JP2803375B2 - Semiconductor structure - Google Patents
Semiconductor structureInfo
- Publication number
- JP2803375B2 JP2803375B2 JP3475591A JP3475591A JP2803375B2 JP 2803375 B2 JP2803375 B2 JP 2803375B2 JP 3475591 A JP3475591 A JP 3475591A JP 3475591 A JP3475591 A JP 3475591A JP 2803375 B2 JP2803375 B2 JP 2803375B2
- Authority
- JP
- Japan
- Prior art keywords
- plane
- layer
- gainp
- group
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Semiconductor Lasers (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体材料に係り、特
に可視光半導体レーザ素子の性能向上に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor material, and more particularly to an improvement in performance of a visible light semiconductor laser device.
【0002】[0002]
【従来の技術】GaInPもしくはAlGaInPもし
くはAlGaInPAs混晶半導体は可視光半導体レー
ザの材料である、上記混晶半導体層を(001)面およ
びこれと等価な面方位をもつ基板上にエピタキシャル成
長した場合、上記混晶半導体層のバンドギャップエネル
ギー(Eg)は、結晶成長条件により変化する。例え
ば、GaInPにおいては、Egが1.83から1.9
2eVまで約90meV変化することが知られている。
このEgの変化は、結晶成長中に自然に形成される秩序
構造の形成状態の変化により起こっている。(以上、フ
ィジカル・レビュー・レターズ(Phys.Rev.L
ett.)第60巻2645頁(1988年))このバ
ンドギャップエネルギーの変化は、可視光半導体レーザ
素子の活性層にGaInPを用いた場合、発振波長の変
化と直接対応をもち、該素子の発振波長を変化させる場
合にはエピタキシャル成長条件を変化させる方法が考え
られる。2. Description of the Related Art GaInP, AlGaInP, or AlGaInPAs mixed crystal semiconductor is a material for a visible light semiconductor laser. When the above mixed crystal semiconductor layer is epitaxially grown on a (001) plane and a substrate having a plane orientation equivalent thereto, The band gap energy (Eg) of the mixed crystal semiconductor layer changes depending on crystal growth conditions. For example, in GaInP, Eg is 1.83 to 1.9.
It is known that it changes by about 90 meV to 2 eV.
This change in Eg is caused by a change in the state of formation of an ordered structure that is naturally formed during crystal growth. (These are Physical Review Letters (Phys. Rev. L.)
ett. Vol. 60, page 2645 (1988)) This change in band gap energy has a direct correspondence with the change in oscillation wavelength when GaInP is used for the active layer of a visible light semiconductor laser device. When changing, a method of changing the epitaxial growth conditions can be considered.
【0003】また、成長面にIII族面をもつ(11
a)面(a=1、3、5)あるいは、(001)面から
[110]方向に角度θだけ斜線した面(θ≦6°)上
に結晶を成長した場合(001)面上結晶よりも大きな
EgをもつGaInP結晶が成長される。また、成長面
にV族の(−111)ステップをもつ、(−11b)
(ただし、b=1、3)面GaAsに格子整合するGa
InPのEgが約1.9eV以上の高いEg値をとるこ
とが知られている。Further, the growth surface has a group III surface (11).
a) When a crystal is grown on a plane (a = 1, 3, 5) or a plane (θ ≦ 6 °) obliquely inclined by an angle θ in the [110] direction from the (001) plane. A GaInP crystal having a large Eg is grown. Further, the growth surface has a (-111) step of group V, (-11b)
(Where b = 1, 3) Ga lattice-matched to the GaAs plane
It is known that InP takes a high Eg value of about 1.9 eV or more.
【0004】[0004]
【発明が解決しようとする課題】実際に、有機金属気相
成長法(MOVPE法)によりAlGaInP可視光半
導体レーザ素子を、発振波長を変化させて作製する場
合、成長条件を変化させる、あるいはIII族面をもつ
基板方位面に成長すると、該素子の性能あるいは信頼性
が低下してしまい、成長条件を変化させることにより該
素子の発振波長を変化させることが不可能であった。ま
た、(−111)あるいは(−113)面上に成長した
場合にはEgの大きな結晶しか得ることができなかっ
た。この様に、従来のAlGaInP可視光半導体レー
ザの波長制御に関して解決すべき課題があった。Actually, when manufacturing an AlGaInP visible light semiconductor laser device by changing the oscillation wavelength by the metal organic chemical vapor deposition method (MOVPE method), the growth conditions are changed or the group III is used. When grown on a substrate orientation plane having a surface, the performance or reliability of the device is reduced, and it is impossible to change the oscillation wavelength of the device by changing the growth conditions. Further, when the crystal was grown on the (-111) or (-113) plane, only a crystal having a large Eg could be obtained. Thus, there is a problem to be solved regarding the wavelength control of the conventional AlGaInP visible light semiconductor laser.
【0005】本発明の目的は、上記従来の課題を解決
し、半導体構造体のバンドギャップを制御することにあ
る。特に、同一組成のGaInPを活性層に用いたまま
で、結晶中の秩序状態を制御することにより可視光半導
体レーザの発振波長を制御し、様々な波長を取ることを
可能にする事である。An object of the present invention is to solve the above conventional problems and control the band gap of a semiconductor structure. In particular, it is an object to control the oscillation wavelength of the visible light semiconductor laser by controlling the order state in the crystal while using GaInP of the same composition for the active layer, thereby making it possible to take various wavelengths.
【0006】[0006]
【課題を解決するための手段】本発明の半導体構造体
は、面方位が(−11m)(ただし、5≦m≦13)あ
るいはこれと等価である基板結晶と、該基板上に格子定
数をほぼ等しくエピタキシャル成長され、3元以上のI
II−V族又はII−VI族混晶半導体層中のいずれか
の原子サイト上に秩序構造を有する混晶半導体層とを有
することを特徴とする。前記基板結晶の面方位は、上記
方位から3°以内のいずれがあっても良いことを特徴と
する。According to the present invention, there is provided a semiconductor structure comprising: a substrate crystal having a plane orientation of (−11 m) (5 ≦ m ≦ 13) or equivalent; and a lattice constant formed on the substrate. Epitaxial growth is almost equal, and I
A mixed crystal semiconductor layer having an ordered structure on any of the atom sites in the II-V or II-VI mixed crystal semiconductor layer. The plane orientation of the substrate crystal may be any angle within 3 ° from the above orientation.
【0007】[0007]
【作用】本発明においては(−11m)[5≦m≦1
3]面すなわち、V族面の(−111)ステップ面をも
つGaAs基板上にGaInPを成長した場合、基板面
方位によって、エピタキシャル成長されるGaInP結
晶中の秩序状態すなわち、自然超格子(Natural
Super Lattice:NSL)の形成状態が
異なることを利用するものである。In the present invention, (−11 m) [5 ≦ m ≦ 1
3] In the case where GaInP is grown on a GaAs substrate having a (−111) step plane of a V-group plane, an ordered state in a GaInP crystal epitaxially grown, that is, a natural superlattice (Natural superlattice) depends on the substrate plane orientation.
Super Lattice (NSL) is formed in a different state.
【0008】以下図1を用いて作用を説明する。図1は
(001)面から[−110]方向へのオフ角度θとG
aInPのEgの関係を示すグラフである。NSLの形
式には、(−111)V族ステップの存在がNSL形成
を促進する役割りを果たすため、(−111)V族ステ
ップ密度が適度に多い(−1、1、13)面を成長面に
用いた場合、NSLの秩序度が高くなり、それと共にE
gが低くなっている。The operation will be described below with reference to FIG. FIG. 1 shows the off angle θ and G from the (001) plane to the [−110] direction.
It is a graph which shows the relationship of Eg of aInP. In the form of NSL, since the existence of (−111) V steps plays a role of promoting the formation of NSL, (−1, 1, 13) planes having a moderately high (−111) V step density are grown. When used on a surface, the order of the NSL increases, and
g is low.
【0009】また、NSL形成には、(−111)V族
ステップの他に、V族面でおおわれた(001)面上の
V族原子の表面再配列構造、すなわち[−110]方向
への2倍周期構造が(001)面上の[110]方向に
のびるGa列とIn列の交互配列を促進する働きを果た
す。In addition, in order to form NSL, in addition to the (−111) V step, the surface rearrangement structure of the V group atoms on the (001) plane covered with the V plane, that is, in the [−110] direction. The twice-period structure serves to promote the alternating arrangement of Ga rows and In rows extending in the [110] direction on the (001) plane.
【0010】この[−110]方向への2倍周期構造は
(−115)面上では形成されにくくなり、(−11
5)面上のGaInPのEgは高い値へ1.9eVをと
る。これら(−1、1、13)面および(−115)面
を(001)面から[−110]方向へのオフ角度θで
表わすと、(−1、1、13)がθ=6.2°、(−1
15)がθ=15.8°となるが、6.2°≦θ≦1
5.8°の範囲にあるθをもつ基板上にGaInPを成
長した場合、結晶中のNSL形式の秩序度がθの増加と
共に急激に小さくなり、Egもそれと共に、1.83e
Vから1.9eVまで約70meV変化する。This double period structure in the [-110] direction is difficult to be formed on the (-115) plane,
5) The Eg of GaInP on the surface takes 1.9 eV to a higher value. When these (-1, 1, 13) planes and (-115) planes are represented by off angles θ from the (001) plane to the [−110] direction, (−1, 1, 13) is θ = 6.2. °, (-1
15) becomes θ = 15.8 °, but 6.2 ° ≦ θ ≦ 1.
When GaInP is grown on a substrate having θ in the range of 5.8 °, the order of NSL type in the crystal decreases sharply with the increase of θ, and Eg is also 1.83e.
It changes by about 70 meV from V to 1.9 eV.
【0011】以上GaInPを用いて作用を説明した
が、AlGaInP、AlGaInPAsおよびII族
原子サイト内あるいはV族原子サイト内に秩序構造を有
するII−V族混晶についても同じ作用があり、本発明
を適用できる。Although the operation has been described using GaInP, AlGaInP, AlGaInPAs and Group II
Ordered structure within the atomic site or group V atom site
The present invention can be applied to the group II-V mixed crystal having the same effect.
【0012】[0012]
【実施例】以下に本発明の実施例を図を用いて説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.
【0013】実施例1 図2は本発明の第1の実施例の、AlGaInP可視光
半導体レーザの概略構造を示す断面図である。本実施例
においては(−117)面方位をもつn型GaAs基板
1上にMOVPE法により、n型AlGaInPクラッ
ド層2、Ga0.5 In0.5 P活性層3、P型AlGaI
nP層4、n型GaAs電流ブロック層5を成長し、上
記電流ブロック層5に電流注入領域を設けた後、P型G
aAs電極コンタクト層7を連続的に成長させる。この
様に形成されたダブルヘテロ接合の活性層中にはNSL
が形成されており、上記の構造にp側の電極7およびn
側電極8を形成し、室温レーザ発振させると、発振波長
674nmの素子が得られた。Embodiment 1 FIG. 2 is a sectional view showing a schematic structure of an AlGaInP visible light semiconductor laser according to a first embodiment of the present invention. By the MOVPE method on the n-type GaAs substrate 1 having a (-117) plane orientation in this embodiment, n-type AlGaInP cladding layer 2, Ga 0.5 In 0.5 P active layer 3, P-type AlGaI
After growing the nP layer 4 and the n-type GaAs current blocking layer 5 and providing a current injection region in the current blocking layer 5, the P-type G
The aAs electrode contact layer 7 is continuously grown. NSL is formed in the active layer of the double hetero junction thus formed.
Are formed, and the p-side electrode 7 and n
When the side electrode 8 was formed and laser oscillation was performed at room temperature, an element having an oscillation wavelength of 674 nm was obtained.
【0014】実施例2 図3は本発明の第2実施例の、AlGaInP可視光半
導体レーザの概略構造を示す断面図である。本実施例に
おいては(−1、1、11)面方位をもつn型GaAs
基板9上にMOVPE法により、n型AlGaInPク
ラッド層10、Ga0.5 In0.5 P性層11、P型Al
GaInP層12、n型GaAs電流ブロック層13を
成長し、上記電流ブロック層13に電流注入領域を設け
た後、P型GaAs電流コンタクト層14で埋め込む。
さらに、p側電極7、n側電する8を形成し、室温レー
ザ発振させると、発振波長689nmの素子が得られ
た。Embodiment 2 FIG. 3 is a sectional view showing a schematic structure of an AlGaInP visible light semiconductor laser according to a second embodiment of the present invention. In this embodiment, n-type GaAs having a (-1, 1, 11) plane orientation is used.
An n-type AlGaInP clad layer 10, a Ga 0.5 In 0.5 P-type layer 11, a P-type Al
A GaInP layer 12 and an n-type GaAs current blocking layer 13 are grown, a current injection region is provided in the current blocking layer 13, and then the P-type GaAs current contact layer 14 is buried.
Further, when a p-side electrode 7 and an n-side electrode 8 were formed and laser oscillation was performed at room temperature, an element having an oscillation wavelength of 689 nm was obtained.
【0015】これら実施例1および2の様に、同一組成
GaInPと活性層に用いても、成長する基板面方位が
異なることによって、発振波長の異なるレーザ素子を得
ることができた。As in Examples 1 and 2, even when the same composition GaInP and active layer were used, laser devices having different oscillation wavelengths could be obtained due to different substrate orientations to be grown.
【0016】また、実施例1と同じ(−117)面上
に、活性層に組成を(Al0.10Ga0.90)0.5 In0.5
Pとした結晶を用いると、発振波長653nmの素子を
得ることができた。On the same (-117) plane as in Example 1, the composition of the active layer was (Al 0.10 Ga 0.90 ) 0.5 In 0.5
By using a crystal made of P, an element having an oscillation wavelength of 653 nm could be obtained.
【0017】[0017]
【発明の効果】本発明によれば、以上述べてきた様に、
同一組成の結晶を用いても、発振波長の異なる可視光半
導体レーザを得ることができる。またレーザ以外にも発
光素子、電子デバイス、光機能素子の半導体層のバンド
ギャップエネルギーの制御にも応用できる。According to the present invention, as described above,
Even if crystals having the same composition are used, visible light semiconductor lasers having different oscillation wavelengths can be obtained. In addition to laser, the present invention can be applied to control of band gap energy of a semiconductor layer of a light emitting element, an electronic device, and an optical functional element.
【図面の簡単な説明】[Brief description of the drawings]
【図1】(001)面から[110]方向または[−1
10]方向への基板オフ角度θと、Ga0.5 In0.5 P
のバンドギャップエネルギーの関係を示す図である。FIG. 1 shows a [110] direction or (−1) from a (001) plane.
10] direction, the substrate off angle θ and Ga 0.5 In 0.5 P
FIG. 4 is a diagram showing a relationship between band gap energies.
【図2】本発明の一実施例のAlGaInP可視光レー
ザを示す断面図である。FIG. 2 is a sectional view showing an AlGaInP visible light laser according to one embodiment of the present invention.
【図3】本発明の一実施例のAlGaInP可視光レー
ザを示す断面図である。FIG. 3 is a sectional view showing an AlGaInP visible light laser according to one embodiment of the present invention.
1 n型(−117)GaAs基板 2 n型AlGaInPクラッド層 3 GaInP活性層 4 P型AlGaInPクラッド層 5 n型GaAs電流ブロック層 6 P型GaAs電極コンタクト層 7 P側電極 8 n側電極 9 n型(−1、1、11)GaAs基板 10 n型AlGaInPクラッド層 11 GaInP活性層 12 P型AlGaInPクラッド層 13 n型GaAs電流ブロック層 14 P型GaAs電極コンタクト層 Reference Signs List 1 n-type (-117) GaAs substrate 2 n-type AlGaInP cladding layer 3 GaInP active layer 4 P-type AlGaInP cladding layer 5 n-type GaAs current blocking layer 6 P-type GaAs electrode contact layer 7 P-side electrode 8 n-side electrode 9 n-type (-1, 1, 11) GaAs substrate 10 n-type AlGaInP cladding layer 11 GaInP active layer 12 P-type AlGaInP cladding layer 13 n-type GaAs current block layer 14 P-type GaAs electrode contact layer
Claims (2)
およびこれと等価な面方位またはこれらの面方位から3
°以内のずれを有する面方位の結晶基板と、該結晶基板
上にエピタキシャル形成された、3元以上のIII−V
族またはII−VI族混晶半導体中のIII族原子サイ
ト内あるいはV族原子サイト内またはII族原子サイト
内またはVI族原子サイト内に秩序構造を有する該混晶
半導体層を有することを特徴とする半導体構造体。1. The method according to claim 1, wherein (−11 m) [5 ≦ m ≦ 13]
And its equivalent plane orientation or 3 from these plane orientations
A crystal substrate having a plane orientation having a deviation of less than or equal to three degrees, and a ternary or higher III-V epitaxially formed on the crystal substrate.
A mixed crystal semiconductor layer having an ordered structure in a group III atom site, a group V atom site, a group II atom site, or a group VI atom site in a group III or II-VI mixed crystal semiconductor. Semiconductor structure.
lGaInPもしくは、AlGaInPAs系である請
求項1記載の半導体構造体。2. The method according to claim 1, wherein the mixed crystal semiconductor is GaInP or A.
2. The semiconductor structure according to claim 1, wherein the semiconductor structure is based on lGaInP or AlGaInPAs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3475591A JP2803375B2 (en) | 1991-02-28 | 1991-02-28 | Semiconductor structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3475591A JP2803375B2 (en) | 1991-02-28 | 1991-02-28 | Semiconductor structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04273490A JPH04273490A (en) | 1992-09-29 |
JP2803375B2 true JP2803375B2 (en) | 1998-09-24 |
Family
ID=12423139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3475591A Expired - Fee Related JP2803375B2 (en) | 1991-02-28 | 1991-02-28 | Semiconductor structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2803375B2 (en) |
-
1991
- 1991-02-28 JP JP3475591A patent/JP2803375B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
ELECTRON LETT,1989,VOL.25,NO.12,P.1439−1440 |
Also Published As
Publication number | Publication date |
---|---|
JPH04273490A (en) | 1992-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3153153B2 (en) | Gallium nitride based semiconductor laser and method of manufacturing the same | |
WO1997011518A1 (en) | Semiconductor material, method of producing the semiconductor material, and semiconductor device | |
JPS6254988A (en) | Semiconductor laser | |
JPH0650723B2 (en) | Epitaxial growth method | |
US5360754A (en) | Method for the making heteroepitaxial thin layers and electronic devices | |
JP2555881B2 (en) | A (1) Crystal growth method of GaInP type crystal and semiconductor laser | |
US7683392B2 (en) | Semiconductor device with anisotropy-relaxed quantum dots | |
JPH0332082A (en) | Semiconductor structure and semiconductor laser device | |
JPH05243614A (en) | Method of growing compound semiconductor, its light-emitting device, and the manufacture | |
JPH09139543A (en) | Semiconductor laser element | |
US5508522A (en) | Method for producing a group II-VI compound semiconductor thin film and a group II-VI compound semiconductor device | |
JPH09129974A (en) | Semiconductor laser device | |
JP3982985B2 (en) | Manufacturing method of semiconductor laser device | |
JPH09298341A (en) | Semiconductor laser element | |
JP4078891B2 (en) | Compound semiconductor epitaxial wafer manufacturing method and compound semiconductor epitaxial wafer | |
JP3192560B2 (en) | Semiconductor light emitting device | |
JP2803375B2 (en) | Semiconductor structure | |
JP2006505134A (en) | Quantum well mixing in semiconductor optical devices | |
JP2641484B2 (en) | Semiconductor element | |
US5190891A (en) | Method for fabricating a semiconductor laser device in which the p-type clad layer and the active layer are grown at different rates | |
JPH09232675A (en) | Semiconductor laser | |
US5887011A (en) | Semiconductor laser | |
JP3278035B2 (en) | Quantum box structure with current confinement structure and its fabrication method | |
JP3859990B2 (en) | Method for producing compound semiconductor | |
JP2876543B2 (en) | Semiconductor device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980616 |
|
LAPS | Cancellation because of no payment of annual fees |