical elastic bodies in the axial direction and giving a phase difference to the bending operation of each cylindrical elastic body, the plurality of cylindrical elastic bodies meander as a whole. And the inner surface of each tubular elastic body and the inner wall of the tube are moved in contact with each other, so that the tubular elastic body is continuously pressed and moved along the inner wall of the tube by continuous bending operation. be able to.
【0007】[0007]
【実施例】以下本発明による管内移動装置の一実施例を
添付図面を参照して説明する。図1において、符号1は
配管T内に挿入された管内移動装置の全体を示してお
り、この管内移動装置1の本体である筒状弾性体2は管
軸方向に連結された2個のほぼ同形の筒状弾性体2A、
2Bから構成されている。各筒状弾性体2A、2Bは内
部に隔壁3により区分された複数の圧力室4を有し、各
圧力室4には操作チューブ5がそれぞれ接続されてい
る。これら操作チューブ5はそれぞれ外部の圧力制御弁
6を介して図示しない圧力源に接続されている。また、
圧力制御弁6は制御部7に電気的に接続されており、こ
の制御部7からの動作指令信号により弁開閉される。こ
れにより各圧力室4には圧力源から独立して所定圧の作
動流体が供給される。また、制御部7への指令はコント
ローラ10により操作者がマニュアルで指令を送れるよ
うになっている。このため管内移動装置1の進行方向の
状況を把握するために管内移動装置1の先端部にはCC
Dカメラ11が装着されている。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an in-pipe moving apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an entire in-pipe moving device inserted into a pipe T, and a tubular elastic body 2 which is a main body of the in-pipe moving device 1 has two substantially elastic members connected in a pipe axis direction. Cylindrical elastic body 2A of the same shape,
2B. Each of the cylindrical elastic bodies 2A and 2B has a plurality of pressure chambers 4 divided by partition walls 3 therein, and each of the pressure chambers 4 is connected to an operation tube 5 respectively. Each of these operation tubes 5 is connected to a pressure source (not shown) via an external pressure control valve 6. Also,
The pressure control valve 6 is electrically connected to a control unit 7, and is opened and closed by an operation command signal from the control unit 7. Thereby, a working fluid of a predetermined pressure is supplied to each pressure chamber 4 independently of the pressure source. In addition, the controller 10 allows the operator to manually send a command to the controller 7. Therefore, in order to grasp the state of the moving direction of the in-pipe moving device 1,
The D camera 11 is mounted.
【0008】ここで管軸方向に直列に連結された筒状弾
性体2の構造について図2を参照して説明する。筒状弾
性体2は図2(a)示したように外周壁を形成する弾性
体本体12A、12Bを管軸方向に直列に連結して構成
され、この連結された弾性体本体12A、12Bの両端
部には先端封止部13、根元封止部14が固着されてい
る。この弾性体本体12A(12B)は断面形状が半円
形の同一形状からなる2つの単位筒状弾性体15A1,1
5A2(15B1,15B2)の平面部を合わせて軸方向に接
着することにより一体成形したものである。このため接
着された部位により筒状弾性体の軸方向に弾性隔壁3が
延設されている。この弾性隔壁3により弾性体本体12
A(12B)の内部には2室の圧力室4A1,4A2(4B
1,4B2)が形成される。また、弾性体本体12Aの側
面には2本の操作チューブ5A1,5A2が接続され、内部
の圧力室4A1,4A2に連通している。また、弾性体本体
12Bに固着された根元封止部14には2本の操作チュ
ーブ5B1,5B2が嵌挿され、圧力室4B1,4B2と連通し
ている。さらに、単位筒状弾性体15A1,15A2(15
B1,15B2)の外周には補強繊維16が間隔を密にして
螺旋状に巻装されており、さらにその外周面を被覆する
ように弾性材料のシリコンゴム被膜17が形成されてい
る。このため筒状弾性体2は補強繊維とシリコンゴムと
の複合作用により異方性弾性性状を示し、縦弾性係数の
小さい方向は筒状弾性体の軸方向と略一致し、軸方向L
には伸びやすく、一方、軸方向と直交する半径方向
RA ,RB には繊維16が変形を拘束するため縦弾性係
数が大きくなり、伸びにくくなっている。なお、弾性体
本体12Aの側面に接続された2本の操作チューブ5A
1,5A2をシリコンゴム被膜17で弾性体本体12Bと
一体化させることにより操作チューブ5A1,5A2の取扱
いを容易にすることができる。Here, the structure of the cylindrical elastic members 2 connected in series in the pipe axis direction will be described with reference to FIG. As shown in FIG. 2A, the cylindrical elastic body 2 is configured by connecting elastic bodies 12A and 12B forming an outer peripheral wall in series in the tube axis direction. A tip sealing portion 13 and a root sealing portion 14 are fixed to both ends. This elastic body main body 12A (12B) has two unit cylindrical elastic bodies 15A1 and 15A1 having the same shape with a semicircular cross section.
5A2 (15B1, 15B2) are integrally formed by aligning the flat portions and bonding them in the axial direction. For this reason, the elastic partition 3 extends in the axial direction of the cylindrical elastic body by the bonded portion. The elastic body 3 is formed by the elastic partition walls 3.
A (12B) has two pressure chambers 4A1, 4A2 (4B
1, 4B2) is formed. Two operation tubes 5A1 and 5A2 are connected to the side surface of the elastic body 12A, and communicate with the internal pressure chambers 4A1 and 4A2. Two operation tubes 5B1 and 5B2 are fitted into the root sealing portion 14 fixed to the elastic body 12B, and communicate with the pressure chambers 4B1 and 4B2. Furthermore, the unit cylindrical elastic bodies 15A1, 15A2 (15
Reinforcing fibers 16 are spirally wound around the outer periphery of B1, 15B2) at a close interval, and a silicone rubber coating 17 of an elastic material is formed so as to cover the outer peripheral surface. For this reason, the cylindrical elastic body 2 exhibits anisotropic elasticity due to the combined action of the reinforcing fiber and the silicone rubber, and the direction in which the longitudinal elastic coefficient is small substantially coincides with the axial direction of the cylindrical elastic body, and the axial direction L
In the radial directions R A and R B orthogonal to the axial direction, the fibers 16 restrain the deformation, so that the longitudinal elastic coefficient is large and the fibers 16 are hard to expand. The two operation tubes 5A connected to the side surface of the elastic body 12A.
The operation tubes 5A1 and 5A2 can be easily handled by integrating 1,5A2 with the elastic body 12B with the silicone rubber coating 17.
【0009】ここで上述のような構成からなる筒状弾性
体2の動作の一例を図2(b)を参照して説明する。ま
ず図示しない圧力源から上記操作チューブ5B1を通じて
作動流体を圧力室に送り、内部圧力を高める。このと
き、同図(b)に示したように上記圧力室4B1は軸方向
に伸び、かつ筒状弾性体2BがRA 方向に湾曲して破線
で示した状態になる。これと同時に操作チューブ5A2を
介して圧力室4A2の圧力を高めれば、筒状弾性体2Aを
筒状弾性体2Bと反対方向のRB 方向に湾曲させること
ができる。このようにして4つの圧力室4A1、4A2、4
B1、4B2に与える圧力の組合わせを変えることにより、
筒状弾性体2A、2Bをあたかも蛇行するように動作さ
せることができる。また、2つの圧力室4A1、4A2(又
は4B1、4B2)の圧力を等しく高めれば筒状弾性体2
A、2Bを軸方向Lに真直ぐに伸ばすこともできる。Here, an example of the operation of the cylindrical elastic body 2 having the above configuration will be described with reference to FIG. First, a working fluid is sent from a pressure source (not shown) to the pressure chamber through the operation tube 5B1 to increase the internal pressure. At this time, the pressure chamber 4B1 extends in the axial direction, and the cylindrical elastic body 2B curves in the RA direction as shown in FIG. If Takamere the pressure in the pressure chamber 4A2 through the manipulation tube 5A2 At the same time, it is possible to bend the tubular elastic body 2A in the opposite direction of the R B direction and cylindrical elastic member 2B. Thus, the four pressure chambers 4A1, 4A2, 4
By changing the combination of pressure applied to B1, 4B2,
The cylindrical elastic bodies 2A and 2B can be operated as if they meander. If the pressures of the two pressure chambers 4A1, 4A2 (or 4B1, 4B2) are increased equally, the cylindrical elastic body 2
A and 2B can be extended straight in the axial direction L.
【0010】次に筒状弾性体2A,2Bからなる管内移
動装置を管内移動させるための湾曲動作シーケンスと圧
力室の圧力調整状態との関係を図3を参照して説明す
る。同図(a)は筒状弾性体2A,2Bの湾曲伸縮動作
の姿勢I 〜VIを示しており、各圧力室4A1,4A2,4B
1,4B2の作動流体圧力をPA1,PA2,PB1,PB2で示
している。また、姿勢I 〜VIにおいて加圧状態にある圧
力室にはハッチングを施してあり、本実施例では姿勢I
〜VIの湾曲動作シーケンスを実現するために圧力室4A
1,4A2の圧力を圧力室4B1,4B2の圧力に対し位相を
90°進めて加圧制御している。これにより筒状弾性体
2A,2Bはあたかも蛇行するように湾曲する。この一
連の湾曲動作は筒状弾性体の動きをなんら拘束しない空
間内では管内移動装置の中心点Cの位置をまったく変え
ない変形動作を行う。このときの各圧力室4A1,4A2,
4B1,4B2の作動流体圧力PA1,PA2,PB1,PB2の圧
力変化と経過時間との関係を示したのが図3(b)であ
る。この圧力調整シーケンスは図1の制御部7に記憶さ
れており、連結される筒状弾性体2の個数によりその設
定は自由に変更することができる。図3(b)におい
て、例えば圧力室4A1は姿勢I〜IVにおいてPA1=Pに
加圧され、姿勢V 〜VIにおいて加圧が解かれ、PA1=0
となるように設定されている。また、この間の圧力パタ
ーンは筒状弾性体が滑らかに形状変化するように所定の
変化率で漸増、漸減するように設定されているが、矩形
波状あるいは正弦波状に圧力パターンを変化させること
も可能である。なお、上述のように圧力室4A1の圧力変
化曲線P1と圧力室4B1の圧力変化曲線P3とは圧力室
4A1の圧力変化曲線P1が位相90°進んだ関係にあ
り、圧力室4A2の圧力変化曲線P2と圧力室4B2の圧力
変化曲線P4とは圧力室4A1の圧力変化曲線P2が位相
90°進んだ関係にある。Next, the relationship between the bending operation sequence for moving the in-pipe moving device composed of the cylindrical elastic bodies 2A and 2B in the pipe and the pressure adjustment state of the pressure chamber will be described with reference to FIG. FIG. 5A shows the postures I to VI of the bending and expanding and contracting operations of the cylindrical elastic bodies 2A and 2B, and shows the pressure chambers 4A1, 4A2 and 4B.
The working fluid pressures of 1 , 4B2 are indicated by P A1 , P A2 , P B1 , P B2 . Further, the pressure chambers in the pressurized state in the postures I to VI are hatched, and in this embodiment, the posture I
Pressure chamber 4A to realize the bending operation sequence of ~ VI
The pressure of 1, 4A2 is controlled by increasing the phase by 90 ° with respect to the pressure of the pressure chambers 4B1, 4B2. Thereby, the cylindrical elastic bodies 2A and 2B are curved as if meandering. This series of bending operations performs a deformation operation that does not change the position of the center point C of the in-pipe moving device at all in a space in which the movement of the cylindrical elastic body is not restricted at all. At this time, each of the pressure chambers 4A1, 4A2,
FIG. 3B shows the relationship between the pressure change of the working fluid pressures P A1 , P A2 , P B1 , P B2 of 4B1 and 4B2 and the elapsed time. This pressure adjustment sequence is stored in the control unit 7 of FIG. 1, and its setting can be freely changed depending on the number of connected tubular elastic bodies 2. In FIG. 3B, for example, the pressure chamber 4A1 is pressurized to P A1 = P in the postures I to IV, and depressurized in the postures V to VI, and P A1 = 0.
It is set to be. The pressure pattern during this period is set so as to gradually increase and decrease at a predetermined rate so that the cylindrical elastic body changes shape smoothly, but it is also possible to change the pressure pattern in a rectangular or sine wave shape It is. As described above, the pressure change curve P1 of the pressure chamber 4A1 and the pressure change curve P3 of the pressure chamber 4B1 have a relationship in which the pressure change curve P1 of the pressure chamber 4A1 is advanced by 90 °, and the pressure change curve of the pressure chamber 4A2. P2 and the pressure change curve P4 of the pressure chamber 4B2 have a relationship in which the pressure change curve P2 of the pressure chamber 4A1 is advanced by 90 ° in phase.
【0011】次に、図4により管内移動装置1が管内を
進行する状態について説明する。図4は実際に行われた
垂直管内の上昇実験における管内移動装置の湾曲動作を
トレースした動作説明図である。図4の各図には図3の
姿勢I〜VIに対応する状態が示されており、姿勢Iは管
内移動装置が矢印A方向に上昇する初期状態を示してい
る。このとき管内移動装置は筒状弾性体2Aが直線状で
筒状弾性体2Bが所定形状に湾曲しており、この筒状弾
性体2Bの下端と筒状弾性体2A、2Bのほぼ中央位置
(腹部)部分で管内壁を押圧するようにして管内の所定
位置に支持されている。ここで筒状弾性体2の形状がS
字形をなす姿勢III 〜VIでの挙動をもとに筒状弾性体2
が上昇する状態を簡単に説明する。まず、姿勢III に示
したように筒状弾性体2がS字形をなした状態では筒状
弾性体2Bは曲率がもっとも小さい湾曲状態にあり、点
αが管内壁に接している。ここで点αから計測基準長L
0 を管軸方向に設定して筒状弾性体2Aに点γをプロッ
トする。この計測基準長L0 (=γ−α)に対して筒状
弾性体2の表面に沿った実長をLとする。この状態から
図3に示したシーケンスで筒状弾性体2に湾曲動作を生
じさせる。筒状弾性体2は姿勢IV〜V と変化し、筒状弾
性体2の表面と管内壁とは点αから点βを経て点γまで
連続的に接触していく。このとき姿勢V での筒状弾性体
2の点γの管内での高さは姿勢III の高さからΔLだけ
上昇していることがわかる。このように姿勢I〜VI〜I'
の一連のシーケンスで筒状弾性体はΔLだけ移動するこ
とができる。この実験では以上の動作により管内を上昇
させたが、筒状弾性体2Aと筒状弾性体2Bとの位相を
逆転させることで管内を下降させることも可能である。
なお、本実施例では筒状弾性体2Aと筒状弾性体2Bと
の位相差を90°に設定したが、位相差が60°〜12
0°の範囲でも管内移動を行えることが確認されてい
る。また、本実施例のような2室の圧力室に限らず、3
室の圧力室を有する筒状弾性体においても、各圧力室の
圧力設定により同様の湾曲動作を行なうことができる。Next, a state in which the in-pipe moving device 1 advances in the pipe will be described with reference to FIG. FIG. 4 is an operation explanatory diagram tracing a bending operation of the in-pipe moving apparatus in an ascending experiment in a vertical pipe actually performed. 4 show states corresponding to the postures I to VI in FIG. 3, and the posture I shows an initial state in which the in-pipe moving device rises in the arrow A direction. At this time, in the in-pipe moving device, the tubular elastic body 2A is linear and the tubular elastic body 2B is curved into a predetermined shape, and the lower end of the tubular elastic body 2B and the substantially central position of the tubular elastic bodies 2A and 2B ( The tube is supported at a predetermined position in the tube such that the inner wall of the tube is pressed by the abdomen. Here, the shape of the cylindrical elastic body 2 is S
Cylindrical elastic body 2 based on the behavior in postures III to VI
The state in which is increased will be briefly described. First, when the tubular elastic body 2 has an S-shape as shown in the posture III, the tubular elastic body 2B is in a curved state having the smallest curvature, and the point α is in contact with the inner wall of the pipe. Here, the measurement reference length L from the point α
The point γ is plotted on the cylindrical elastic body 2A with 0 set in the tube axis direction. The actual length along the surface of the cylindrical elastic body 2 with respect to the measurement reference length L 0 (= γ-α) is defined as L. From this state, the cylindrical elastic body 2 is caused to bend in the sequence shown in FIG. The posture of the tubular elastic body 2 changes from IV to V, and the surface of the tubular elastic body 2 and the inner wall of the pipe continuously contact from the point α to the point γ via the point β. At this time, it can be seen that the height of the point γ of the tubular elastic body 2 in the pipe in the posture V is increased by ΔL from the height of the posture III. Thus the postures I-VI-I '
The cylindrical elastic body can move by ΔL in a series of the above sequence. In this experiment, the inside of the pipe was raised by the above operation, but it is also possible to lower the inside of the pipe by reversing the phases of the cylindrical elastic bodies 2A and 2B.
In this embodiment, the phase difference between the cylindrical elastic body 2A and the cylindrical elastic body 2B is set to 90 °, but the phase difference is 60 ° to 12 °.
It has been confirmed that the pipe can be moved even in the range of 0 °. Further, the present invention is not limited to the two pressure chambers as in this embodiment,
Even in a cylindrical elastic body having a chamber pressure chamber, a similar bending operation can be performed by setting the pressure of each pressure chamber.
【0012】[0012]
【発明の効果】以上の説明から明らかなように、本発明
によれば、複数の筒状弾性体を軸線方向に連結し、各筒
状弾性体の湾曲動作に位相差を与えることにより、複数
の筒状弾性体を全体として蛇行するように動作させ、各
筒状弾性体の表面と管内壁との接触により管内を移動す
るようにしたので、簡単な構造で複雑な形状の管内を移
動することができる等の効果を奏する。As is apparent from the above description, according to the present invention, by connecting a plurality of cylindrical elastic bodies in the axial direction and giving a phase difference to the bending operation of each cylindrical elastic body, The cylindrical elastic body is moved so as to meander as a whole, and moves inside the pipe by a contact between the surface of each cylindrical elastic body and the inner wall of the pipe, so that it moves in a complicated-shaped pipe with a simple structure. It has effects such as being able to do.
【図1】本発明による管内移動装置の一実施例を示した
正面図。FIG. 1 is a front view showing an embodiment of a pipe moving device according to the present invention.
【図2】図1に示した筒状弾性体の構成と動作状態とを
示した斜視図。FIG. 2 is a perspective view showing a configuration and an operation state of the cylindrical elastic body shown in FIG.
【図3】図1に示した筒状弾性体の湾曲状態と作動流体
圧力との関係を示した線図。FIG. 3 is a diagram showing a relationship between a curved state of the cylindrical elastic body shown in FIG. 1 and a working fluid pressure.
【図4】図1に示した筒状弾性体の垂直管内の上昇状態
を示した動作説明図。FIG. 4 is an operation explanatory view showing a rising state of the cylindrical elastic body shown in FIG. 1 in a vertical pipe.
1 管内移動装置 2 筒状弾性体 4 圧力室 5 操作チューブ DESCRIPTION OF SYMBOLS 1 In-pipe moving device 2 Cylindrical elastic body 4 Pressure chamber 5 Operation tube
Claims (1)
備え、 各筒状弾性体は、隔壁により内部が複数の圧力室に区分
されるとともに、これら各圧力室への圧力を調整するこ
とで各筒状弾性体の軸線が湾曲自在となっており、これ
ら複数の筒状弾性体のうち隣接する各筒状弾性体の湾曲
動作に位相差を与えることにより、複数の筒状弾性体を
全体として蛇行するように動作させ、各筒状弾性体の表
面と管内壁との接触により管内を移動するようにしたこ
とを特徴とする管内移動装置。1. A plurality of cylindrical elastic bodies connected in an axial direction are provided, and each cylindrical elastic body is divided into a plurality of pressure chambers by partition walls, and adjusts pressure to each of the pressure chambers. By doing so, the axis of each cylindrical elastic body is freely bendable, and by giving a phase difference to the bending operation of each adjacent cylindrical elastic body among the plurality of cylindrical elastic bodies, An in-pipe moving apparatus characterized in that the body is moved so as to meander as a whole and is moved in the pipe by contact between the surface of each tubular elastic body and the inner wall of the pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3066851A JP2960186B2 (en) | 1991-03-29 | 1991-03-29 | Pipe moving device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3066851A JP2960186B2 (en) | 1991-03-29 | 1991-03-29 | Pipe moving device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04303081A JPH04303081A (en) | 1992-10-27 |
JP2960186B2 true JP2960186B2 (en) | 1999-10-06 |
Family
ID=13327768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3066851A Expired - Fee Related JP2960186B2 (en) | 1991-03-29 | 1991-03-29 | Pipe moving device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2960186B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3350309B2 (en) * | 1995-09-13 | 2002-11-25 | 株式会社東芝 | Actuator |
CN104589336B (en) * | 2014-11-18 | 2017-03-29 | 天津工业大学 | A kind of new snakelike bio-robot |
CN105151156B (en) * | 2015-10-15 | 2017-08-25 | 吉林大学 | A kind of bionical buckling walking mechanism |
CN108582054B (en) * | 2018-07-18 | 2021-03-05 | 毛忠杰 | Snake-shaped robot |
-
1991
- 1991-03-29 JP JP3066851A patent/JP2960186B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04303081A (en) | 1992-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6178872B1 (en) | Operating mechanism | |
US4841845A (en) | Hydraulic or pneumatic drive device | |
US3981528A (en) | Robot finger | |
US5067390A (en) | Double-acting flexible wall actuator | |
CN108638046B (en) | A soft-body variable stiffness robot based on the principle of equal volume change | |
Wakimoto et al. | New concept and fundamental experiments of a smart pneumatic artificial muscle with a conductive fiber | |
ATE285320T1 (en) | BENDING THERMOPLASTIC PIPES WITH INTERNAL AND EXTERNAL SUPPORT | |
JP2993506B2 (en) | Actuator | |
JP2960186B2 (en) | Pipe moving device | |
CN113084852A (en) | Gas-liquid reversible flexible manipulator | |
US7100491B2 (en) | Fluid-powered mechanical actuator and method for controlling | |
JP3350309B2 (en) | Actuator | |
JPH04304983A (en) | In-pipe moving device and method for controlling it | |
Takeshima et al. | Six-braided tube in-pipe locomotive device | |
IL98465A (en) | Method and apparatus for bending pipes | |
WO2005021980A1 (en) | Compressible fluid pressure actuator | |
JP3893016B2 (en) | Micromachine and micromachine system | |
JPH048658A (en) | Device for moving inside piping | |
US4012936A (en) | Method and device for bending pipes | |
JP3443635B2 (en) | Spiral active flexible tube base and spiral active flexible tube | |
CN214924508U (en) | Gas-liquid reversible conversion type flexible manipulator | |
JP4499505B2 (en) | Endoscope device | |
JPH04304176A (en) | Actuator and position holder therefor | |
JPH0675837B2 (en) | Robot hand | |
US12017347B2 (en) | Pinched tubes for reconfigurable robots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080730 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |